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Abstract 24 

Sixteen Coupled Model Intercomparison Project Phase 6 (CMIP6) historical 25 

simulations (1950–2014) are compared to Northeast US observed precipitation and 26 

extreme precipitation-related synoptic circulation. A set of metrics based on the regional 27 

climate is used to assess how realistically the models simulate the observed distribution 28 

and seasonality of extreme precipitation, as well as the synoptic patterns associated with 29 

extreme precipitation. These patterns are determined by k-means typing of 500-hPa 30 

geopotential heights on extreme precipitation days (top 1% of days with precipitation). 31 

The metrics are formulated to evaluate the models’ extreme precipitation spatial 32 

variations, seasonal frequency, and intensity; and for circulation, the fit to observed 33 

patterns, pattern seasonality, and pattern location of extreme precipitation.  34 

Based on the metrics, the models vary considerably in their ability to simulate 35 

different aspects of regional precipitation, and a realistic simulation of the seasonality and 36 

distribution of precipitation does not necessarily correspond to a realistic simulation of 37 

the circulation patterns (reflecting the underlying dynamics of the precipitation), and vice 38 

versa. This highlights the importance of assessing both precipitation and its associated 39 

circulation. While the models vary in their ability to reproduce observed results, in 40 

general the higher resolution models score higher in terms of the metrics. Most models 41 

produce more frequent precipitation than that for observations, but capture the seasonality 42 

of precipitation intensity well, and capture at least several of the key characteristics of 43 

extreme precipitation-related circulation. These results do not appear to reflect a 44 

substantial improvement over a similar analysis of selected CMIP5 models. 45 

 46 
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1. Introduction 47 

The Northeast US is a region that experiences heavy rainfall throughout the year, 48 

due to tropical systems and convective events in the summer, and strong extratropical 49 

storms throughout the year (Hoskins and Hodges 2002, Hawcroft 2012, Agel et al. 2015, 50 

Barlow 2011, Howarth 2019). The region is susceptible to storms that track from the 51 

Great Lakes and the Central US, as well as coastal storms, that travel up the East Coast 52 

and impact the area with subtropical moisture feeds and strong surface low pressure 53 

(Collow et al. 2016, Collins et al. 2014). In addition, recent studies have shown that 54 

precipitation is increasing in this region in recent decades, and is expected to continue to 55 

do so in accordance with climate change (IPCC 2014; Easterling et al. 2017). Because of 56 

these vulnerabilities, it is important to accurately interpret climate model projections for 57 

this region. We ask two key questions: which climate models best simulate the various 58 

traits of Northeast US precipitation and extreme precipitation, and do they do so for the 59 

“right” reasons (that is, under similar synoptic regimes)?  60 

Release of the Coupled Model Intercomparison Project Phase6 (CMIP6; Eyring et 61 

al. 2016) data sets has recently begun. This effort aims to build on the previous CMIP 62 

Phase 5 (CMIP5; Taylor et al. 2012) experiments, which are part of a long-term effort by 63 

the World Climate Research Programme (WCRP)’s Working Group of Coupled 64 

Modelling (WGCM) to advance our understanding of the complete Earth system. The 65 

goal of CMIP is to provide a framework of common experiment protocols and forcings, 66 

and prescribed output to the climate science community, which will lead to increased 67 

process understanding in many areas including clouds, aerosols, and internal variability. 68 

Improvements from the preceding experiment (CMIP5) are expected particularly for 69 
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decadal predictions, based on improvements in the models, as well as the methods of 70 

initialization and ensemble generation. As such, the CMIP6 model suite provides a rich 71 

data set through which to examine our key questions, and to compare to solutions 72 

generated by the CMIP5 models. 73 

Previously, Colle et al. (2013) investigated CMIP5 models for their ability to 74 

reproduce eastern North American and western North Atlantic cyclone genesis, tracks, 75 

rate of development, and intensity, and found that resolution played a large role in the 76 

model performance. Fereday et al. (2018) also recognized circulation variability between 77 

CMIP5 models to be a key player in precipitation variations for the North Atlantic and 78 

European regions. For the Northeast, Karmalkar et al. (2019) evaluated CMIP5 monthly 79 

precipitation and temperature (1950–2005) against a set of process-based metrics. 80 

Although no single model performed well for every metric described, they identified a 81 

subset of 16 models that generated “credible” and “diverse” simulations of precipitation 82 

and associated circulation.  83 

Previously, we assessed Northeast US precipitation and extreme precipitation for 84 

the CMIP5 model suite. In that study, we identified four patterns of 500-hPa geopotential 85 

heights associated with extreme precipitation for each of 14 models. Northeast extreme 86 

precipitation and extreme precipitation-related circulation has been previously examined 87 

using pattern analysis, by Ning and Bradley (2014), Roller et al. (2016), Collow et al. 88 

(2016), and Agel et al. (2018, 2019). Pattern-based analysis techniques associated with 89 

extreme precipitation are additionally reviewed in Barlow et al. (2019). Here, we use the 90 

same technique with a newly-available sampling of CMIP6 models, and explore how 91 

well the models meet certain metrics based on observed precipitation and extreme 92 
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precipitation circulation patterns. The identical metrics are used here as in the previous 93 

study, in order to address a third key question: does the CMIP6 model suite provide an 94 

improvement over the CMIP5 model suite in terms of simulating representative aspects 95 

of Northeast US precipitation? 96 

Our method for exploring these questions involves 1) establishing key 97 

characteristics of observed Northeast US precipitation, including seasonal frequency and 98 

intensity, as well as regional characteristics, 2) identifying observed extreme precipitation 99 

days, and 3) creating a set of observed circulation patterns that occur in conjunction with 100 

extreme precipitation, and identifying key aspects of this circulation. These key 101 

characteristics are combined into a set of metrics by which we evaluate CMIP6 102 

