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Abstract. We use simulated merger trees of galaxy-cluster halos to study the effect of the halo concentration distribution on
strong lensing and X-ray emission. Its log-normal shape typically found in simulations favors outliers with high concentration.
Since, at fixed mass, more concentrated halos tend to be more efficient lenses, the scatter in the concentration increases the
strong-lensing optical depth by. 50%. Within cluster samples, mass and concentration have counteracting effects on strong
lensing and X-ray emission because the concentration decreases for increasing mass. Selecting clusters by concentration thus
has no effect on the lensing cross section. The most efficiently lensing and hottest clusters are typically theleast concentrated
in samples with a broad mass range. Among cluster samples with a narrow mass range, however, the most strongly lensing and
X-ray brightest clusters are typically 10% to 25% more concentrated.

1. Introduction

It is widely accepted now that dark-matter halos in both simula-
tions and reality are less concentrated, i.e. have larger relative
core sizes, the more massive they are. This is interpreted as
a consequence of hierarchical, bottom-up structure formation.
More massive halos form later, in a less dense environment,
and thus reach lower central densities. The variety of theirin-
dividual formation histories gives rise to a concentrationdistri-
bution that simulations show to be approximately log-normal
with a standard deviation of≈ 0.2.

What effects does this fairly broad concentration distribu-
tion have on observable properties of galaxy clusters, mostno-
tably their strong gravitational lensing cross sections and their
X-ray temperatures and luminosities? The log-normal distribu-
tion is substantially skewed and allows larger positive than neg-
ative deviations from the mean. At fixed halo mass, this should
lead to outliers with higher temperature, higher X-ray luminos-
ity, and larger strong-lensing cross sections than expected for
the nominal concentration value.

How are such expectations to be extrapolated to cluster
samples? Above a given mass limit, halos with lower mass and
generally higher concentration are much more abundant than
more massive and typically less concentrated halos. Mass and
concentration have counter-acting effects on most observables.
For example, at fixed concentration, more massive halos are
more efficient lenses as well as hotter and more luminous X-ray

⋆ E-mail: cosimo@ita.uni-heidelberg.de

emitters. However, since the concentration is decreasing with
increasing mass, these effects are at least partially reduced.

Here, we study the effect of the concentration distribution
on several cluster properties. We use simulated merger trees
of cluster-sized, dark-matter halos, for which concentrations
are randomly drawn from a log-normal distribution. We focus
on three observable quantities, namely the strong-lensingeffi-
ciency and the X-ray temperature and luminosity of these clus-
ters, and model all of them with semi-analytic algorithms tak-
ing the importance of major mergers into account. As a matter
of fact, cluster mergers boost both lensing efficiency and X-ray
emission (Torri et al. 2004; Randall et al. 2002).

Earlier studies on the sensitivity of strong lensing to the
concentration of dark matter halos and its scatter exist. In
particular, Wyithe et al. (2001), Keeton & Madau (2001) and
Kuhlen et al. (2004) focused on the statistics of multiple im-
ages as a probe of the inner structure of halos, in order to
put constraints on the dark matter self-interaction cross sec-
tion, on the inner slope of the density profile and on the equa-
tion of state parameter for dark energy, respectively. In these
studies isolated and spherical cluster models were always con-
sidered. In Oguri et al. (2001) the effects of the concentration
and inner slope of dark matter halos on arc statistics were con-
sidered, again assuming axial symmetry for both sources and
lenses. Finally, in Hennawi et al. (2007),N-body simulations
were used to analyse the dependence of strong lensing cross
section on several cluster properties.

The paper is organised as follows. In Sect. 2 we review
the properties of the NFW density profile, the relation between
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mass and concentration and different implementations thereof.
In Sect. 3, we specify the construction of the cluster sample
used in our calculations and its properties. Section 4 describes
our results on the relations between halo concentration, strong-
lensing cross sections and optical depths, X-ray temperature
and luminosity. Finally, we summarise our work in Sect. 5 and
discuss the conclusions.

