
OSSim: A Generic Simulation Framework for Overlay Streaming
Giang Nguyen, Mathias Fischer, Thorsten Strufe

Technische Universität Darmstadt
nguyen@cs.tu-darmstadt.de, mathias.fischer@cased.de, strufe@cs.tu-darmstadt.de

Keywords: Discrete event simulation, overlay streaming
systems, OMNeT++

Abstract
Overlay streaming systems have recently been favored by the
academic community as a viable approach for IPTV. Over
the last years, a multitude of different overlay streaming ap-
proaches have been proposed. Most of them, however, have
been evaluated individually. The lack of a common simula-
tion framework makes it difficult to compare the properties of
the different systems with each other. To bridge this gap, we
introduce OSSim, a general-purpose simulation framework
that allows the instantiation of different overlay streaming
protocols. For this purpose, it provides a generic and modular
structure, and several membership management and overlay
streaming protocols as well. Our simulation results indicate
that the framework is accurate and flexible to simulate differ-
ent overlay streaming systems.

1. INTRODUCTION
With the increasing popularity of high-speed broadband

Internet connections among consumers, the Internet Proto-
col Television (IPTV) has been becoming a more viable al-
ternative to the traditional broadcast television. The classi-
cal client-server IPTV reveals a bottleneck at the server side.
Its alternative, the overlay (or Peer-to-Peer) streaming, has
emerged in recent years as a cost-efficient and scalable form
of content distribution. Overlay streaming incorporates re-
sources of participating peers to distribute video contents, and
thus reduces the bandwidth demands at video servers.

Overlay streaming approaches can be classified according
to how they construct and maintain the overlay topology, and
how video packets are disseminated between peers in the
overlay. Usually, mesh-pull, tree-push, and hybrid overlay
streaming approaches are distinguished [7, 10]. The mesh-
pull one has shown to use upload bandwidths more efficiently.
Furthermore, the reactive nature makes mesh-pull systems
more resilient to network dynamics. However, their overhead
and latency are significantly high. In another sense, the tree-
push (both single and multiple trees) approach has a good
performance in terms of latency. Moreover, multi-tree sys-
tems are also theoretically resilient against attacks [4]. How-
ever, the main drawback of this approach is the inefficient use
of peers’ upload bandwidths. The hybrid overlay streaming,
e.g., mTreebone [15], combines the efficient stream delivery

of the tree-push approach with the high utilization of band-
widths and the increased resilience of the mesh-pull one.

For each of the three classes, a multitude of different sys-
tems and overlay streaming methods exist. However, most of
them have been evaluated individually as they usually share
no common code basis, such as in [4, 17], that would en-
able a meaningful comparison. Most available simulators are
specialized, and mostly focus only on one class of overlay
streaming systems. However, to fairly evaluate and to com-
pare the different approaches against each other, a generic
simulation framework is required. It should support the as-
sessment of overlay streaming systems regarding their effi-
ciency, robustness, and resilience against attacks.

Our main contribution in this paper is the introduction
of the Overlay Streaming Simulator (OSSim), which is a
general-purpose and generic simulation framework for over-
lay streaming. It is based on the OMNeT++ [14] discrete
event simulator and the INET [13] framework. OSSim sup-
ports the simulation of mesh-pull, tree-push, and hybrid
overlay streaming. Thus, it allows to compare different ap-
proaches with each other by providing a modular structure
that can be easily extended. Currently, OSSim contains mod-
els of different membership management schemes such as
SCAMP [6] and Newscast [8], and the overlay streaming pro-
tocols such as DONet [18] and Coolstreaming [9].

The rest of the paper is organized as follows: Section 2.
presents requirements to a general purpose simulation frame-
work for overlay streaming. Section 3. discusses the state of
the art in this area and Section 4. describes the components of
overlay streaming systems. Section 5. presents the design of
our framework, while Section 6. shows the validation results.
Finally, we conclude the paper in Section 7.