“historical run” model output. This study is organized as follows: data and methods are 103 

presented in Section 2, results are presented in Section 3, and a summary and conclusion 104 

are presented in Section 4. 105 

2. Data and Methods 106 

a. Observed Data 107 

The National Oceanic and Atmospheric Administration (NOAA) Climatological 108 

Prediction Center’s Unified daily gridded precipitation product (CPCU; Chen et al. 109 

2008), based on daily station data and subjected to a number of quality control checks, 110 

and available on a 0.25 x 0.25 grid from 1950–present, is used to calculate Northeast 111 

US daily precipitation intensity and extreme precipitation (99th percentile for days with 112 

precipitation over 0.2 mm, 1980–2017) at each grid point within the Northeast US 113 

(Maine, New Hampshire, Vermont, New York, Massachusetts, Connecticut, Rhode 114 

Island, New Jersey, Pennsylvania, Delaware, Maryland, and West Virginia). This results 115 
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in 3009 days where extreme precipitation occurs concurrently at one or more grid 116 

locations. In addition to the top 1% thresholds, we also compute monthly cycles of 117 

precipitation and extreme precipitation frequency and intensity at each grid point. 118 

Although gridded precipitation often overestimates precipitation frequency and 119 

underestimates intensity compared to point sources (Chen and Knutsen 2008), we find 120 

that this gridded dataset is effective at qualitatively capturing the precipitation 121 

characteristics we examine here.   122 

National Aeronautics and Space Administration (NASA) Modern Era 123 

Retrospective Reanalysis for Research and Application (MERRA-2; Gelaro et al. 2017) 124 

500-hPa geopotential heights and mean sea-level pressure (MSLP) are used to represent 125 

observed circulation on extreme precipitation days. The daily means (1980–2017) for 126 

each field are used, and converted to anomalies by removing the long-term daily mean 127 

(i.e. the mean of 01-Jan, 02-Jan, etc.) at each grid point. The long-term-daily mean is 128 

smoothed with a 14-day running mean. 129 

Although we use a single precipitation dataset (CPCU) and reanalysis dataset 130 

(MERRA-2) for this study, we have used these datasets in tandem for multiple Northeast 131 

studies (Roller et al. 2016, Agel et al. 2018, Agel et al. 2019a, Agel et al. 2019b), and 132 

find the products to provide realistic analysis, which is both consistent with and 133 

complementary to other studies done by other researchers, including Collow et al. (2016), 134 

Ning and Bradley (2014), and Howarth et al. (2019).  135 

b. CMIP6 data 136 

Model precipitation and circulation for 16 CMIP6 “r1i1p1f1” historical daily 137 

simulations are used, including the 500-hPa geopotential height fields, MSLP, and 138 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-1025.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/doi/10.1175/JC
LI-D

-19-1025.1/4989884/jclid191025.pdf by guest on 29 Septem
ber 2020



 7 

precipitation flux fields, for the years 1950–2014. The models are listed in Table 1, in 139 

order of decreasing resolution. For the purposes of this study, we consider climate models 140 

with resolution below 1.0 as “high-resolution” (3 models), those between 1.0–2.0 as 141 

“medium-resolution” (9 models) and those over 2.0 as “low-resolution” (4 models). The 142 

models range from the high-resolution CNRM-CM6-1-HR and EC-Earth3 to the low-143 

resolution BCC-ESM1 and CanESM5. The https://es-doc.org webpage contains expanded 144 

information for each data set, including the atmospheric, ocean, land, and ice 145 

components, as well as the physics and moist process parameterizations. The datasets are 146 

processed identically to that for the observations, where extreme precipitation is 147 

determined at each model grid point by the 99th percentile of days with precipitation over 148 

0.2 mm. The number of model grid points in the domain, the mean 99th-percentile 149 

threshold, and the unique number of extreme days for all grid points are shown in Table 150 

1. As for observations, monthly cycles of precipitation and extreme precipitation 151 

frequency and intensity are also calculated. 152 

c. Typing 153 

K-means typing (Diday and Simon 1976, Michelangeli et al. 1995) is performed 154 

on MERRA-2 500-hPa geopotential heights for the 3009 extreme precipitation days 155 

(identified in Section 2a), as well as on the CMIP6 models’ 500-hPa geopotential heights 156 

for the models’ extreme precipitation days, within the area bounded by 30–50N and 90–157 

60W, using MATLAB’s built-in “kmeans” function. Before processing, the long-term 158 

daily mean is removed at each grid point, and the field is reduced through empirical 159 

orthogonal function (EOF) analysis to 90% of its variance.  160 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-1025.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/doi/10.1175/JC
LI-D

-19-1025.1/4989884/jclid191025.pdf by guest on 29 Septem
ber 2020

https://es-doc.org/


 8 

K-means typing is a technique to separate input data into non-overlapping 161 

clusters, where individual input data is assigned to a cluster based on nearest Euclidean 162 

distance to the cluster centroid (the mean of the inputs assigned to the cluster). The 163 

centroid is then recalculated, and the process is reiterated until further iterations no longer 164 

reduce the sum of the intra-cluster variances.   165 

To determine a reasonable number of clusters, k-means is applied for k=1..8, and 166 

the most reproduceable clustering is found using the method of Michelangeli et al. 167 

