Mathieu Salzmann

Mathieu Salzmann
  • PhD
  • Senior Researcher at Swiss Federal Institute of Technology in Lausanne

About

336
Publications
67,601
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
16,974
Citations
Introduction
Check my homepage https://people.epfl.ch/mathieu.salzmann for full texts and more info
Current institution
Swiss Federal Institute of Technology in Lausanne
Current position
  • Senior Researcher
Additional affiliations
February 2012 - June 2015
National ICT Australia Ltd
Position
  • Senior Researcher
February 2012 - June 2015
Australian National University
Position
  • Professor (Associate)
September 2010 - January 2012

Publications

Publications (336)
Preprint
Full-text available
Deep heteroscedastic regression models the mean and covariance of the target distribution through neural networks. The challenge arises from heteroscedasticity, which implies that the covariance is sample dependent and is often unknown. Consequently, recent methods learn the covariance through unsupervised frameworks, which unfortunately yield a tr...
Article
We propose a method for unsupervised reconstruction of a temporally-consistent sequence of surfaces from a sequence of time-evolving point clouds. It yields dense and semantically meaningful correspondences between frames. We represent the reconstructed surfaces as atlases computed by a neural network, which enables us to establish correspondences...
Preprint
Full-text available
Human pose forecasting is inherently multimodal since multiple futures exist for an observed pose sequence. However, evaluating multimodality is challenging since the task is ill-posed. Therefore, we first propose an alternative paradigm to make the task well-posed. Next, while state-of-the-art methods predict multimodality, this requires oversampl...
Preprint
Full-text available
We present GEM, a Generalizable Ego-vision Multimodal world model that predicts future frames using a reference frame, sparse features, human poses, and ego-trajectories. Hence, our model has precise control over object dynamics, ego-agent motion and human poses. GEM generates paired RGB and depth outputs for richer spatial understanding. We introd...
Preprint
Full-text available
Text-to-image diffusion models have demonstrated remarkable capability in generating realistic images from arbitrary text prompts. However, they often produce inconsistent results for compositional prompts such as "two dogs" or "a penguin on the right of a bowl". Understanding these inconsistencies is crucial for reliable image generation. In this...
Preprint
Full-text available
In the evolving landscape of deep learning, there is a pressing need for more comprehensive datasets capable of training models across multiple modalities. Concurrently, in digital humanities, there is a growing demand to leverage technology for diverse media adaptation and creation, yet limited by sparse datasets due to copyright and stylistic con...
Preprint
Full-text available
Saliency prediction models are constrained by the limited diversity and quantity of labeled data. Standard data augmentation techniques such as rotating and cropping alter scene composition, affecting saliency. We propose a novel data augmentation method for deep saliency prediction that edits natural images while preserving the complexity and vari...
Preprint
Full-text available
We introduce an approach to bias deep generative models, such as GANs and diffusion models, towards generating data with either enhanced fidelity or increased diversity. Our approach involves manipulating the distribution of training and generated data through a novel metric for individual samples, named pseudo density, which is based on the neares...
Preprint
With the advancements in denoising diffusion probabilistic models (DDPMs), image inpainting has significantly evolved from merely filling information based on nearby regions to generating content conditioned on various prompts such as text, exemplar images, and sketches. However, existing methods, such as model fine-tuning and simple concatenation...
Article
A recent trend in Non-Rigid Structure-from-Motion (NRSfM) is to express local, differential constraints between pairs of images, from which the surface normal at any point can be obtained by solving a system of polynomial equations. While this approach is more successful than its counterparts relying on global constraints, the resulting methods fac...
Article
In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches have shown remarkable success on synthetic datasets, we have observed them to fail in the presence of real-world data. We investigate the root causes of these failures and identify two main challenges: The sensitivit...
Article
Vehicles can encounter a myriad of obstacles on the road, and it is impossible to record them all beforehand to train a detector. Instead, we select image patches and inpaint them with the surrounding road texture, which tends to remove obstacles from those patches. We then use a network trained to recognize discrepancies between the original patch...
Preprint
Full-text available
We introduce the first multitasking vision transformer adapters that learn generalizable task affinities which can be applied to novel tasks and domains. Integrated into an off-the-shelf vision transformer backbone, our adapters can simultaneously solve multiple dense vision tasks in a parameter-efficient manner, unlike existing multitasking transf...