2. Dark matter halos

2.1. Density profile

Quiescent dark-matter halos inN-body simulations acquire
density profiles well approximated by the NFW (Navarro et al.
1995) fitting formula (see also Dubinski & Carlberg 1991;
Navarro et al. 1996, 1997; Moore et al. 1998; Power et al.
2003; Navarro et al. 2004),

ρ(r) =
ρs

(r/rs)(1+ r/rs)2
. (1)

Its two free parameters are the scale radiusrs, where the loga-
rithmic profile slope reaches−2, changing from−3 outside to-
wards−1 inside, and the scale densityρs = 4ρ(rs). For a dark-
matter halo at redshiftz, r∆ is the radius of a sphere around
the halo centre enclosing a mean density of∆ times the critical
densityρc(z) of the Universe at redshiftz. The mass insider∆ is

M∆ = ρc∆
4
3
πr3
∆ . (2)

According to the spherical collapse model in an Einstein-de
Sitter universe,r∆ is the halo’s virial radius at all redshifts
if ∆ = 18π2 ≈ 178 (Peebles 1980; Eke et al. 1996). In
more general cosmologies, the virial overdensity∆ will de-
pend on redshift and on the cosmological parameters. Useful
fitting formulae exist (Lacey & Cole 1993; Eke et al. 1996;
Bryan & Norman 1998), but we follow the common practice
to define halo massesM200 and radiir200 here through an over-
density of∆ = 200. Although they are not virial quantities,
they are used because they are independent of redshift and cos-
mological parameters and adequately describe regions in virial
equilibrium.

Accordingly, we define the concentration parameter byc =
r200/rs. In terms ofc, the scale radius and the scale density can
be expressed as

rs =

(

3M200

800πρcc3

)1/3

and ρs =
200
3
ρc

c3

F(c)
(3)

respectively, where

F(c) = ln(1+ c) − c
1+ c

. (4)

Halo mass and concentration can thus replace the scale radius
and the scale density as the two parameters fully describingthe
halo density profile.

It has been firmly established in numerical simula-
tions and observations (Wu & Xue 2000; Buote et al. 2007;
Comerford & Natarajan 2007) that the halo concentration de-
creases with the halo mass. This is usually explained by the

fact that low-mass halos form earlier than massive halos in the
hierarchical structure-formation scenario in a CDM universe,
and the assumption that the central halo density reflects the
mean cosmic density at the formation redshift. This explains
why massive haloes are typically found to be less concentrated
than low-mass halos. The average relation between mass and
concentration allows us to characterise halos by a single pa-
rameter, usually taken to be the virial massM200.

2.2. Concentration

Three different algorithms were proposed in the past to relate
the concentration to the virial mass of a dark matter halo.

The first, by Navarro et al. (1997), defines the formation
redshift zc of a dark-matter halo of massM200 collapsed at
redshiftz as the redshift when half of the final mass was first
contained in progenitors more massive than some fractionf of
M200.

Based on the extended Press-Schechter formalism
(Press & Schechter 1974; Bond et al. 1991; Lacey & Cole
1993),zc can then be evaluated as a function off , z and the
final massM200. In line with hierarchical structure formation,
NFW assumed the scale density, which depends only onc once
the cosmology is fixed, to be directly proportional to the mean
matter density of the universe atzc, with a proportionality
constantC. They showed that thec-M relation found in a
set of numerically simulated, relaxed dark matter halos at
z = 0 is well reproduced iff ≈ 0.01 andC ≈ 3 × 103. This
holds for several different cosmological models and initial
density-fluctuation power spectra.

Bullock et al. (2001) confirmed that this algorithm works
well for z = 0, but predicts too high halo concentrations
at higher redshiftsw. They require that the typical halo mass
M∗(zc) at the halo-formation redshiftzc be a fixed fractionf of
the final halo massM200. They also relate the scale density of
the halo to the critical density at the formation redshift, but use
a different definition for the scale density. The concentration
found in this way scales with redshift asc ∝ (1+ z)−1, in con-
trast to the much shallower redshift dependence in the NFW
algorithm.