(1995). In this method, a “Classifiability Index” (CI) is determined for each k, based on 168 

the mean anomaly cross-coefficient between a particular cluster in a single partitioning to 169 

each cluster in every other partitioning, over a large number of partitionings. The 170 

resulting CI is compared to that produced using random red noise based on the input 171 

field, so that any CI greater than the 90th percentile of the red-noise results represents a k 172 

that is consistently reproduceable across a large number of iterations. For this study, the 173 

CI test for CPCU/MERRA-2 suggests k=4 and k=6 to be the best choices. Further 174 

examination shows that the 6-pattern solution breaks two of the k=4 solution patterns into 175 

two subsets each. These subsets do not substantively change the results of this study, 176 

therefore we use the k=4 solution to simplify and streamline the analysis. K-means is 177 

subsequently applied to each of the CMIP6 models using k=4, and the results are 178 

compared to those for CPCU/MERRA-2. 179 

d. Additional Data Notes 180 

We note that resolution is much higher for the observed precipitation and 181 

circulation fields than for each of the CMIP6 models. This can make direct comparison of 182 

precipitation characteristics problematic (Gehne et al. 2016). For most studies, 183 
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observations must first be regridded to the resolution of a climate model before 184 

comparison. However, the specific characteristics we examine here (mean top 1% 185 

threshold and seasonal cycles of precipitation intensity and frequency) are insensitive to 186 

regridding (that is, the mean results are nearly identical whether or not we regrid 187 

observations to model resolution). Furthermore, CPCU has coverage for only US land. 188 

Regridding near coastlines, the Great Lakes, and Canada result in data loss along the 189 

region’s borders, which affects the variability of the underlying observed data, if not the 190 

mean. For this reason, we compare the observations to model output without regridding. 191 

We also note that the time period used for the CMIP6 historical runs (1950–2014) 192 

differs from that for CPCU/MERRA-2 observations (1980–2017). While there are likely 193 

underlying trends in the data, we find that the mean top 1% thresholds, and cycles of 194 

precipitation frequency and intensity are nearly identical between 1950–2014 and 1980–195 

2017 for CPCU, as well as for the CMIP6 models between 1950–2014 and 1980–2014. In 196 

addition, there are only minor differences in the 10th–90th-precentile values for 197 

precipitation intensity and frequency. Because underlying trends do not have a substantial 198 

impact on our results, we use different time periods for observations and models to 199 

maximize our sample sizes. 200 

3. Results 201 

3.1 Observations 202 

 Characteristics of observed precipitation, based on CPCU gridded precipitation, 203 

1950–2017, are shown in Figure 1. The grid density and extreme precipitation threshold 204 

are shown in Figure1a, and 1b, respectively. The extreme precipitation threshold 205 

increases from approximately 30 mm day-1 in the northwest to approximately 60 mm day-206 
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1 to the southeast. This gradient is an important factor in determining Northeast US 207 

precipitation climatology (Agel et al. 2015), allowing for a separate coastal and inland 208 

climatology.  209 

 The monthly precipitation frequency, daily intensity aggregated by month, and 210 

total monthly precipitation is shown for all precipitation in Figure 1c and extreme 211 

precipitation in Figure 1d. Precipitation occurrence peaks in summer and Dec–Jan, with a 212 

peak in intensity during the warm months. Although the frequency of extreme 213 

precipitation peaks during late summer, the intensity of extreme precipitation tends to be 214 

consistently around 50 mm day-1 regardless of month. We note that Figure 1 panels c–d 215 

show the mean of all grid locations – a more nuanced monthly climatology separated by 216 

subregion can be found in Agel et al. (2015). For the purposes of this study, we will 217 

compare the CMIP6 model results to observations using the mean of all grid locations, 218 

and account for the coastal/inland differences using the gradient of extreme threshold 219 

(Figure 1b). 220 

 K-means typing of MERRA-2 500-hPa geopotential heights, 1980–2017, on 221 

observed extreme precipitation days reveals 4 patterns (Figure 2a). The first (top left, 222 

labeled O1, 43.4% of extreme days) exhibits nearly zonal circulation, with a slight 223 

troughing to the east of the domain. The second (top right, labeled O2, 22.4%) exhibits 224 

slight ridging with anomalously high heights to the east of the domain. The third pattern 225 

(bottom left, labeled O3, 21.8%) features a trough/ridge couplet, with the trough draped 226 

from the Great Lakes south to Louisiana, and a ridge over the ocean to the east of 227 

Massachusetts. The fourth pattern (bottom right, labeled O4, 12.4%) features a deep 228 

trough across the Ohio Valley, with surface low pressure centered over New England.  229 
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 The favored locations for extreme precipitation (dots) within each pattern are 230 

shown in Figure 2b, along with anomalous precipitation (shaded). O1 features the least 231 

intense extreme precipitation, which occurs in two locations - along the spine of the 232 

Appalachians in Pennsylvania and West Virginia, and in the extreme north regions of the 233 

domain along the Canadian border. For O2, the majority of extremes occur in the 234 

southwestern portions of the domain. For O3, which features the most widespread and 235 

heaviest precipitation, most extremes occur in the center of the domain, and for O4, the 236 

extremes occur predominately in Maine and along the far eastern coast of northern New 237 

England. Grey lines in Figure 2b separate the domain into 4 regions, which we use to 238 

evaluate how well the models capture the extreme locations per pattern type. 239 

 The seasonal frequency of each pattern is shown in Figure 2c, where red (blue) 240 

bars indicate frequencies higher (lower) than expected based on random sampling. 241 