2. REQUIREMENTS
To evaluate the performance and resilience of overlay

streaming systems in a fair and comparable way, we iden-
tify the need for a flexible simulation framework. We con-
sequently provide a simulation framework. It comprises of
abstract components that relate to the general functionality
needed within all these systems. Additionally, the compo-
nents are simple to adapt to specifications of various systems.
The requirements for such a simulation framework can be
summarized as follows:

Validity: Its modules are verified for correctness, and are
potentially used by a large community of researchers.

mailto:nguyen@cs.tu-darmstadt.de
mailto:mathias.fischer@cased.de
mailto:strufe@cs.tu-darmstadt.de

Generic design: It enables to simulate a large set of over-
lay streaming systems. Therefore, its design should not be
tightly coupled with a specific system. Common functionali-
ties have to be modeled by generic modules, instead.

Flexibility: The framework contains interchangeable and
configurable modules to harbor variety of protocols with the
least additional modifications.

Extensibility: The module interfaces need to be well de-
fined to derive new modules easily. This consequently facili-
tates the simulation of different overlay streaming protocols.

Minimum Overhead: Given an overlay streaming system,
the framework should be able to simulate it with negligible
overhead. It should also consume a reasonable amount of re-
sources (e.g., CPU, RAM, and storage) when simulating a
large number of nodes in a reasonable amount of time.

3. STATE OF THE ART
Various simulation frameworks for overlay streaming were

developed. This section surveys the existing frameworks, and
the most remarkable ones are classified into general purpose
simulators and tailor-made ones.

General purpose Simulators: OverSim [2] is a sophis-
ticated simulation framework. It focuses mainly on struc-
tured Peer-to-Peer networks, but not on overlay streaming.
Even though it is possible to modify and adapt OverSim for
that purpose, it would require significant modifications from
the original design. This would also considerably enlarge
the code base of OverSim, which would violate the minimal
overhead requirement. Denacast [12] and Layeredcast [11]
are tailored from OverSim to separately simulate individual
classes of systems. They are developed independently, and
therefore, integrating them might not be promising.

Tailor-made Simulators: The first simulator in this class
is p2pstrmsim [16]. It was developed to study the perfor-
mance of mesh-pull and hybrid push-pull systems. The sim-
plified underlay network (i.e. without the TCP/IP protocol
stack) allows to simulate tens of thousands of nodes within
reasonable time. Other examples are p2ptvsim [3] and SS-
Sim [1]. p2ptvsim is an event-driven simulator, and abstracts
the underlay network by a module that is responsible for cal-
culating transmission delays of video packets. The other sim-
ulator, SSSim, is a round-based because it assumes that peers
are synchronized. Therefore, the simulator compromises on
accuracy. Moreover, internal states of peers are available
globally for access. This design decision limits the extensi-
bility of the simulator since it potentially produces conflicts
when the code basis grows. The tailored designs of this class
of simulators, however, hinder the possibility to extend them
towards a general purpose framework.

To sum up, there is no generic and extensible simulation
framework for overlay streaming so far that allows to com-
pare different classes of overlay streaming systems in a fair

manner. Nonetheless, there is still a need for selecting the
best system under the same condition of workload and net-
work dynamics. The lack of such framework does not allow
us to provide a meaningful conclusion. For this reason, we are
going to provide our own simulation framework in Section 5.

The task, however, is not straight forward. On the one
hand, the framework has to harbor various classes of over-
lay streaming systems. On the other hand, it must be generic
enough to produce common functionality modules to avoid
implementing them again in different systems. In the next
section, we analyze classes of overlay streaming systems.
Their common components are extracted, and specific ones
are also identified.

4. OVERLAY STREAMING COMPONENTS
Abstractedly, an overlay streaming system consists of one

or several Channel Servers, one or several Streaming Servers,
and a multitude of Peers [5, 7]. A channel server maintains
a list of channels. Besides, it can also provide a bootstrap-
ping service. Hence, it additionally holds a list of active peers
(and streaming servers) per channel. The list is used to boot-
strap joining peers with knowledge about one or several other
peers in the respective channel. For each channel, the stream-
ing server distributes a continuous stream of video packets.
The stream might be further divided into multiple sub-streams
or stripes in many systems. Moreover, the server participates
in the streaming overlay as a normal peer, except that it does
not request video packets. A peer runs an application that fol-
lows a specific overlay streaming protocol. Through the ap-
plication, a peer establishes connections with others. Hence,
they form an overlay network on top of physical networks.
Moreover, peers also exchange video packets directly with
each other.