Finally, Eke et al. (2001) proposed an alternative explana-
tion for thec-M relation, using a single parameter instead of
the two parametersC and f and avoiding problems of the algo-
rithm by Bullock et al. (2001) with the truncated power spec-
tra of Warm Dark Matter cosmogonies.They define the halo-
formation redshiftzc implicitly by

D+(zc)σ(Ms)

[

−d ln(σ)
d ln M

(Ms)

]

=
1
C
, (5)

where Ms is the mass contained within 2.17rs, the radius of
maximum circular velocity for the NFW density profile,σ(M)
is the standard deviation of density fluctuations on the mass
scaleM, andD+(z) is the linear growth factor. They then equate
the scale density as defined by Bullock et al. (2001) to the
spherical collapse top-hat density at the formation redshift.

Thec-M relation by Eke et al. (2001) is probably the most
general and physically best motivated. It makes use of a single
fit parameter and turned out to reproduce halo concentrations
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in a variety of cosmologies, including those with dynamical
dark energy (Dolag et al. 2004). It reproduces the results ofthe
algorithm by Bullock et al. (2001) for galaxy-sized objects, but
reveals significant differences on cluster scales, as we shall see
later on.

At fixed halo mass and formation redshift, the concentra-
tion parameters of numerically simulated dark-matter halos are
log-normally distributed around the median valuec0 repro-
duced by the algorithms described above,

p(c)dc =
1

σc

√
2π

exp

[

− (ln c − ln c0)2

2σ2
c

]

d lnc , (6)

with a standard deviation ofσc ≈ 0.2 (Jing 2000; Bullock et al.
2001; Dolag et al. 2004).

The log-normal distribution (6) is skewed towards high
concentrations. Its maximum occurs atcm = c0 exp

(

−σ2
c

)

< c0,
and the probabilities forc < c0 andc ≥ c0 are equal. The mean
concentration is (Coles & Jones 1991)

µ1 = c0 exp
(

σ2
c/2

)

, (7)

its variance is

µ2 = µ1

[

exp
(

σ2
c

)

− 1
]

, (8)

and the skewness is

µ3 =
1

µ3
1

exp
(

3σ2
c

)

− 3 exp
(

σ2
c

)

+ 2
[

exp
(

σ2
c
)

− 1
]3

. (9)

Settingσc = 0.2, we findµ3 ≃ 70/c3
0 > 0, showing that the

distribution (6) is substantially skewed towards highc. Thus
the probability of finding concentrationsc ≫ c0 is considerably
larger than forc ≪ c0. This is also seen when computing the
ratio of the absolute deviations|c − c0| for c > c0 andc < c0,
which is

〈|c − c0|〉+
〈|c − c0|〉−

=
erf

(

σc/
√

2
)

+
[

1− exp
(

−σ2
c/2

)]

erf
(

σc/
√

2
)

− [

1− exp
(−σ2

c/2
)]

, (10)

with the error function erf(x). Forσc = 0.2, this ratio becomes
≈ 1.28, indicating that the absolute deviation forc > c0 is on
average≈ 30% larger than forc < c0. We shall return later to
this issue to explain some of our lensing statistics results.

3. Cluster population

We model the galaxy-cluster population using one of
the merger-tree sets produced for the earlier study by
Fedeli & Bartelmann (2007a). Extended Press-Schechter the-
ory was used to reproduce the formation history ofN = 500
dark-matter halos in four different dark-energy cosmologies.
Here, we only use the merger tree constructed for the concor-
danceΛCDM model, whose parameters were set toΩm,0 = 0.3,
ΩΛ,0 = 0.7, h = 0.65 andσ8 = 0.84. At redshift zero, the halos
are drawnuniformly from the mass interval between 1014 and
2.5× 1015M⊙h−1 to achieve a good coverage of the mass range
relevant for strong lensing. For details on the Monte-Carlo
generation of merger trees and their applications, we refer

the reader to Somerville & Kolatt (1999); Randall et al. (2002);
Cassano & Brunetti (2005); Fedeli & Bartelmann (2007a,b).