Pattern O1 occurs more frequently than expected during JJA, and less frequently than 242 

expected for other seasons, while O2, O3 and O4 exhibit the opposite behavior –243 

occurring less frequently than expected during JJA, and more frequently than expected 244 

during the other seasons. 245 

 To explore how well the observed patterns reflect circulation on the days assigned 246 

to the patterns, Figure 2d shows histograms of the spatial correlations of 500-hPa height 247 

anomalies on individual days to the assigned anomaly pattern. The highest correlations 248 

occur for pattern O3 (non-summertime trough/ridge couplet), while the lowest 249 

correlations occur for pattern O1 (summertime slight trough). Histograms of root-mean-250 

squared-error (RMSE) are shown in Figure 2e. Since the k-means algorithm used here 251 

assigns days to patterns based on minimum RSME, it follows that cluster centroids with 252 
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smaller RMSEs are more representative of the underlying days. Here, we find O1 253 

(summertime slight trough) to have slightly better matching to the underlying days than 254 

the other patterns.  255 

3.2 CMIP6 models 256 

 For each CMIP6 model, a similar analysis is done as for observations. 257 

Precipitation flux is analyzed to create a set of extreme precipitation days, that is, days 258 

where precipitation is higher than the 99th percentile of all days with precipitation greater 259 

than 0.2 mm for one or more grid points. The number of grid points per model within the 260 

Northeast domain is listed in Table 1. The regional thresholds for extremes and the 261 

monthly frequency and intensity are examined in terms of how well these match 262 

observations. Next, the model 500-hPa heights for these days are separated into four 263 

patterns using k-means, as for observations, and these are compared to those related to 264 

observed extremes/patterns. We ask 1) how well does the model simulate Northeast US 265 

precipitation, and 2) how well does the model capture the four main circulation patterns 266 

associated with Northeast US extreme precipitation? We create a set of 6 precipitation-267 

related metrics and 12 circulation-related metrics (3 metrics per each of 4 patterns) to 268 

objectively examine how well the models capture key characteristics of precipitation and 269 

related circulation that are representative of Northeast observations. The metrics are 270 

identical to those used to examine the CMIP5 model suite, and are listed in Table 2.  271 

 The results of comparing the 16 models’ output to observations based on the 272 

Table 2 metrics are summarized in Figure 3. Metrics that are reasonably met by the 273 

model are shown with a green dot. The average “score” (number of green dots) for the 274 

precipitation metrics is 3.1 out of 6 (results range from 0 to 5); while the average score 275 
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for the circulation metrics is 8.2 out of 12 (ranging from 5 to 12). The mean total score is 276 

11.3 out of 18. Clearly, no individual model meets all metrics, and skill at reproducing 277 

precipitation characteristics does not necessarily predict skill at reproducing circulation 278 

characteristics, and vice versa. 279 

 The CNRM-CM6-1-HR model compares the best to observational metrics, with a 280 

total score of 16 out of 18; while CNRM-CM6-1 and MPI-ESM1-2-HR both have scores 281 

of 15. Other models that simulate observations well based on these metrics include 282 

ACCESS-CM2, EC-Earth3, and HadGEM3-CG21-LL, with total scores of 13. However, 283 

EC-Earth3, despite scoring well for circulation metrics, scores low for the precipitation 284 

metrics (2 out of 6), while ACCESS-CM2 scores better for the precipitation metrics (5 285 

out of 6) than for the circulation metrics (8 out of 12). The poorest performing models for 286 

these metrics include NorESM2-LM and BCC-ESM1, with total scores of 8 or less. 287 

Resolution appears to play a role in how well the models capture the combined 288 

precipitation and circulation characteristics, with the three high-resolution models in the 289 

top third and the four low-resolution models in the bottom third of the total metric scores.  290 

The relationship to resolution is weaker when looking at precipitation or circulation 291 

metrics alone. For precipitation metrics, the medium-resolution MIROC6 and BCC-292 

CSM2-MR model score better than high-resolution MPI-ESM1-2-HR and EC-Earth3 293 

models. For the circulation metrics, BCC-CSM2-MR (medium-resolution) performs 294 

worse than all four low-resolution models, while NorESM2-LM (low-resolution) scores 295 

as well as or better than many of the medium-resolution models. The ACCESS-CM2 and 296 

MPI-ESM1-2-HR models are discussed in detail below, as examples of models that 297 

simulate observed extreme precipitation well (but not necessarily the related circulation), 298 
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and those that simulate observed circulation on extreme days well (but not necessarily the 299 

extreme precipitation itself), respectively.  300 

Precipitation and related circulation characteristics for ACCESS-CM2 are shown 301 

in Figures 4 and 5. Despite having lower resolution than observations (Figure 4a), the 302 

areal-mean top 1% threshold is reasonable, and the northwest-southeast gradient in 303 

precipitation is similar to observations (Figure 4b). However, precipitation near the Great 304 

Lakes appears to be too intense. While the model produces too many days of 305 

precipitation in all months but December and January, the daily intensity matches 306 

observations well (Figure 4c). The model also matches observations well for extreme 307 

precipitation seasonal frequency and intensity (Figure 4d). Visually, the circulation 308 

patterns associated with extreme precipitation (labeled P1–P4, Figure 5a) have key 309 

differences with observational patterns. Specifically, there appears to be a shortwave in 310 

the flow across the southeastern states for P2, the ridging over the Northeast is much 311 

stronger than in observations for P3, and the deep trough in P4 is located too far west. 312 

The location of anomalous precipitation is similar to observations, but the location of 313 

extremes in P3 is concentrated farther south (Figure 5b). For P2, there is no significant 314 

decrease in the frequency of JJA dates, as for observations, and there are less DJF and 315 