Overlay streaming systems can be classified using the fol-
lowing two criteria: a) The way peers are organized to main-
tain the overlay topology, which is either mesh or tree, and
b) The way the video content is disseminated among peers,
which is either pull or push. Main approaches are mesh-pull,
tree-push, and hybrid push-pull. However, independent from
the specific classification, each overlay streaming system con-
sists of the following three basic layers:

• Discovery Service: It provides peers with information
about resources (streams or stripes). Moreover, it equips
peers with knowledge about other peers in the overlay.

• Topology Management: It establishes connection be-
tween peers. Moreover, it also attempts to balance the
load in the streaming overlay and provides measures to
increase the efficiency and robustness of the overlay.

• Media Management: This includes the local storage of
video packets in a buffer and the forwarding of packets

from the buffer. At peers the layer contains functionali-
ties to playback a stream. Whereas at video sources, it is
also responsible for video packet generation.

In the remainder of this section, we discuss the neces-
sary components for all the three different classes of overlay
streaming along the afore-mentioned generic layers. This dis-
cussion reveals the key components that need to be reflected
to support the simulation of the classes within one unifying
simulation framework. This serves as the input for the design
of our simulation framework in Section 5.

4.1. Mesh-pull systems
In mesh-pull systems, peers are loosely coupled in a mesh

overlay and need to request video packets from other peers
well in advance of the playback. A partnership management
mechanism ensures that the established mesh is connected
and that each peer has a sufficient number of neighbors in the
overlay. Each peer periodically sends Buffer Map (BM) pack-
ets to its neighbors. A BM contains the information about
the sequence of video packets (or so-called Chunks) that are
available at that peer. In addition, the mechanism selects the
neighbors from whom the packets are actually pulled. Packet
pulling is planned via a load balancing (or so-called chunk
scheduling) algorithm that considers the available packets at
neighbors. It can be reduced to the parallel machine schedul-
ing problem and thus is NP-hard [18]. For this reason, heuris-
tics (e.g., the Rarest-First in DONet [18]) need to be used.
Moreover, the partnership management ensures a replace-
ment of unreliable peers that deliver insufficient QoS, e.g.,
high delay or high packet loss. The reactive nature of mesh-
pull systems renders them resilient to network dynamics.
However, the overhead and latency are significant.

Following the afore-mentioned three generic layers of an
overlay streaming application, the specific building blocks of
a peer in a mesh-pull system are as follows:
Discovery Service

Membership Management is implemented at participating
peers and the video source as well. It supplies peers with
a partial view of active peers. To realize this functionality,
there are two approaches: centralized or distributed. In a cen-
tralized approach, a tracker is used, and peers periodically
report their status to the tracker. However, this approach is
not scalable, and presents a single-point-of-failure. The dis-
tributed approach recently leverages gossiping protocols such
as SCAMP [6] and Newscast [8].
Topology Management

Partnership management is in charge of establishing and
maintaining partnership connections with other peers. For
this purpose it sends partnership requests, and answers re-
quests from other peers. Besides, it exchanges BMs with
other partners.

Load Balancing is a key component of mesh-pull systems.
At requesting side, it periodically monitors the local buffer to
identify missing packets, and looks for their availability in the
BMs of its partners, and requests them if necessary. While at
the responding side, it sends back the requested packets.
Media Management

Packet Generator is located only at streaming servers. It
creates and sends out video packets.

Video Buffer stores video packets at peers.
Player sequentially obtains packets from the Video Buffer

for playback.