Each dark-matter halo in the sample is evolved in a num-
ber of discrete redshift steps starting from the present time up
to a source redshiftzs randomly drawn from the observed dis-
tribution of faint blue galaxies parameterised by Smail et al.
(1995) (see also Bartelmann & Schneider 2001). This distribu-
tion peaks atzs ≃ 1.2, rendering the region aroundzl ≃ 0.3−0.5
the most geometrically efficient for gravitational lensing.

At each discrete redshift step between redshifts zero andzs,
the merger tree of an individual halo contains the halo mass
itself and a randomly assigned mass increment compared to
the previous redshift step. This quantifies the magnitude of
the merger or smooth accretion process the halo is undergoing
within the respective time interval.

As in Fedeli & Bartelmann (2007a), we twice compute the
strong-lensing efficiency of each dark-matter halo at each red-
shift step, first assuming that the halo can be characterisedby
an unperturbed NFW density profile with elliptical isopotential
contours (we choosee = 0.3 for the ellipticity, in agreement
with Meneghetti et al. 2003b), and a second time including the
merger process experienced by the halo.

Given the mass and the redshift of a halo in the sample,
we use the algorithm by Eke et al. (2001) to compute the nom-
inal concentrationc0(M, z). Again, we distinguish two cases in
the strong-lensing analysis, assigning either the nominalcon-
centrationc0 to the halo or a value drawn randomly from the
log-normal distribution (6) with a standard deviationσc = 0.2
aboutc0.

We thus carry out four strong-lensing analyses for all halos
in ourN = 500 merger trees, ignoring or including the effects
of merger events and the scatter of the concentration about its
nominal value set by thec-M relation.

Note that this Monte-Carlo generation of merger trees
should be considered as a random experiment, representative
of the evolution history of the entire cluster population. In line
with this view, we draw a new value of the concentration at
each new redshift step for each dark-matter halo.

The lensing efficiency for a single halo is quantified by the
cross sectionσd, that is the area of the domain on the source
sphere in which a source has to lie in order to produce at least
one gravitational arc with a length-to-width ratio≥ d. We cal-
culate the cross sections using the semi-analytic algorithm de-
scribed in Fedeli et al. (2006). It allows to rapidly compute
strong-lensing efficiencies for realistic source distributions, and
yields results that are in good agreement with those of costly,
fully-numerical ray-tracing simulations. We refer the reader to
the quoted paper for details.

Having computed all cross sections for each of the four
alternative assumptions on the internal structure and mergers
experienced by the halos, we quantify the global lensing effi-
ciency of the cluster population using the optical depth perunit
redshift,

td(z) =
dτ̄d(z)

dz
=

N−1
∑

i=1

σd(Mi, z, zs,i)

4πD2
s,i

∫ Mi+1

Mi

d2N(M, z)
dMdz

dM , (11)
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Fig. 1. The cross section for arcs with length-to-width ratio≥ d
is shown as a function ofd. The mass of the lensing halo is
2 × 1015M⊙h−1, the lens redshift iszl = 0.3 and the source
redshift iszs = 1. Results for three different prescriptions forc-
M relation are presented as labeled in the plot. The two panels
show results for axially-symmetric (top) and elliptical (bottom)
lenses with an isopotential ellipticity ofe = 0.3.

where Ds,i is the angular diameter distance to the source
sphere from thei-th dark matter halo in the sample, while
d2N(M, z)/dMdz is the number of cosmic objects contained in
the unit mass aroundM and in the unit redshift aroundz. The
integral in (11) over the lens redshift gives the total average op-
tical depth, which is proportional to the total number of arcs
with length-to-width ratio larger thand predicted to be pro-
duced on the full sky.