SON dates by percentage than for observations (Figure 5c). While not explored here, this 316 

may be related to the shortwave in the 500-hPa flow, which is relevant to the generation 317 

of precipitation extremes (Agel et al. 2019a). The presence of the shortwave in otherwise 318 

zonal flow may cause more of these fields to be grouped into O2-like patterns as opposed 319 

to O1-like patterns by the clustering algorithm. Finally, Figure 5d explores how well P1–320 

P4 match O1–O4 in terms of RMSE and spatial correlation. Results that are significantly 321 
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lower for RMSE or higher for correlation than expected by chance (.05 level of 322 

significance), as determined by random sampling, are indicated by asterisks. RMSE 323 

between P1/O1 and P2/O2 are lower than between P1 and O2/O3/O4, and P2 and 324 

O1/O3/O4, as we would expect. However, RMSE between P3/O3 is not much lower than 325 

that between P3/O2, and RMSE between P4/O3 is lower than P4/O4. Similarly, 326 

correlations between P1/O1, P2/O2 are highest, but correlation between P4/O4 is less 327 

than that between P4/O3, and while P3/O3 correlation is the highest, it is not significantly 328 

higher than that due to chance, and is very close in value to P3/O2 (which is significantly 329 

higher than expected by chance). In summary, although ACCESS-CM2 precipitation 330 

characteristics are similar to observations, the circulation associated with extreme 331 

precipitation has some key differences from observations. It is beyond the purposes of 332 

this study to ascertain why this occurs, but possibilities include model feedback 333 

mechanisms which enhance troughs and ridges during extreme precipitation, or model 334 

physics and parameterizations that only produce extreme precipitation under the 335 

conditions of enhanced synoptic flow.  336 

 Characteristics of precipitation/circulation for MPI-ESM1-2-HR are shown in 337 

Figures 6 and 7. Despite the high resolution of this model, the model does not fully 338 

capture the northwest-to-southeast gradient of precipitation (Figure 6b). While the inland 339 

values for the top 1% threshold are reasonable, the coastal values are much lower than for 340 

observations.  The monthly frequency of precipitation is too high, but the daily intensities 341 

of precipitation (Figure 6c) and extreme precipitation (Figure 6d) match observations 342 

well. The four model patterns associated with extreme precipitation are shown in Figure 343 

7a. The patterns are visually similar to observations, except for P2, which has more 344 
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enhanced ridging over the Northeast, and P4, which features a deeper trough. Anomalous 345 

precipitation over land is slightly higher than observations, but is qualitatively similar, in 346 

terms of where the heaviest precipitation occurs (Figure 7b). Spatially, the location of 347 

extremes is similar to observations. Seasonally, the extreme pattern frequencies match 348 

observations, in that P1 occurs more frequently than expected due to chance during JJA, 349 

while the other patterns occur less frequently than expected during JJA (Figure 7c). The 350 

patterns match those from observations well, based on the RMSE values and spatial 351 

correlation values between the model patterns and the observational patterns (Figure 7d). 352 

The lowest RSME values and highest positive correlation values occur between P1/O1, 353 

P2/O2, P3/O3, and P4/O4, as we would expect. The correlation value for P1/O1 is not 354 

significantly higher than expected by chance, but that is not surprising for the 355 

predominantly zonal pattern, where small variations in anomalous flow can cause large 356 

correlation differences. In this case, RMSE may be a better overall measure of fit. In 357 

summary, MPI-ESM1-2-HR appears to produce less heavy precipitation than 358 

observations, particularly along the coast; however, the heavy precipitation appears to be 359 

generated within similar circulation constraints to observations. 360 

Similar figures for all 16 models are available in Supplemental Information. 361 

Overall, BCC-ESM1, EC-Earth3, and NorESM2-LM all produce noticeably less heavy 362 

precipitation than observations, as can be seem in the top 1% threshold values and daily 363 

intensity values; while too much heavy precipitation is produced by CanESM5 and 364 

MIROC6 inland, HadGEM3-CG31-LL throughout New Jersey and Delaware, ACCESS-365 

CM2 along the coast, and IPSL-CM6A-LM throughout the domain. CNRM-CM6-1-HR 366 

(the highest-resolution model examined here) shows the closest match to observations for 367 
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the top 1% values and regional gradient. All models produce too many days of 368 

precipitation, but several show reasonable seasonal cycles, including ACCESS-CM2, 369 

CESM2, CESM2-WACCM, CNRM-CM6-1-HR, MIROC6, and NorESM2. In contrast, 370 

CanESM5 produces too much summer precipitation, while EC-Earth3, MPI-ESM1-2-371 

HR, and MRI-EMS2-0 produce too much spring precipitation. Daily intensity is 372 

simulated well by ACCESS-CM2, CNRM-CM6-1-HR, MIROC6, and MRI-ESM2-0; 373 

while other models struggle to match observations. BCC-ESM1 and BCC-CSM2-MR 374 

both are biased too low for each month, while CESM2 and CESM2-WACCM produce 375 

too little summer daily intensity, and IPSL-CM6A-LR produces too much May–June 376 

daily intensity. 377 

For the circulation characteristics, CNRM-CM6-1, CNRM-CM6-1-HR, and EC-378 

Earth3 reasonably reproduce observed patterns in terms of spatial correlation, pattern 379 

seasonality, and location of extreme precipitation within the patterns. While there is good 380 

visual matching between P1/O1 for all models, 9 out of 16 models do not match the 381 

metric for fit (correlation and RMSE) between P1/O1. This is likely due to poor 382 

correlation rather than low RMSE, which may be related to the zonal pattern itself, where 383 

anomalous flow can cause large deviations in correlation. All models meet the metric for 384 

fit between P2/O2, however this too is somewhat misleading: CESM2, HadGEM3-CG31-385 