Preprint
Full-text available
In this paper, we develop a MultiTask Learning (MTL) model to achieve dense predictions for comics panels to, in turn, facilitate the transfer of comics from one publication channel to another by assisting authors in the task of reconfiguring their narratives. Our MTL method can successfully identify the semantic units as well as the embedded notio...
Preprint
Learning-based outlier (mismatched correspondence) rejection for robust 3D registration generally formulates the outlier removal as an inlier/outlier classification problem. The core for this to be successful is to learn the discriminative inlier/outlier feature representations. In this paper, we develop a novel variational non-local network-based...
Article
While road obstacle detection techniques have become increasingly effective, they typically ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases. In this paper, we account for this by computing a scale map encoding the apparent size of a hypothetical object at every image locatio...
Preprint
Dense Self-Supervised Learning (SSL) methods address the limitations of using image-level feature representations when handling images with multiple objects. Although the dense features extracted by employing segmentation maps and bounding boxes allow networks to perform SSL for each object, we show that they suffer from coupling and positional bia...
Preprint
Full-text available
The practicality of 3D object pose estimation remains limited for many applications due to the need for prior knowledge of a 3D model and a training period for new objects. To address this limitation, we propose an approach that takes a single image of a new object as input and predicts the relative pose of this object in new images without prior k...
Preprint
Full-text available
Most modern image-based 6D object pose estimation methods learn to predict 2D-3D correspondences, from which the pose can be obtained using a PnP solver. Because of the non-differentiable nature of common PnP solvers, these methods are supervised via the individual correspondences. To address this, several methods have designed differentiable PnP s...
Chapter
Unsupervised self-rehabilitation exercises and physical training can cause serious injuries if performed incorrectly. We introduce a learning-based framework that identifies the mistakes made by a user and proposes corrective measures for easier and safer individual training.
Preprint
Full-text available
Deep saliency prediction algorithms complement the object recognition features, they typically rely on additional information, such as scene context, semantic relationships, gaze direction, and object dissimilarity. However, none of these models consider the temporal nature of gaze shifts during image observation. We introduce a novel saliency pred...
Preprint
Vision transformers have emerged as powerful tools for many computer vision tasks. It has been shown that their features and class tokens can be used for salient object segmentation. However, the properties of segmentation transformers remain largely unstudied. In this work we conduct an in-depth study of the spatial attentions of different backbon...
Article
Full-text available
Saliency prediction has made great strides over the past two decades, with current techniques modeling low-level information, such as color, intensity and size contrasts, and high-level ones, such as attention and gaze direction for entire objects. Despite this, these methods fail to account for the dissimilarity between objects, which affects huma...
Chapter
Most recent 6D object pose estimation methods, including unsupervised ones, require many real training images. Unfortunately, for some applications, such as those in space or deep under water, acquiring real images, even unannotated, is virtually impossible. In this paper, we propose a method that can be trained solely on synthetic images, or optio...
Chapter
In this paper, we tackle the task of estimating the 3D orientation of previously-unseen objects from monocular images. This task contrasts with the one considered by most existing deep learning methods which typically assume that the testing objects have been observed during training. To handle the unseen objects, we follow a retrieval-based strate...
Chapter
In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches to addressing this task have shown great success on synthetic datasets, we have observed them to fail in the presence of real-world data. We thus analyze the causes of these failures, which we trace back to the diffe...
Article
In this paper we propose an unsupervised feature extraction method to capture temporal information on monocular videos, where we detect and encode subject of interest in each frame and leverage contrastive self-supervised (CSS) learning to extract rich latent vectors. Instead of simply treating the latent features of nearby frames as positive pairs...
Preprint
In this paper, we tackle the task of scene-aware 3D human motion forecasting, which consists of predicting future human poses given a 3D scene and a past human motion. A key challenge of this task is to ensure consistency between the human and the scene, accounting for human-scene interactions. Previous attempts to do so model such interactions onl...
Preprint
While road obstacle detection techniques have become increasingly effective, they typically ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases. In this paper, we account for this by computing a scale map encoding the apparent size of a hypothetical object at every image locatio...
Preprint
Full-text available
Unsupervised self-rehabilitation exercises and physical training can cause serious injuries if performed incorrectly. We introduce a learning-based framework that identifies the mistakes made by a user and proposes corrective measures for easier and safer individual training. Our framework does not rely on hard-coded, heuristic rules. Instead, it l...