The optical depth per unit redshift is simply a sum of the
cross sections of each individual halo, weighted by the abun-
dance of such halos at the corresponding redshift. Weighting
by the mass function causes this sum to be dominated by the
halos with the lowest masses that are still capable of producing
a non-vanishing arc cross section. Introducing the scatterinto
the mass-concentration relation can lift low-mass halos above
or push them below the strong-lensing threshold. However, the
skewness of the concentration distribution makes it more likely
that low-mass halos are lifted above the threshold than the re-
verse. Thus, it is plausible that the log-normal concentration
distribution may have a potentially significant effect on the
strong-lensing optical depth.

4. Results

4.1. Different concentration prescriptions

Before we continue, it is interesting to assess how the strong-
lensing cross sections differ for the differentc-M relation algo-

rithms outlined in Sect. 2. At the same mass and redshift, higher
concentrations should push the critical curves of a lensinghalo
outwards, thus increasing its strong-lensing cross section.

Results are shown in Fig. 1, where we plot the cross section
for gravitational arcs with length-to-width ratios≥ d as a func-
tion of d, using the three algorithms for thec-M relation. We
also show the difference between axially-symmetric and ellip-
tical lenses.

Evidently, the impact of different concentrations is much
reduced for elliptical compared to circular lenses. For example,
if we focus ond = 10, we note that the cross sections differ by a
factor of≈ 4 for elliptical lenses. For axially-symmetric lenses,
this factor grows up to≈ 20. This is owed to the fact that halo
ellipticity largely increases the strong-lensing cross section
(Meneghetti et al. 2003b; Oguri et al. 2003; Meneghetti et al.
2007), causing the lensing efficiency to be less sensitive to the
internal structure of the lens.

Next, we see that the original NFW prescription for thec-
M relation yields the largest cross sections for all values ofd.
As explained in Sect. 2, this is because the NFW prescription
performs well at redshift zero, but overpredicts concentrations
at higher redshift. Atz = 0.3, where we placed the lens, the
concentration is thus substantially overestimated, resulting in a
very large cross section.

Concentrations computed using Bullock et al. (2001) and
Eke et al. (2001) algorithms agree on galactic scales, but dif-
fer on cluster scales. Although results obtained with them both
fall below the NFW result, they produce quite different cross
sections for alld. In particular, the Eke et al. (2001) algorithm
yields results falling in between those obtained with the NFW
and Bullock et al. (2001) prescriptions, respectively.

This illustrates that the choice of thec-M relation is very
important in analytic and semi-analytic models of galaxy-
cluster lensing since different concentrations can have a large
effect on the strong-lensing properties. The factors exceeding
one order of magnitude between different prescriptions shown
in Fig. 1 for axially symmetric lenses is particularly striking in
this regard.

We compared strong-lensing cross sections for several
dark-matter halos extracted from a high-resolution numerical
simulation with those of analytic lens models with NFW den-
sity profile with the same mass and redshift, an isopotential
ellipticity of 0.3 and with each of the three different algorithms
for the c-M relation. We generally find the best agreement
of the strong-lensing efficiencies for concentrations computed
with the algorithm by Eke et al. (2001). This further supports
the plausibility of this algorithm for thec-M relation. From
now on, we assign fiducial concentrations by means of the
Eke et al. (2001) algorithm for thec-M-relation.

4.2. Scatter in the concentration

We now proceed as anticipated in Sect. 3, performing four dif-
ferent strong-lensing analyses for our dark-matter halo popula-
tion.