LL, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, and NorESM2-LM all feature much 386 

more pronounced ridges over the Northeast than that observed in O2. The models show 387 

varied success in visual matching (and metric matching) for the ridge/trough in P3/O3 388 

and the deep trough in P4/O4, which is likely related to the intensity and relative location 389 

of the ridge/trough in P3. In these cases, days with deeper and eastward-shifted troughs 390 
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may get split between P3 and P4 during the k-means separation, rather than all assigned 391 

to P3. While all models but BCC-ESM1 capture the observed location of extremes in 392 

P4/O4, only MPI-ESM1-2-HR and MRI-ESM2-0 capture the observed locations for 393 

P3/O3. Again, this is likely related to the relative location of the trough/ridge axis in P3, 394 

and how the k-means algorithm splits these days. While all models capture the relative 395 

seasonality of the P1/O1 and P3/O3 patterns, a number of models struggle with the 396 

seasonality for P4/O4. HadGEM3-CG31-LR, IPSL-CM6A-LR, and MIROC6 each have 397 

higher frequency in JJA than expected (whereas observations show lower frequency than 398 

expected), which is likely related to a shallower P4 trough than that for O4. A shallow 399 

trough across the Ohio Valley is a common summer pattern associated with extreme 400 

precipitation for the Northeast (Agel et al. 2017). These three models may generate 401 

extreme precipitation for shallower troughs in general, since they also overproduce heavy 402 

precipitation, as seen in the overdone top 1% thresholds. 403 

3.3 Comparison to CMIP5 results 404 

 One of the main motivations for this study is to determine if the CMIP6 models 405 

improve the simulation of Northeast precipitation and associated circulation over the 406 

CMIP5 models, per the set of metrics devised here. Six of the CMIP6 model families 407 

examined here were also included in the CMIP5 study. Table 3 shows a summary of the 408 

results for CMIP6 compared to CMIP5. ACCESS-CM2, HadGEM3-CG31-LL, and 409 

NorESM2-LM perform about the same as their CMIP5 counterparts. Noticeably, model 410 

resolution does not improve between CMIP5 and CMIP6 for these models. For CMIP6 411 

models with increased resolution compared to their CMIP5 counterparts, including 412 

CNRM-CM6-1-HR and MPI-ESM1-2-HR, scores increase 2–3 points overall, split 413 
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between the precipitation and circulation metrics. However, IPSL-CM6A-LR, (here with 414 

a higher resolution than its IPSL-CMIP5A-LR counterpart), only improves by one point 415 

for the precipitation metrics. In addition, CNRM-CM6-1, with no increase in resolution 416 

over CNRM-CM5, improves by 2 points, which is likely related to improvements in the 417 

physical parameterizations in the atmospheric and land model components (Voldoire et 418 

al. 2019). 419 

Until additional datasets become available, it is not possible to compare all of the 420 

previously examined CMIP5 model families to their CMIP6 counterparts; however, we 421 

can make some general statements. The mean score for precipitation metrics does not 422 

change (~3 out of 8) between the CMIP5 and CMIP6 results, while the score for 423 

associated extreme precipitation circulation increases slightly from 10.9 to 11.3 out of 12. 424 

The mean resolution (latitude x longitude) for the models increases from a mean 1.72 x 425 

2.26 for the CMIP5 models examined to a mean 1.33 x 1.58 for the CMIP6 models 426 

examined. Despite several of the higher resolution models meeting the study’s metrics 427 

better, we cannot yet state with certainty that the overall higher resolution of the CMIP6 428 

models appreciably increase the scores for these metrics above those for CMIP5. 429 

4. Summary and Conclusions 430 

 In this study, we examine how well CMIP6 climate models simulate Northeast 431 

US precipitation and extreme precipitation, as well as extreme precipitation-related 432 

circulation, based on a set of four observationally-determined 500-hPa geopotential 433 

height patterns for observed extreme precipitation days. We establish a set of metrics that 434 

best capture key aspects of Northeast precipitation observations and circulation, and 435 
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evaluate each model within the framework of those metrics. In addition, we compare 436 

these results to those for a previous study that considered CMIP5 models. 437 

Specifically, we examine 16 models with historical ‘r1i1pf1p’ geopotential 438 

heights and precipitation, 1950–2014. The results are varied in how well the models meet 439 

the different metrics. Some models simulate the seasonality and spatial distribution of 440 

precipitation reasonably well, but do not successfully simulate all aspects of the 441 

associated circulation and spatial/temporal characteristics of the established patterns for 442 

extreme precipitation. That is, the extreme precipitation is not produced via the same 443 

dynamical mechanisms as the corresponding observed extreme precipitation. This 444 

highlights the importance of assessing circulation in association with precipitation. Other 445 

models do not capture the key aspects of precipitation well, but do generate extreme 446 

precipitation within the context of the four observed circulation patterns. We do note that 447 

for all models, the k-means typing results are at least very broadly visually similar to the 448 

basic four observed patterns, whether or not each specific precipitation or circulation 449 

metric is met. The range of model limitations in reproducing both aspects of the 450 

precipitation and the associated circulations suggests that CMIP6 precipitation 451 

projections for the region should be considered very cautiously. 452 

 In general, higher resolution models simulate precipitation closer to observed 453 

precipitation. However, resolution is not an absolute predictor of success regarding the 454 

metrics used here – for example, the relatively high-resolution EC-Earth3 does not score 455 

well on the precipitation metrics despite scoring very well on the circulation metrics. 456 