Preprint
We introduce the task of action-driven stochastic human motion prediction, which aims to predict multiple plausible future motions given a sequence of action labels and a short motion history. This differs from existing works, which predict motions that either do not respect any specific action category, or follow a single action label. In particul...
Preprint
Full-text available
Knowledge distillation facilitates the training of a compact student network by using a deep teacher one. While this has achieved great success in many tasks, it remains completely unstudied for image-based 6D object pose estimation. In this work, we introduce the first knowledge distillation method for 6D pose estimation. Specifically, we follow a...
Preprint
Full-text available
We propose an end-to-end Multitask Learning Transformer framework, named MulT, to simultaneously learn multiple high-level vision tasks, including depth estimation, semantic segmentation, reshading, surface normal estimation, 2D keypoint detection, and edge detection. Based on the Swin transformer model, our framework encodes the input image into a...
Preprint
Full-text available
In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches to addressing this task have shown great success on synthetic datasets, we have observed them to fail in the presence of real-world data. We thus analyze the causes of these failures, which we trace back to the diffe...
Preprint
Full-text available
Most recent 6D object pose estimation methods, including unsupervised ones, require many real training images. Unfortunately, for some applications, such as those in space or deep under water, acquiring real images, even unannotated, is virtually impossible. In this paper, we propose a method that can be trained solely on synthetic images, or optio...
Preprint
Full-text available
In this paper, we tackle the task of estimating the 3D orientation of previously-unseen objects from monocular images. This task contrasts with the one considered by most existing deep learning methods which typically assume that the testing objects have been observed during training. To handle the unseen objects, we follow a retrieval-based strate...
Preprint
Full-text available
The Skinned Multi-Person Linear (SMPL) model can represent a human body by mapping pose and shape parameters to body meshes. This has been shown to facilitate inferring 3D human pose and shape from images via different learning models. However, not all pose and shape parameter values yield physically-plausible or even realistic body meshes. In othe...
Preprint
Prior work on human motion forecasting has mostly focused on predicting the future motion of single subjects in isolation from their past pose sequence. In the presence of closely interacting people, however, this strategy fails to account for the dependencies between the different subject's motions. In this paper, we therefore introduce a motion p...
Preprint
Full-text available
Much progress has been made on the task of learning-based 3D point cloud registration, with existing methods yielding outstanding results on standard benchmarks, such as ModelNet40, even in the partial-to-partial matching scenario. Unfortunately, these methods still struggle in the presence of real data. In this work, we identify the sources of the...
Preprint
We propose a method for unsupervised reconstruction of a temporally-consistent sequence of surfaces from a sequence of time-evolving point clouds. It yields dense and semantically meaningful correspondences between frames. We represent the reconstructed surfaces as atlases computed by a neural network, which enables us to establish correspondences...
Article
While supervised object detection and segmentation methods achieve impressive accuracy, they generalize poorly to images whose appearance significantly differs from the data they have been trained on. To address this when annotating data is prohibitively expensive, we introduce a self-supervised detection and segmentation approach that can work wit...
Preprint
Full-text available
Estimating the depth of comics images is challenging as such images a) are monocular; b) lack ground-truth depth annotations; c) differ across different artistic styles; d) are sparse and noisy. We thus, use an off-the-shelf unsupervised image to image translation method to translate the comics images to natural ones and then use an attention-guide...
Preprint
Full-text available
Weight sharing promises to make neural architecture search (NAS) tractable even on commodity hardware. Existing methods in this space rely on a diverse set of heuristics to design and train the shared-weight backbone network, a.k.a. the super-net. Since heuristics substantially vary across different methods and have not been carefully studied, it i...
Article
Full-text available
Katircioglu I, Rhodin H, Spörri J, Salzmann M, Fua P. Human Detection and Segmentation via Multi-view Consensus. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada, 2021, pp. 2855-2864. https://dx.doi.org/10.1109/ICCV48922.2021.00285
Article
Full-text available
Human motion prediction aims to forecast future human poses given a historical motion. Whether based on recurrent or feed-forward neural networks, existing learning based methods fail to model the observation that human motion tends to repeat itself, even for complex sports actions and cooking activities. Here, we introduce an attention based feed-...