4.2. Tree-push Systems
Tree-push streaming protocols usually establish one or sev-

eral preferably inner-node disjoint trees spanning all peers re-
spectively. The stream is usually divided into several stripes,
and each stripe is distributed via one spanning tree. When
only a single tree is used, the system is not robust to peer
churn. In deed, failing peers cause disruptions in the distribu-
tion for all other peers dependent on them, until the tree is re-
stored. Using stripes and inner-node disjoint spanning trees,
peer failures can be tolerated to a certain extent, e.g., as in
the construction given in [4]. The main components of a tree-
push system are as follows:
Discovery Service

Bootstrapping is responsible to providing nodes with one
or several active peers in the desired stripes.
Topology Management

Topology Optimization is responsible to optimizing the
neighborhood of participating peers and the overall topology.
Media Management

The media management components of tree-push systems
re-use the packet generator, the video buffer, and the player
from mesh-pull systems. The components differ only in small
implementation details.

4.3. Hybrid push-pull systems
Hybrid overlay streaming systems [9, 17] combine the best

of both worlds, namely the increased resilience of pull-based
overlay streaming with the more efficient content distribution
of push-based one. For this purpose, a mesh-based content
distribution is combined with an additional push-based over-
lay. Similar to the stripe concept in tree-push approach, the
stream is divided into sub-streams. When a peer joins the
mesh, it starts to request BMs, and video packets from its
partners (pulling phase). After the successful reception of the
first few packets of a sub-stream, the pull-based connections
are “frozen”, and all subsequent packets are pushed from
the respective partners (pushing phase). If packets are lost,
e.g., because of transmission errors or network congestion,
peers can request missing packets from other partners. Con-
sequently, hybrid overlay streaming systems make use of all

Figure 1. Architecture of the OSSim framework

components identified in Sections 4.1. and 4.2. In hybrid sys-
tems the components only differ slightly in implementation
details.

5. DESIGN OF THE OSSIM FRAMEWORK
In this section we present the overall architecture of the

framework, and then introduce per-node components, includ-
ing the dispatcher and message hierarchy, and other corre-
sponding layers.

5.1. OSSim Architecture
Taking into account the modeling of the various overlay

streaming systems in the previous section, we produce an ar-
chitecture as illustrated in Figure 1. Functionality modules
of a peer are classified into two separate layers. The Discov-
ery Service layer is responsible for bootstrapping and mem-
bership management. The Streaming layer consists of two
sub-layers: The Topology Management harbors functionali-
ties, such as the topology optimization for tree-push systems
and partnership management for mesh-pull systems. In the
Media Management sub-layer, video packets are generated,
stored, and forwarded. Besides, the framework also consists
of global modules such as the Active Peer Table to keep track
of the currently active peers, the Churn Coordinator to con-
trol the join and leave operations of peers, Streaming Con-
figurator and Statistic Collector. This architecture implies a
dispatcher which connects modules of different layers.

Our simulation framework is based on OMNeT++. By do-
ing so, we leverage available and stably built modules that
are widely used and tested by the community. With this de-
sign choice, it is possible to keep our simulation framework
unchanged while still being able to include other underlying
network models such as cross traffic and mobility.

Figure 2(a) illustrates a node which follows the ISO/OSI
model and bases solely on the UDP Transport layer. We sim-
plify the StandardHost in the INET framework by removing
TCP and TCPApp modules, and replace the UDPApp module
by our own application module. We then model the stream-
ing application at a peer node as illustrated in Figure 2(b). As

can be seen from the figure, a generic peer application con-
sists of a dispatcher module for message classification and
modules implementing the functionalities of different layers.
Specifically, the memMan module represents the member-
ship management in the Discovery Service layer, while the
other modules belong to the Streaming layer. The partnerMan
module implements the Partnership Management functional-
ity. The forwarder acts as a communication interface of the
videoBuffer module. The model of a streaming server follows
a similar design, except that a packet generator replaces the
player module. Other differences in the behavior of the video
server remain in small implementation details only.

(a) (b)

Figure 2. Model of (a) a peer node and (b) a peer application
module in OMNeT++

5.2. Helper Modules
With the layered design in mind, we introduce a Dispatcher

module and a Message Hierarchy. Moreover, we produce a
set of global modules, whose tasks range from setting up and
coordinating the simulation to collecting simulation results.

Dispatcher: This module acts as a gateway between the
lower Transport layer which is UDP in our framework and
functional modules belonging to our layers as illustrated in
Figure 2. Even though there would be overhead due to the
operation of the dispatcher, this design makes the model more
flexible when it has to adapt to, or include other Transport
layers such as TCP.

