
Mathieu PerniceUniversity of Technology Sydney | UTS · Climate Change Cluster (C3)
Mathieu Pernice
PhD in Biology (University Pierre and Marie Curie)
About
156
Publications
28,591
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,249
Citations
Introduction
Additional affiliations
January 2014 - October 2016
January 2014 - October 2016
Publications
Publications (156)
Fluorescence-Activated Cell Sorting (FACS) is a powerful method with many applications in microalgal research, especially for screening and selection of cells with improved phenotypes. However, the technology requires review of gene expression changes responsible for enhanced phenotypes in sorted populations. Phaeodactylum tricornutum cells were so...
Global climate change is threatening the persistence of coral reefs as associated summer heatwaves trigger the loss of microalgal endosymbionts (Symbiodiniaceae) from the coral tissues, or coral bleaching. We infected aposymbiotic juveniles of the coral Acropora tenuis with either wildtype (WT10) or heat-evolved (SS1 or SS8) Symbiodiniaceae strains...
The marine bacterium Vibrio parahaemolyticus is the leading cause of seafood-related food poisoning worldwide and a pathogen of marine species harvested in aquaculture. An outbreak of pathogenic V. parahaemolyticus within crustacean and bi-valve aquaculture facilities often results in significant loss of farmed product and in the spread of the path...
Fluorescence-Activated Cell Sorting (FACS) is a powerful method with many applications in microalgal research, especially for screening and selection of cells with improved phenotypes. However, the technology requires further investigation to determine the phenotypic stability of sorted populations. Phaeodactylum tricornutum cells were sorted using...
We can use photosynthesis to capture carbon and make industries greener. Algae-driven carbon capture and manufacturing offer the potential for reducing CO2 emissions while also producing commodities such as bioplastics.
Symbiotic cnidarians such as corals and anemones form highly productive and biodiverse coral reef ecosystems in nutrient-poor ocean environments, a phenomenon known as Darwin's paradox. Resolving this paradox requires elucidating the molecular bases of efficient nutrient distribution and recycling in the cnidarian-dinoflagellate symbiosis. Using th...
Behaviours such as chemotaxis can facilitate metabolic exchanges between phytoplankton and heterotrophic bacteria, which ultimately regulate oceanic productivity and biogeochemistry. However, numerically dominant picophytoplankton have been considered too small to be detected by chemotactic bacteria, implying that cell–cell interactions might not b...
Poly-hydroxy-butyrate (PHB) bioplastic resin can be made directly from atmospheric CO2 using cyanobacteria. However, higher PHB productivities are required before large-scale production is economically viable. Random mutagenesis offers a way to create new production strains with increased PHB yields and increased biomass densities without complex t...
Cyanobacteria offer a good alternative to fungi for laccase production at industrial scales. Random mutagenesis approaches with ethyl methanesulfonate were used in combination with enzymatic assays screenings to select a mutant of Synechocystis sp., A2, with enhanced extracellular laccase-like activity. Anthraquinone dye decolourisation assay revea...
Exposure to deoxygenation from climate warming and pollution is emerging as a contributing factor of coral bleaching and mortality. However, the combined effects of heating and deoxygenation on bleaching susceptibility remain unknown. Here, we employed short-term thermal stress assays to show that deoxygenated seawater can lower the thermal limit o...
Symbiotic cnidarians such as corals and anemones form highly productive and biodiverse coral-reef ecosystems in nutrient-poor ocean environments, a phenomenon known as Darwin’s Paradox. Resolving this paradox requires elucidating the molecular bases of efficient nutrient distribution and recycling in the cnidarian-dinoflagellate symbiosis. Using th...
The skeleton of reef-building coral harbors diverse microbial communities that could compensate for metabolic deficiencies caused by the loss of algal endosymbionts, i.e., coral bleaching. However, it is unknown to what extent endolith taxonomic diversity and functional potential might contribute to thermal resilience. Here we exposed Goniastrea ed...
The coral‐algal symbiosis is the biological engine that drives one of the most spectacular structures on Earth: the coral reef. Here, living coral microhabitats are engineered using 3D bioprinting, as biomimetic model system of the coral‐algal symbiosis. Various bioinks for the encapsulation of coral photosymbiotic microalgae (Breviolum psygmophilu...
Hypoxia (low oxygen stress) is increasingly reported on coral reefs, caused by ocean deoxygenation linked to coastal nutrient pollution and ocean warming. While the ability to regulate respiration is a key driver of hypoxia tolerance in many other aquatic taxa, corals' oxyregulatory capabilities remain virtually unexplored. Here, we examine O2-cons...
The green microalga Chlamydomonas reinhardtii is emerging as a promising cell biofactory for secreted recombinant protein (RP) production. In recent years, the generation of the broadly used cell wall–deficient mutant strain UVM4 has allowed for a drastic increase in secreted RP yields. However, purification of secreted RPs from the extracellular s...