Article
Weight sharing promises to make neural architecture search (NAS) tractable even on commodity hardware. Existing methods in this space rely on a diverse set of heuristics to design and train the shared-weight backbone network, a.k.a. the super-net. Since heuristics substantially vary across different methods and have not been carefully studied, it i...
Preprint
Recent progress in stochastic motion prediction, i.e., predicting multiple possible future human motions given a single past pose sequence, has led to producing truly diverse future motions and even providing control over the motion of some body parts. However, to achieve this, the state-of-the-art method requires learning several mappings for dive...
Article
Modern methods for counting people in crowded scenes rely on deep networks to estimate people densities in individual images. As such, only very few take advantage of temporal consistency in video sequences, and those that do only impose weak smoothness constraints across consecutive frames. In this paper, we advocate estimating people flows across...
Preprint
Human motion prediction aims to forecast future human poses given a historical motion. Whether based on recurrent or feed-forward neural networks, existing learning based methods fail to model the observation that human motion tends to repeat itself, even for complex sports actions and cooking activities. Here, we introduce an attention based feed-...
Preprint
Full-text available
Knowledge distillation constitutes a simple yet effective way to improve the performance of a compact student network by exploiting the knowledge of a more powerful teacher. Nevertheless, the knowledge distillation literature remains limited to the scenario where the student and the teacher tackle the same task. Here, we investigate the problem of...
Preprint
Full-text available
Despite much recent work, detecting out-of-distribution (OOD) inputs and adversarial attacks (AA) for computer vision models remains a challenge. In this work, we introduce a novel technique, DAAIN, to detect OOD inputs and AA for image segmentation in a unified setting. Our approach monitors the inner workings of a neural network and learns a dens...
Article
The current leading 6D object pose estimation methods rely heavily on annotated real data, which is highly costly to acquire. To overcome this, many works have proposed to introduce computer-generated synthetic data. However, bridging the gap between the synthetic and real data remains a severe problem. Images depicting different levels of realism/...
Preprint
Full-text available
State-of-the-art semantic or instance segmentation deep neural networks (DNNs) are usually trained on a closed set of semantic classes. As such, they are ill-equipped to handle previously-unseen objects. However, detecting and localizing such objects is crucial for safety-critical applications such as perception for automated driving, especially if...
Preprint
We propose a method for the unsupervised reconstruction of a temporally-coherent sequence of surfaces from a sequence of time-evolving point clouds, yielding dense, semantically meaningful correspondences between all keyframes. We represent the reconstructed surface as an atlas, using a neural network. Using canonical correspondences defined via th...
Article
Eigendecomposition of symmetric matrices is at the heart of many computer vision algorithms. However, the derivatives of the eigenvectors tend to be numerically unstable, whether using the SVD to compute them analytically or using the Power Iteration (PI) method to approximate them. This instability arises in the presence of eigenvalues that are cl...
Preprint
Full-text available
Weight sharing has become a de facto standard in neural architecture search because it enables the search to be done on commodity hardware. However, recent works have empirically shown a ranking disorder between the performance of stand-alone architectures and that of the corresponding shared-weight networks. This violates the main assumption of we...
Preprint
Full-text available
Saliency prediction has made great strides over the past two decades, with current techniques modeling low-level information, such as color, intensity and size contrasts, and high-level one, such as attention and gaze direction for entire objects. Despite this, these methods fail to account for the dissimilarity between objects, which humans natura...
Preprint
Eigendecomposition of symmetric matrices is at the heart of many computer vision algorithms. However, the derivatives of the eigenvectors tend to be numerically unstable, whether using the SVD to compute them analytically or using the Power Iteration (PI) method to approximate them. This instability arises in the presence of eigenvalues that are cl...
Preprint
Full-text available
6D pose estimation in space poses unique challenges that are not commonly encountered in the terrestrial setting. One of the most striking differences is the lack of atmospheric scattering, allowing objects to be visible from a great distance while complicating illumination conditions. Currently available benchmark datasets do not place a sufficien...
Chapter
Human motion prediction is a necessary component for many applications in robotics and autonomous driving. Recent methods propose using sequence-to-sequence deep learning models to tackle this problem. However, they do not focus on exploiting different temporal scales for different length inputs. We argue that the diverse temporal scales are import...
Chapter
Adversarial attacks have been widely studied for general classification tasks, but remain unexplored in the context of fine-grained recognition, where the inter-class similarities facilitate the attacker’s task. In this paper, we identify the proximity of the latent representations of local regions of different classes in fine-grained recognition n...