Messages Hierarchy: To correctly and efficiently forward
messages to different modules, we introduce a message hier-
archy as illustrated in Figure 3. Messages belonging to mod-
ules of the same layer or sub-layer in Figure 1 are grouped
together using the same group identifier. When a message of
a particular group is forwarded to the respective layer, it is up
to the layer to either process the message directly or forward
it to a subsequent module of the same layer.

Churn Coordinator: This module calculates and provides
join and leave times of peers up on request. To scramble the

Figure 3. Hierarchical structure of Application messages

order of peers joining the network, we apply a two-phase ar-
rival assignment process. In the first phase, peers are assigned
at random order. In the second phase, peers actually query the
Churn Coordinator to get their arrival and departure times. It
is possible to extend this module to harbor additional actions
of peer such as switching between channels. The selective
API of this module includes:

getJoinTime(): To get joining time
getDepartureTime(): To get departure time
Statistics Collector: This module collects data, and cal-

culates system-wide metrics. Depending on the protocol of
interest, suitable APIs are implemented accordingly.

Streaming Configurator: This module calculates com-
mon parameters for all other the modules. It ensure the con-
sistency of parameter values. The selective API of this mod-
ule is:

getStreamingBitRate(): returns the streaming bit-rate
getVideoPacketSize(): returns the size of a video packet
getBufferSize(): returns the size of the Video Buffer

5.3. Discovery Service Layer
The main purpose of this layer is to provide the peer sam-

pling service for the upper streaming layer. By maintaining
a partial and frequently refreshed view on the active peers,
it should provide a random list of active peers on demand.
In tree-push systems, it bootstraps a newly joining peer to
subscribe to the overlay. In mesh-pull systems, it also assists
peers to find new partners besides the bootstrapping function-
ality. The central operation of the this layer has the following
API:

getARandPeer(): returns a random peer address from the
set of active peers in the system

Deployed systems, recently, realize this service by gos-
siping protocols since they are lightweight, scalable, and
resilient against network dynamics. In event-driven simula-
tions, however, those protocols slow down the execution time
significantly because gossiping peers exchange many mes-

sages with each other. Therefore, we introduce a Dummy
module to reduce simulation time, especially in the develop-
ment phase. While the Dummy module resembles the same
API, it keeps and updates a centralized data structure of ac-
tive peers. Even though this is unrealistic, it speeds up of the
simulation significantly.

5.4. Topology Management Layer
Partnership Management: This is the core of mesh-pull

and hybrid systems. It is in charge of joining the streaming
overlay, handling external messages and timers, sending peri-
odic messages (e.g., Buffer Maps), and activating other mod-
ules such as Load Balancing and Player.

Load Balancing: The requesting part of this functional-
ity is activated periodically. It depends on specific algorithms
(e.g., Random or Rarest-First) applied in the overlay stream-
ing protocol. The direct outcome of this functionality is a set
of messages to request video packets. On the other hand, the
responding part simply waits for request messages from other
peers and replies accordingly.

Topology Optimizer: This module is the core of a tree-
push system. It establishes and maintains the parent-children
relations with other peers. It also sends Heartbeat messages
to parent nodes to assist the failure recovery process. One im-
portant functionality of this module is to switch parents to im-
prove the QoS of individual peers and to optimize the overall
topology.

5.5. Streaming Management Layer
This layer consists of Video Buffer, Forwarder, Packet

Generator, and Player modules.
Video Buffer: It stores received video packets. This im-

plies a sliding window whose size equals the size of the buffer
(in video packets). Since the sliding operation is executed
quite often, the Video Buffer should be carefully designed
and implemented. We realize it by a cyclic array containing
video packets. Deciding where to insert video packets into
the buffer will be done by modulo operations on packet iden-
tifiers. This avoids sliding operations, and consequently im-
proves the overall performance of the framework. The Video
Buffer module provides the following services:

isInBuffer(): checks whether a packet is in the Video Buffer
getPercentFill(): returns the percentage of available pack-

ets in the Video Buffer
Forwarder: It is the gateway of the Media Management

sub-layer. The Forwarder receives video packets and stores
them in the Video Buffer. It also picks up video packets from
the Video Buffer, and sends them to other partners upon re-
quest. The Forwarder provides the following main service:

sendVideoPacket(): sends a video packet specified by its
sequence number to a remote peer

Packet Generator: This module is active at streaming
servers only. It periodically generates video packets, and then
inserts them to the Video Buffer of a streaming server.