Aquatic deoxygenation has been flagged as an overlooked but key factor contributing to mass bleaching-induced coral mortality. During deoxygenation events triggered by coastal nutrient pollution and ocean warming, oxygen supplies lower to concentrations that can elicit an aerobic metabolic crisis i.e., hypoxia. Surprisingly little is known of the f...
Poly(3-hydroxybutyrate) (PHB) is a promising bioplastic compound which is produced by certain prokaryotic microbes such as some species of photosynthetic cyanobacteria. The production of cyanobacterial PHB has the potential to reduce traditional PHB production costs through using atmospheric CO2 as a carbon substrate, as opposed to using expensive...
Microalgal biotechnology shows considerable promise as a sustainable contributor to a broad range of industrial avenues. The field is however limited by processing methods that have commonly hindered the progress of high throughput screening, and consequently development of improved microalgal strains. We tested various microplate reader and flow c...
Efficient nutrient cycling in the coral-algal symbiosis requires constant but limited nitrogen availability. Coral-associated diazotrophs, i.e., prokaryotes capable of fixing dinitrogen, may thus support productivity in a stable coral-algal symbiosis but could contribute to its breakdown when overstimulated. However, the effects of environmental co...
This study addresses the challenge of microalgae harvesting through the development of flocculants. Two positively charged cationic polymers including poly[2 (acryloyloxy)ethyl]trimethylammonium chloride (PAETAC) and poly(3 acrylamidopropyl)trimethylammonium chloride (PAmPTAC) were synthesized using the UV-induced radical polymerization, for harves...
Ocean deoxygenation events are intensifying worldwide and can rapidly drive adult corals into a state of metabolic crisis and bleaching-induced mortality, but whether coral larvae are subject to similar stress remains untested. We experimentally exposed apo-symbiotic coral larvae of Acropora selago to deoxygenation stress with subsequent reoxygenat...
Predation by heterotrophic protists drives the emergence of adaptive traits in bacteria, and often these traits lead to altered interactions with hosts and persistence in the environment. Here we studied adaptation of the cholera pathogen, Vibrio cholerae during long-term co-incubation with the protist host, Acanthamoeba castellanii . We determined...
A better understanding of species and population responses to thermal stress is critical to predict changes in their distribution under warming scenarios. Seagrasses are a unique group of marine plants that play fundamental roles in marine environments and provide vital ecosystem services. Nevertheless, previous studies on seagrass thermal toleranc...
Seagrasses are valuable sources of food and habitat for marine life and are one of Earth's most efficient carbon sinks. However, they are facing a global decline due to ocean warming and eutrophication. In the last decade, with the advent of new technology and molecular advances, there has been a dramatic increase in the number of studies focusing...
Phaeodactylum tricornutum is a model pennate diatom for molecular studies due to its sequenced genome, genetic tractability, and capacity to produce a myriad of compounds of biotechnological interest. While tools for genetic engineering and heterologous gene expression have been developed for this species, the available set of characterised promote...
Background
Sponges are increasingly recognised as key ecosystem engineers in many aquatic habitats. They play an important role in nutrient cycling due to their unrivalled capacity for processing both dissolved and particulate organic matter (DOM and POM) and the exceptional metabolic repertoire of their diverse and abundant microbial communities....
The commercialisation of valuable plant triterpenoids faces major challenges, including low abundance in natural hosts and costly downstream purification procedures. Endeavours to produce these compounds at industrial scale using microbial systems are gaining attention. Here, we report on a strategy to enrich the biomass of the biotechnologically-r...
Symbiosis between reef-building corals and unicellular algae (Symbiodiniaceae) fuels the growth and productivity of corals reefs. Capacity for Symbiodiniaceae to fix inorganic carbon (Ci) and translocate carbon compounds to the host is central to coral health, but how these processes change for corals thriving in environmental extremes remains larg...
Significance
Ocean warming is causing repeated mass coral bleaching, leading to catastrophic losses of coral reefs worldwide. Our ability to slow or revert this decline is hampered by an incomplete understanding of the processes underlying the breakdown of the coral–algal symbiosis. Here, we show that heat stress destabilizes the nutrient cycling b...
Sterols are a class of triterpenoid molecules with diverse functional roles in eukaryotic cells, including intracellular signaling and regulation of cell membrane fluidity. Diatoms are a dominant eukaryotic phytoplankton group that produce a wide diversity of sterol compounds. The enzymes 3-hydroxy-3-methyl glutaryl CoA reductase (HMGR) and squalen...
Exposure of marine life to low oxygen is accelerating worldwide via climate change and localized pollution. Mass coral bleaching and mortality have recently occurred where reefs have experienced chronic low oxygen events. However, the mechanis-tic basis of tolerance to oxygen levels inadequate to sustain normal functioning (i.e. hypoxia) and whethe...