Nevertheless, models with resolution finer than 1.0 scored overall better in both 457 

precipitation and circulation metrics. 458 
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One of the important goals of this research is to evaluate the CMIP6 models 459 

relative to their CMIP5 counterparts. As a preliminary assessment, although the 460 

resolution on average increases in the suite of CMIP6 considered here, the performance is 461 

not substantially better in terms of the regional precipitation and circulation metrics. 462 

However, we have at this time evaluated only a subset of the CMIP6 data expected to be 463 

available. As more datasets become available, we expect to add to these results. 464 

Additionally, as a starting point, this analysis has focused on four basic extreme-465 

precipitation circulation patterns spanning the whole year.  More detailed, season-specific 466 

analysis would be useful follow-on work. 467 

Data Availability 468 

CPCU data is downloaded from ftp://ftp.cdc.noaa.gov/Projects/Datasets/cpc_us_precip, 469 

as of November 2018. MERRA-2 data is downloaded from 470 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access as of November 2018.  471 

CMIP6 model data is downloaded from https://esgf-node.llnl.gov/projects/cmip6, as of 472 

November 2019. 473 
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Table 1. CMIP6 models and observations (MERRA-2/CPCU) in order of decreasing 562 

resolution. The grid resolution is shown both in terms of latitude/longitude (degrees), but 563 

also in terms of the number of grid points that overlap the Northeast region. Also given 564 

are the top 1% precipitation threshold values (mm day-1), and the number of unique 565 

extreme days 1980–2017. Asterisks indicate model families also considered in an earlier 566 

CMIP5 analysis. 567 

Model/Observations Lat. Lon. Number 

of grids 

Extreme 

threshold 

(mm day-1) 

Number 

of 

extremes 

CPCU 0.25 0.25 925 40.72 3009 

MERRA-2 0.50 0.63 n/a n/a n/a 

CNRM-CM6-1-HR* 0.50 0.50 232 41.19 2655 

EC-Earth3 0.70 0.70 122 36.28 2247 

MPI-ESM1-2-HR* 0.94 0.94 62 39.70 1665 

CESM2 0.94 1.25 51 39.32 1479 

CESM2-WACCM 0.94 1.25 51 39.38 1383 

BCC-CSM2-MR 1.12 1.12 48 39.20 1653 

GFDL-CM4 1.00 1.25 48 41.26 1657 

MRI-ESM2-0 1.12 1.12 48 38.79 1518 

CNRM-CM6-1* 1.4 1.41 29 39.96 1405 

MIROC6 1.40 1.40 29 45.43 1403 

ACCESS-CM2* 1.25 1.88 24 44.82 1669 

HadGEM3-CG31-LL* 1.25 1.88 24 47.26 1586 

IPSL-CM6A-LR* 1.27 2.50 20 53.19 1553 

NorESM2-LM* 1.89 2.50 11 31.97 675 

BCC-ESM1 2.79 2.81 6 32.02 575 

CanESM5 2.79 2.81 6 45.79 600 
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Table 2. Metrics used to determine how well CMIP6 model precipitation simulates 569 

observed precipitation (metrics 1–6), and how well k-means clustering of CMIP6 500-570 

hPa geopotential heights on extreme precipitation days matches observed patterns of 571 

circulation on observed extreme precipitation days (metrics 7–18). The assessment 572 

criteria describe approximate correspondence to observations. 573 

 Metric Assessment Criteria 

1 Top 1% threshold Mean threshold within 25th–75th percentiles of obs thresholds  

2 Range of top 1% 

thresholds 

10th–90th percentile thresholds greater than obs 25th–75th percentile 

thresholds 

3 Monthly prec 

frequency 

At least 11 out of 12 months within 10th-90th percentile for obs 

4 Monthly prec 

daily intensity 

At least 11 out of 12 months within 10th-90th percentile for obs 

5 Monthly extreme 

prec frequency 

At least 11 out of 12 months within 10th-90th percentile for obs 

6 Monthly extreme 

prec daily 

intensity 

At least 11 out of 12 months within 10th-90th percentile for obs 

7 P1: Spatial 

Distribution 

Greater than 15% decrease from TQR to EQR in SE quadrant, where 

TQR=grids per quadrant/total grids, and EQR=extreme grids per 

quadrant/total extreme grids (or if no SE grids, no increases greater 

than 15% in any other quadrant) 

8 P2: Spatial 

Distribution 

Greater than 5% increase from TQR to EQR in NE and SE quadrants, 

and greater than 5% decrease in NW and SW 

9 P3: Spatial 

Distribution 

Less than |15%| difference from TQR to EQR in all quadrants 

10 P4: Spatial 

Distribution 

Greater than 15% decrease in SW quadrant from TQR to EQR, and 

greater than 15% increase in NE quadrant 

11 P1: Seasonal 

Freq. 

JJA higher than 5-95% confidence interval for all extreme days (not 

just P1) 

12 P2: Seasonal 

Freq. 

JJA lower than 5-95% confidence interval for all extreme days (not 

just P2) 

13 P3: Seasonal 

Freq. 

JJA lower than 5-95% confidence interval for all extreme days (not 

just P3) 

14 P4: Seasonal 

Freq. 