Player: This module has a playback pointer that specifies
the currently required video packet. Based on the pointer, the
Player periodically obtains from the Video Buffer the video
packet. The pointer moves forward consistently with the play-
back rate. To maintain a smooth playback in live streaming,
each packet should be available before a strict deadline, or
it must be ignored by the player, otherwise. We implemented
two types of players. They correspond to two playback strate-
gies: Simple Skip and Skip Stall. The Simple Skip player sim-
ply moves its pointer forward continuously and skips all un-
available packets. This player is simple and unrealistic, but
it provides a plain estimation of the streaming protocol. The
second player, Skip Stall whose Finite State Machine is given
in Figure 4, applies a more sophisticated strategy. It allows
certain thresholds of skipped packets. Besides, the player
can even be stalled to wait until late packets arrive, or a re-
buffering operation completes. The player’s selective API is
following:

activate(): activates the player
stopPlayer(): stops the player
getPlaybackPoint(): returns the current playback point
getPlayerState(): returns the current state of the player

Figure 4. The Finite State Machine of the Skip Stall player

5.6. Summary of the Design
To sum up, we already presented the generic modules and

their selective APIs. We instantiated those modules for spe-
cific protocols. Key instantiations and their parameters are
summarized in Table 1. Compared to the requirements pre-
sented in Section 2, our generic framework is flexible to har-
bor different overlay streaming and membership management
protocols. Moreover, the layered and modular design also
eases the extension of the framework using configurable com-
ponents.

Table 1. Selective instantiations and their parameters
Component Instantiation Parameters

Churn
Coordinator

Uniform lower & upper bounds
Exponential joining & leaving rates
Pareto scale and shape

Membership
Management

SCAMP duplication factor
Newscast cache size
Dummy -

Topology
Management

DONet -
Coolstreaming -

Load
Balancing

Random -
Rarest First -

Player Simple Skip percent fill to start
Skip Stall thresholds of skipped

packets, buffer fill, etc.

6. VALIDATION OF OSSIM
In this section, we describe different experiments for the

validation of our simulation model. Due to space constraints,
we selectively present the validations of a single representa-
tive protocol in each layer individually: the membership man-
agement protocol SCAMP in the discovery service layer and
the mesh-pull protocol DONet in the streaming layer. More-
over, we conducted experiments with Coolstreaming, a hy-
brid push-pull protocol, running on top of the Newscast gos-
siping protocol to test the interaction between the layers as a
whole. We based our validation on published results because
none of the above protocols is available as an open-source or
publicly available software.

Validating SCAMP To validate the SCAMP protocol
alone, we used the average out-degree metric (or so-called the
partial-view-size). In this experiment, 50000 peers joined the
system one after another and stayed in the system until the
end of the simulation. Their inter-arrival times followed an
exponential distribution. The duplication factor (c) was set to
zero. The total simulation duration was 1000 simulated sec-
onds. The out-degrees of peers were recorded at the end of
the simulation.

Figure 5 plots the histogram of the out-degrees. The shape
of the histogram resembles closely the published results
in [6]. The calculated average out-degree is 11.1 which is also
close to the theoretical value of 10.8 (or log(50000)). The re-
sults reveal that the implemented protocol is correct, and our
framework can simulate a significant system size.