The aquaculture industry uses microalgae as a live feed for juvenile oysters in hatcheries to meet their nutritional requirements, including their need for several essential Poly Unsaturated Fatty Acids (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The mass culture of microalgae is not only a major bottleneck for the p...
Microalgae are increasingly being considered for recombinant protein production because of low cultivation costs, absence of endotoxins and insusceptibility to human infectious agents. Despite these advantages, the yield of recombinant protein produced in microalgae is still low compared to more established expression systems and optimization at th...
PHB is a promising bioplastic material that naturally accumulates in many strains of cyanobacteria. This comprehensive review covers recent advances in several topics including PHB metabolism, material properties, relevant extraction methods and protocols, industrial cultivation strategy, current economic assessment and much more. Ultimately, the p...
While thermal priming and the relative role of epigenetic modifications have been widely studied in terrestrial plants, their roles remain unexplored in seagrasses so far. Here, we experimentally compared the ability of two different functional types of seagrass species, dominant in the Southern hemisphere, climax species Posidonia australis and pi...
Global warming and local eutrophication simultaneously lower oxygen (O2) saturation and increase biological O2 demands to cause deoxygenation. Tropical shallow waters, and their coral reefs, are particularly vulnerable to extreme low O2 (hypoxia) events. These events can drive mass mortality of reef biota; however, they currently remain unaccounted...
Mankind has recognized the value of land plants as renewable sources of food, medicine, and materials for millennia. Throughout human history, agricultural methods were continuously modified and improved to meet the changing needs of civilization. Today, our rapidly growing population requires further innovation to address the practical limitations...
Microalgae exhibit great potential for recombinant therapeutic protein production, due to lower production costs, immunity to human pathogens, and advanced genetic toolkits. However, a fundamental aspect to consider for recombinant biopharmaceutical production is the presence of correct post-translational modifications. Multiple recent studies focu...
Reef-building corals harbour an astonishing diversity of microorganisms, including endosymbiotic microalgae, bacteria, archaea, and fungi. The metabolic interactions within this symbiotic consortium are fundamental to the ecological success of corals and the unique productivity of coral reef ecosystems. Over the last two decades, scientific efforts...
Marine sponges are set to become more abundant in many near-future oligotrophic environments, where they play crucial roles in nutrient cycling. Of high importance is their mass turnover of dissolved organic matter (DOM), a heterogeneous mixture that constitutes the largest fraction of organic matter in the ocean and is recycled primarily by bacter...
Vibrio cholerae interacts with many organisms in the environment, including heterotrophic protists (protozoa). Several species of protozoa have been reported to release undigested bacteria in expelled food vacuoles (EFVs) when feeding on some pathogens. While the production of EFVs has been reported, their biological role as a vector for the transm...
Nannochloropsis is a marine microalga from the Eustigmatophyceae stramenopile lineage that has been studied extensively due to a broad range of industrial applications, mostly related to their oil and pigment production. However, tools to genetically engineer members of this group, and therefore further understand and maximise their industrial pote...
Predicting coral bleaching is critical to better manage and preserve coral reefs from global warming. An impressive coordination of surveys across oceans now offers new metrics to help to predict coral bleaching events on a global scale.
Photosynthesis in the seagrass Zostera muelleri remains poorly understood. We investigated the effect of reduced irradiance on the incorporation of 13C, gene expression of photosynthetic, photorespiratory and intermediates recycling genes as well as the enzymatic content and activity of Rubisco and PEPC within Z. muelleri. Following
48 h of reduced...
Coral reefs are threatened by global warming, which disrupts the symbiosis between corals and their photosynthetic symbionts (Symbiodiniaceae), leading to mass coral bleaching. Planktonic diazotrophs or dinitrogen (N2)-fixing prokaryotes are abundant in coral lagoon waters and could be an alternative nutrient source for corals. Here we incubated un...
Terpenoids are a large and diverse class of naturally occurring metabolites serving many industrial applications and natural roles. Economically important terpenoids are often produced in low abundance from their natural sources, making their industrial-scale production challenging or uneconomical, therefore engineered microorganisms are frequently...
Analysis of a transcriptome dataset obtained from tissue samples of the eelgrass Zostera muelleri, an aquatic flowering plant species of the family Zosteraceae, yielded three genome sequence contigs of a novel RNA virus. Sequence comparison and phylogenetic analysis revealed that the novel RNA virus, named Zostera virus T (ZoVT), belongs to the gen...
Copper (Cu) is an essential micronutrient for plants and as such is vital to many metabolic processes. Nevertheless, when present at elevated concentrations, Cu can exert toxic effects on plants by disrupting protein functions and promoting oxidative stress. Due to their proximity to the urbanised estuaries, seagrasses are vulnerable to chemical co...