We show in Fig. 2 the optical depth per unit redshift as a
function of lens redshift as defined in Eq. (11), for arcs with
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Fig. 2. Left panel. Optical depth per unit redshift for arcs with length-to-width ratiod ≥ 7.5 as a function of the lens redshift.
The thin black and green lines show the results obtained ignoring and accounting for cluster mergers, respectively, both using
the nominalc-M relation. The heavy red and blue curves include the scatter in thec-M relation.Right panel. Similar to the left
panel, but for arc length-to-width ratiosd ≥ 10, and using a different random-number seed.

length-to-width ratiosd ≥ 7.5 andd ≥ 10 respectively. Results
are shown both including and ignoring the effect of cluster
mergers, and both assuming the idealc-M relation and intro-
ducing a concentration scatter consistent with the log-normal
distribution of Eq. (6).

For the two casesd ≥ 7.5 andd ≥ 10, we used two different
seeds for drawing random concentrations from the distribution
in order to gain insight into the effect of limited statistics.

We first note the general trend that the introduction of the
scatter in thec-M relation systematically increases the opti-
cal depth, and this is true irrespective of whether halo mergers
are taken into account or ignored. This is a consequence of the
skewness of the concentration distribution; cf. Sect. 2. Since
concentrations much larger than the fiducial value are more
probable than much lower concentrations, it is more likely for
the concentration scatter to increase the strong-lensing cross
section rather than the reverse. In other words, halo concen-
trations become larger on average after introducing the scatter,
thus producing a larger optical depth per unit redshift.

In closer detail, we note several local maxima of the differ-
ential optical depths per unit redshift obtained after introduc-
ing a scatter in thec-M relation. These are caused by individ-
ual dark-matter halos with relatively low mass that, due to the
random assignment of concentrations, reach a particularlyhigh
concentration and thus a large cross section. Because of their
low mass, they have a large relative abundance, thus they dom-
inate the sum in the optical depth per unit redshift, Eq. (11),
and cause the peaks.

The position, width and amplitude of these peaks change
of course if the seed for the random-number generation is
changed. However, even though thelocal increase in the differ-
ential optical depth can be quite significant, the increase in the

total optical depth, i.e. the integral under the curves in Fig. 2, is
limited to≈ 40−50%, both including or ignoring halo mergers.

To study this in more detail, we concentrate ond ≥ 10
and the more realistic case when mergers are taken into ac-
count. We further select a halo subsample with redshifts be-
tweenz1 = 0.28 andz2 = 0.32, centred onz = 0.3. Since our
original cluster sample was randomly drawn from a uniform
mass distribution atz = 0 and then evolved backwards in time
to construct merger trees, each dark-matter halo of massM200

at redshiftz needs to be statistically weighted by the abundance
of such halos according to the mass function for the cosmo-
logical model at hand. We note that appropriate weights are
included in the optical-depth calculations, see Eq. (11).

Figures 3 and 4 show the distributions of concentrations
and strong-lensing cross sections in the halo subsample. In
both figures, we contrast results obtained ignoring the concen-
tration scatter (solid black curves) and taking it into account
(red dashed curves). Note that all distributions shown are un-
normalised.

Without scatter, the concentration distribution is very
peaked, but it flattens and widens when the scatter is taken into
account, as one would expect. Note also that both concentration
distributions drop very sharply at high concentrations. This re-
flects the mass cutoff in our halo sample, since high concentra-
tions correspond to low masses.

The cross-section distributions behave similarly. However,
in this case the sudden cut-off at low cross sections is due to
the strong-lensing threshold. For producing large arcs, a halo’s
caustics need to be sufficiently larger than the available sources.
Below this threshold, the strong-lensing cross sections sharply
drop to zero. See also Fedeli et al. (2006) for more discussion
of this issue and its implementation.
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Fig. 3. Unnormalised distribution of the concentrations for all
the halos in our sample with redshifts betweenz1 = 0.28 and
z2 = 0.32. The black solid histogram shows the result obtained
adopting the fiducialc-M relation of Eke et al. (2001). The log-
normal concentration scatter is taken into account for the red-
dashed histogram. The vertical dashes indicate the median con-
centration in both cases.