Validating DONet We conducted an experiment with the
DONet implementation in OSSim. In this experiment, the
Dummy module was used to provide the discovery service,
which significantly reduced the simulation time. To quantify
the results, we selected the Continuity Index (CI) metric that

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40

F
re

q
u

e
n

c
y

Out−degrees

50000 nodes

Figure 5. Validation of the SCAMP gossiping protocol: His-
togram of the out-degree of peers

Table 2. Common parameters and their values in the exper-
iment with overlay streaming protocols

Parameters Values
Streaming Server’s upload bandwidth 2 Mbps
Streaming Server’s number of partners 10
Video packet size 1250 B
Video Buffer capacity 60 s

has commonly been used in the literature. The CI is the ratio
of the number of video packets arriving before their deadlines
(Nhit) and the total number of required video packets (Ntotal).
The Simple Skip player was used at peers to record the two
statistics and to periodically send them to the global statistic
module, which calculated the metric for the whole system.
The parameter setting is shown in Table 2.

In this experiment, the streaming server first joined the
streaming overlay. Then, 1000 homogeneous peers joined
the overlay, and did not leave the overlay until the end
of the simulation. Their inter-arrival times followed a uni-
form distribution. The upload bandwidth of peers was set to
1200 kbps. The number-of-partners parameter of peers was
fixed at five. The streaming rate was varied from 100 kbps to
500 kbps. Each simulation stopped after reaching 1000 sim-
ulated seconds, even though the results consistently reached
their steady-states after around 500 simulated seconds. We
repeated each setting ten times with different seeds of the
random number generator. Figure 6 plots the CI metric with
respect to different streaming rates.

As can be seen in Figure 6, the CI decreases gradually
when the streaming rate increases from 100 kbps to 500 kbps.
The CI also reveals the same trend as in the published results
in [18] whose experiments were conducted in a practical de-
ployment. Both results are relatively close to each other.

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 100 150 200 250 300 350 400 450 500

C
o

n
ti
n

u
it
y
 I

n
d

e
x

Streaming rate (kbps)

Simulation − 1200kbps
Published results

Figure 6. Validation of the DONet streaming protocol: The
Continuity Index versus the streaming rate

Validating Coolstreaming In this experiment, we validated
both Coolstreaming and Newscast. The Newscast gossip-
ing protocol was used to manage the membership for the
Coolstreaming overlay streaming protocol. The cache size of
Newscast was set to 20 entries. The streaming rate was fixed
at 400 kbps. The number of sub-streams was set to ten. The
network included a source node and 1000 homogeneous peer
nodes. Peers had upload bandwidths of 500 kbps. They joined
the system and did not leave until the end of the simulation.
Their inter-arrival times followed an exponential distribution.
We repeated each setting ten times with different seeds of
the random number generator. Simulations were run for 1000
simulated seconds.

The CI metric was calculated for the whole network. Fig-
ure 6. plots the CI versus the number of partners (from 10
to 20). As can be seen, the CI increases linearly when the
number of partners increases even to a large value. Our re-
sults resemble quite well the published simulation results [9].
The slightly higher CI in our simulation can be a result of
the smaller system size in our setting which might be more
sensitive to the same increase in the number of partners.

7. CONCLUSION
In this paper, we present OSSim, a simulation frame-

work in OMNeT++ to simulate overlay streaming sys-
tems. OSSim is characterized by a modular and generic
layered design that we derived from an analysis of the
three major overlay streaming classes. This design eases
the implementation of additional overlay streaming proto-
cols. Our simulation results indicate the validity and ac-
curacy of our framework for SCAMP, DONet, and Cool-
streaming. The source code of OSSim is publicly available
at https://github.com/ntrgiang/ossim.

https://github.com/ntrgiang/ossim

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 12 14 16 18 20

C
o

n
ti
n

u
it
y
 I

n
d

e
x

Number of partners

Simulation results (1000 nodes)
Published results (5000 nodes)

Figure 7. Validation of the Coolstreaming protocol: The
Continuity Index versus the number of partners

Future work will comprise the implementation of more
protocols in the streaming layer, such as tree-push systems,
and comparison studies of efficiency and resilience properties
of different overlay streaming classes. Moreover, we propose
to extend our simulation framework by multiple channels.

8. ACKNOWLEDGMENT
This work has been done as part of the research project sup-

ported by the German Academic Exchange Service (DAAD),
Grant number A/09/97565.