Preprint
Full-text available
In recent years, the trackers based on Siamese networks have emerged as highly effective and efficient for visual object tracking (VOT). While these methods were shown to be vulnerable to adversarial attacks, as most deep networks for visual recognition tasks, the existing attacks for VOT trackers all require perturbing the search region of every i...
Preprint
Full-text available
Vehicles can encounter a myriad of obstacles on the road, and it is not feasible to record them all beforehand to train a detector. Our method selects image patches and inpaints them with the surrounding road texture, which tends to remove obstacles from those patches. It them uses a network trained to recognize discrepancies between the original p...
Preprint
Full-text available
Deep learning-solutions for hand-object 3D pose and shape estimation are now very effective when an annotated dataset is available to train them to handle the scenarios and lighting conditions they will encounter at test time. Unfortunately, this is not always the case, and one often has to resort to training them on synthetic data, which does not...
Preprint
Full-text available
Self-supervised detection and segmentation of foreground objects in complex scenes is gaining attention as their fully-supervised counterparts require overly large amounts of annotated data to deliver sufficient accuracy in domain-specific applications. However, existing self-supervised approaches predominantly rely on restrictive assumptions on ap...
Preprint
Long term human motion prediction is an essential component in safety-critical applications, such as human-robot interaction and autonomous driving. We argue that, to achieve long term forecasting, predicting human pose at every time instant is unnecessary because human motion follows patterns that are well-represented by a few essential poses in t...
Preprint
Despite the recent advances in multiple object tracking (MOT), achieved by joint detection and tracking, dealing with long occlusions remains a challenge. This is due to the fact that such techniques tend to ignore the long-term motion information. In this paper, we introduce a probabilistic autoregressive motion model to score tracklet proposals b...
Preprint
Full-text available
In this paper, we introduce an unsupervised feature extraction method that exploits contrastive self-supervised (CSS) learning to extract rich latent vectors from single-view videos. Instead of simply treating the latent features of nearby frames as positive pairs and those of temporally-distant ones as negative pairs as in other CSS approaches, we...
Preprint
Modern methods for counting people in crowded scenes rely on deep networks to estimate people densities in individual images. As such, only very few take advantage of temporal consistency in video sequences, and those that do only impose weak smoothness constraints across consecutive frames. In this paper, we advocate estimating people flows across...
Preprint
Full-text available
Local processing is an essential feature of CNNs and other neural network architectures - it is one of the reasons why they work so well on images where relevant information is, to a large extent, local. However, perspective effects stemming from the projection in a conventional camera vary for different global positions in the image. We introduce...
Preprint
A recent trend in Non-Rigid Structure-from-Motion (NRSfM) is to express local, differential constraints between pairs of images, from which the surface normal at any point can be obtained by solving a system of polynomial equations. The systems of equations derived in previous work, however, are of high degree, having up to five real solutions, thu...
Preprint
While much progress has been made on the task of 3D point cloud registration, there still exists no learning-based method able to estimate the 6D pose of an object observed by a 2.5D sensor in a scene. The challenges of this scenario include the fact that most measurements are outliers depicting the object's surrounding context, and the mismatch be...
Chapter
Human motion prediction aims to forecast future human poses given a past motion. Whether based on recurrent or feed-forward neural networks, existing methods fail to model the observation that human motion tends to repeat itself, even for complex sports actions and cooking activities. Here, we introduce an attention-based feed-forward network that...
Preprint
Full-text available
While supervised object detection and segmentation methods achieve impressive accuracy, they generalize poorly to images whose appearance significantly differs from the data they have been trained on. To address this when annotating data is prohibitively expensive, we introduce a self-supervised detection and segmentation approach that can work wit...
Chapter
Existing techniques to encode spatial invariance within deep convolutional neural networks (CNNs) apply the same warping field to all the feature channels. This does not account for the fact that the individual feature channels can represent different semantic parts, which can undergo different spatial transformations w.r.t. a canonical configurati...
Chapter
Modern methods for counting people in crowded scenes rely on deep networks to estimate people densities in individual images. As such, only very few take advantage of temporal consistency in video sequences, and those that do only impose weak smoothness constraints across consecutive frames. In this paper, we advocate estimating people flows across...

Network

Cited By