JJA lower than 5-95% confidence interval for all extreme days (not 

just P4) 

15 P1->O1  P1→O1 corr/rmse at least 10% larger/smaller than P1→O2,O3,O4 

16 P2->O2 P2→O2 corr/rmse at least 10% larger/smaller than P2→O1,O3,O4 

17 P3->O3 P3→O3 corr /rmse at least 10% larger/smaller than P3→O1,O2,O4 

18 P4->O4 P4→O4 corr/rmse at least 10% larger/smaller than P4→O1,O2,O3 
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Table 3. Comparison of resolution and metric scores between similar CMIP5 and CMIP6 575 

models, and the overall score for all sampled CMIP5 (14 models) and CMIP6 models (16 576 

models). 577 

 

MODEL 

FAMILY 

CMIP5 CMIP6 

Lat Lon Prec Circ Tot Lat Lon Prec Circ Tot 

ACCESS1-0 / 

ACCESS-CM2 

1.25 1.88 4 8 12 1.25 1.88 5 8 13 

CNRM-CM5/ 

CNRM-CM6-1 

1.40 1.41 4 9 13 1.40 1.41 5 10 15 

CNRM-CM5/ 

CNRM-CM6-1-HR 

1.40 1.41 4 9 13 0.50 0.50 5 11 16 

HadGEM2-CC/ 

HadGEM3-CG31-LL 

1.25 1.88 4 8 12 1.25 1.88 4 9 13 

IPSL-CM5A-LR/ 

IPSL-CM6A-LR 

1.89 3.75 1 7 8 1.27 2.5 2 7 9 

MPI-EMS-LR/ 

MPI-ESM1-2-HR 

1.87 1.88 3 10 13 0.94 0.94 3 12 15 

NorESM1-M/ 

NorESM2-LM 

1.90 2.50 0 8 8 1.89 2.50 0 8 8 

All CMIP5 / 

All CMIP6 

1.72 2.26 3.0 7.9 10.9 1.33 1.58 3.1 8.2 11.3 

 578 
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 580 

Figure 1. Observed precipitation (CPCU) characteristics, 1980–2017, with a) CPCU grid 581 

center locations, b) top 1% wet-day daily intensity threshold (shaded, in mm), c) grid-582 

level mean wet-day monthly precipitation frequency (red line, in days), mean daily 583 

intensity (red line, in mm), and mean total daily precipitation (red line, in mm), and d) 584 

same as (c), but for extreme precipitation only. The grey shading for (c) and (d) 585 

represents the grid-level 10–90th percentile values. 586 

 587 
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 588 

Figure 2. K-means separated (O1–O4) extreme precipitation a) patterns of 1980–2017 589 

MERRA-2 500-hPa geopotential height anomalies (shaded) and total fields (thick black 590 

contours, in 6-dam increments) and MSLP (thin black contours, in 4-hPa increments), b) 591 

CPCU daily precipitation anomalies (shaded, in mm) and location of extreme 592 

precipitation (black dots, where each dot represents a grid location where the frequency 593 

of extremes exceeds 0.15%), and divided into 4 quadrants separated by grey lines, c) 594 

seasonal frequency of patterns, with frequency that is similar to, less than, or more than 595 

expected by chance represented by black, blue, and red bars, respectively, d) histograms 596 

of 500-hPa geopotential height spatial correlations of individual pattern days to pattern 597 

mean, and e) histograms of 500-hPa geopotential height RMSE (blue bars, in m) for 598 

individual patterns days to pattern mean.   599 
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 600 

 601 

Figure 3. CMIP6 model ability to reproduce precipitation and extreme precipitation-602 

related circulation based on metrics established in Table 2, where a green dot (black X) 603 

signifies the model met (did not meet) the criteria of the metric. There are 6 precipitation 604 

metrics, and 12 circulation metrics, 3 for each of 4 patterns (P1–P4). The two sets of 605 

metrics are separated by a thick black line. The three right columns show the total 606 

number of metrics that were met for precipitation, circulation, and combined metrics, 607 

respectively. Results are arranged in descending order by total number of metrics met. 608 
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 610 

Figure 4. ACCESS-CM2 model precipitation characteristics, with a) grid center 611 

locations, b) top 1% wet-day daily intensity threshold (shaded, in mm), c) grid-level 612 

mean wet-day monthly precipitation frequency (blue line, in days), mean daily intensity 613 

(blue line, in mm), and mean total daily precipitation (blue line, in mm), and d) same as 614 

(c), but for extreme precipitation only. The red lines in (c) and (d) represent the observed 615 

results from Figure 1, while the grey shading represents the grid-level 10–90th percentile 616 

values for the observed results. 617 
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 619 

Figure 5. ACCESS-CM2 model k-means separated (P1–P4) extreme precipitation day a) 620 

patterns of 500-hPa geopotential height (anomalies shaded, and total fields shown as 621 

thick black contours, in 6-dam increments) and MSLP (thin black contours, in 4-hPa 622 

increments), b) daily precipitation anomalies (shaded, in mm) and location of extreme 623 

precipitation (dot size relative to number of days at grid location), c) seasonal frequency 624 

of patterns, with frequency that is similar to, less than, or more than expected by chance 625 

represented by black, blue, and red bars, respectively, d) bar charts of 500-hPa 626 

geopotential height RMSE between model patterns P1–P4 and observed patterns O1–O4, 627 

and 3) bar charts of 500-hPa geopotential height correlation between model patterns P1–628 

P4 and observed patterns O1–O4. In (c) and (d), asterisks indicate values that are 629 
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statistically lower than expected (for RMSE) or higher than expected (for correlation), 630 

based on random sampling and a .05 level of significance. 631 

 632 

  633 
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 634 

Figure 6. Same as Figure 4, but for MPI-ESM1-2-HR. 635 
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 637 

Figure 7. Same as Figure 5, but for MPI-ESM1-2-HR.  638 
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