Finally, the systematic increase of the differential optical
depth shown if Fig. 2 can be further understood as the contri-
bution of two factors. First, we note that the median concentra-
tion (and hence also the median strong-lensing cross section)
is larger when the concentrations scatter about the meanc-M
relation. Second, the significant peaks in Fig. 4 (note the log-
arithmic scale!) appearing in the cross-section distribution at
relatively low cross sections are produced by rather low-mass
halos that dominate the sum in the optical depth per unit red-
shift because of their large statistical weight.

4.3. Lensing concentration bias

Another interesting issue that we are able to explore with our
halo sample regards the strong-lensing cross sections expected
for concentrated halos, and conversely the concentrationsex-
pected in efficient strong-lensing halos.

This will allow us to better understand the relative effect of
mass and concentration on the amplitude of the strong lensing
cross section, and to quantify the bias expected to be found
in dark-halo concentration measurements of strongly-lensing
clusters. We can then compare such results to those obtained
by Hennawi et al. (2007), who carried out among other things
a similar analysis on a large set of numerically simulated dark-
matter halos.

Figure 5 shows the medianσ10 and the mean〈σ10〉 cross
sections of the halo subsample, restricted to those halos with a
concentration exceeding the threshold on the abscissa. Results

Fig. 4. Unnormalised distribution of the cross sections for grav-
itational arcs with length- to-width ratiosd ≥ 10 for all halos in
our subsample with redshifts betweenz1 = 0.28 andz2 = 0.32.
As in Fig. 3, the black solid and red dashed histograms show
results ignoring the concentration scatter and accountingfor it,
respectively. Dashed vertical lines mark the median cross sec-
tions for both cases.

are shown both for all halos irrespective of their mass, and only
for halos with masses≥ 7.5× 1014M⊙h−1.

Without mass selection, the curves are flat within the range
of concentrations shown. Remarkably, this indicates that low-
mass halos with their typically high concentrations have similar
mean or median cross sections as high-mass halos and therefore
contribute most of the strong-lensing optical depth in the halo
subsample because of their high abundance.

This result may seem at odds with the expectation that the
lensing efficiency should increase with increasing halo concen-
tration, as illustrated in Fig. 1 when we discussed the effect of
different algorithms implementing thec-M relation. However,
note that Fig. 1 shows results for a single halo mass. If we se-
lect only the most massive halos, we find an increase of the
mean and median cross sections with the concentration thresh-
old. Thus, once the mass dependence is effectively suppressed
in this way, the concentration dependence of the strong-lensing
efficiency can emerge. In other words, although the average
strong-lensing cross sections do indeed increase with the halo
concentration, this effect is almost precisely cancelled if halos
of all masses in a broad mass range are considered.

According to Fig. 5, the median and mean cross sections of
massive halos can increase by a factor of≈ 2.5 as the concen-
tration increases from 2 to 5.

Figure 6 shows the mean〈c〉 and median ¯c concentration of
halos with strong-lensing cross sections above the threshold on
the abscissa. Again, we compare the complete halo subsample
with massive halos above a mass limit of 7.5× 1014M⊙h−1. We
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Fig. 5. The black and blue solid curves show the median, and
the red and green dashed curves the mean cross section for arcs
with length-to-width ratiod ≥ 10. Only halos with concen-
trations above the threshold on the abscissa are included. The
bottom pair of lines shows the result without any mass selec-
tion, while only halos more massive than 7.5× 1014M⊙h−1 are
included in the top pair.

note that (i) if we impose no mass threshold, the concentration
for strongly lensing halos is always smaller on average com-
pared to the entire population, and (ii) if we allow only mas-
sive halos, the mean and median concentrations increase with
the lensing cross section.

Specifically, the mean and median concentrations of mas-
sive halos shown in Fig. 6 increase by≈ 12% across the range
of cross-section thresholds shown. If we further raise the mass
threshold, the increase rises to≈ 25%.