REFERENCES
[1] L. Abeni, C. Kiraly, and R. Lo Cigno. Sssim: a simple

and scalable simulator for p2p streaming systems. In
IEEE 14th International Workshop on Computer Aided
Modeling and Design of Communication Links and Net-
works, pages 1–6, 2009.

[2] I. Baumgart, B. Heep, and S. Krause. Oversim: A flex-
ible overlay network simulation framework. In IEEE
Global Internet Symposium, 2007, pages 79 –84, 2007.

[3] A. Biernacki. Simulation of p2p tv system using om-
net++. In EuroView, 2010.

[4] M. Brinkmeier, G. Schafer, and T. Strufe. Optimally dos
resistant p2p topologies for live multimedia streaming.
IEEE Transactions on Parallel and Distributed Systems,
20(6):831 –844, june 2009.

[5] Y. Feng and B. Li. Peer-assisted media streaming: A
holistic review. In Intelligent Multimedia Communica-
tion: Techniques and Applications, volume 280, pages
317–340. Springer, 2010.

[6] A. Ganesh, A. M. Kermarrec, and L. Massoulie. Peer-
to-peer membership management for gossip-based pro-
tocols. IEEE Trans. on Comp., 52(2):139–149, 2003.

[7] X. Hei, Y. Liu, and K. Ross. Iptv over p2p streaming
networks: the mesh-pull approach. IEEE Communica-
tions Magazine, 46(2):86–92, Feb. 2008.

[8] M. Jelasity, W. Kowalczyk, and M. van Steen. Newscast
computing. Technical Report IR-CS-006, Vrije Uni-
versiteit Amsterdam, Department of Computer Science,
Amsterdam, The Neitherlands, Nov. 2003.

[9] B. Li, S. Xie, Y. Qu, G. Keung, C. Lin, J. Liu, and
X. Zhang. Inside the new coolstreaming: Principles,
measurements and performance implications. In IEEE
INFOCOM 2008., pages 1031 –1039, april 2008.

[10] Y. Liu, Y. Guo, and C. Liang. A survey on peer-to-peer
video streaming systems. Peer-to-Peer Networking and
Applications, Vol. 1, No. 1:pp. 18–28, 2008.

[11] M. Moshref, R. Motamedi, H. Rabiee, and M. Khansari.
Layeredcast - a hybrid peer-to-peer live layered video
streaming protocol. In 5th International Symposium on
Telecommunications (IST), pages 663 –668, dec. 2010.

[12] Y. Seyyedi. Denacast: A p2p video streaming simulator.
[Online]. Available: http://denacast.org/, 2010.

[13] A. Varga. The inet framework. [Online]. Available:
http://inet.omnetpp.org, 2012.

[14] A. Varga. Omnet++ network simulation framework.
[Online]. Available: http://www.omnetpp.org, 2013.

[15] F. Wang, Y. Xiong, and J. Liu. mtreebone: A collab-
orative tree-mesh overlay network for multicast video
streaming. Parallel and Distributed Systems, IEEE
Transactions on, 21(3):379–392, March 2010.

[16] M. Zhang. p2pstrmsim: Peer-to-peer
streaming simulator. [Online]. Available:
http://media.cs.tsinghua.edu.cn/∼zhangm, 2009.

[17] M. Zhang, Q. Zhang, L. Sun, and S. Yang. Understand-
ing the power of pull-based streaming protocol: Can we
do better? IEEE Journal on Selected Areas in Commu-
nications, 25:1678–1694, 2007.

[18] X. Zhang, J. Liu, B. Li, and Y.-S. Yum. Coolstream-
ing/donet: a data-driven overlay network for peer-to-
peer live media streaming. In IEEE INFOCOM 2005,
volume 3, pages 2102–2111, march 2005.

	Introduction
	Requirements
	State of the Art
	Overlay Streaming Components
	Mesh-pull systems
	Tree-push Systems
	Hybrid push-pull systems

	Design of the OSSim Framework
	OSSim Architecture
	Helper Modules
	Discovery Service Layer
	Topology Management Layer
	Streaming Management Layer
	Summary of the Design

	Validation of OSSim
	Conclusion
	Acknowledgment