Without any mass selection, the highest cross sections are
produced by the most massive objects, that are on average less
concentrated than the low-mass halos. If we restrict the analysis
to massive halos, we remove part of the mass dependence of the
strong-lensing efficiency and find that the concentrations found
in strongly lensing clusters are slightly biased high. Narrowing
the mass interval, the effect of the concentration is less diluted
by the mass dependence, thus increasing the bias. This result
agrees with the corresponding result of Hennawi et al. (2007)
and will be discussed later on.

4.4. X-ray concentration bias

It is now interesting to ask whether comparable concentration
biases are expected in X-ray selected cluster samples. At fixed
mass, a more concentrated halo creates a deeper potential well
and thus causes the intracluster gas to become hotter in thermal

Fig. 6. The black and blue solid curves show the median, the
red and green dashed curves the mean concentration. Only ha-
los with strong-lensing cross sections above the thresholdon
the abscissa are taken into account. The top pair of curves
shows the result obtained without mass selection, while only
halos more massive than 7.5×1014M⊙h−1 contribute to the bot-
tom pair of curves.

and hydrostatic equilibrium. The gas density will also increase,
thus raising the X-ray luminosity.

To address this question, we first require a relation between
the X-ray observables and mass, the redshift and the concen-
tration of the host dark-matter halo. We achieve this following
Eke et al. (1998) who derived an extension to the usual clus-
ter scaling relations (White & Rees 1978; White 1982; Kaiser
1986). First of all, the circular velocity profile for a dark-matter
halo with an NFW density profile is (Navarro et al. 1997)

[

v(r)
v200

]2

=
r200

r
F(cr/r200)

F(c)
, (12)

where v200 is the circular velocity atr200, that is v2
200 =

GM200/r200. This distribution peaks atr ≈ 2r200/c, correspond-
ing to

v2
m ≈ 0.22v2

200
c

F(c)
. (13)

This characteristic velocity of the system measures the depth of
its potential well. If only gravity or other scale-free processes
like pressure gradients or hydrodynamical shocks dominate
within the cluster, any other measure of the potential depth,
such as the temperature of the intra-cluster gas, must be pro-
portional tov2

m, that is

T (M200, z, c) ∝
M200

r200

c
F(c)

. (14)
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Now, Eq. (2) implies

r200 =

[

3M200

800πρc(z)

]1/3

. (15)

Inserting this into Eq. (14), we can write

T (M200, z, c) = β [M200h(z)]2/3 c
F(c)

, (16)

whereβ collects now all the constant factors. Note that this re-
lation retains the mass and redshift dependence of the tempera-
ture of the common scaling relation, but acquires the concentra-
tion dependence from the dark-matter density profile. In partic-
ular, the functionc/F(c) is a monotonically increasing function
of the concentration ifc & 2, which is almost always the case in
our halo sample (cf. the concentration distribution in Fig.3). It
is shown that adiabatic simulations of gas in galaxy clusters fol-
low relatively well this type of scaling relation (Eke et al.1998;
Bryan & Norman 1998). With the introduction of more com-
plex physical processes, like non gravitational heating and ra-
diative cooling, the scaling relation is instead not closely repro-
duced (Babul et al. 2002; Kay et al. 2002). However, in spite of
simplicity, we prefer to stick to it, leaving more complicated
models for further study.

Fig. 7. Black and blue solid curves show the median, red and
green dashed curves the mean concentration for the subsample
of dark-matter halos betweenz1 = 0.28 andz2 = 0.32. Only
halos with relative temperatures exceeding the threshold on the
abscissa are included. The top pair of curves shows the result
without mass selection, while only halos with mass larger than
7.5× 1014M⊙h−1 contribute to the bottom pair.

Quantifying the bolometric X-ray luminosity of the intra-
cluster gas, we start from

LX(M200, z, c) = 4π
∫ +∞

0
r2ρg(r)2 Λ(T )

(µmp)2
dr , (17)

Fig. 8. Black and blue solid curves show the median, red and
green dashed curves the mean concentration for the subsample
of dark-matter halos betweenz1 = 0.28 andz2 = 0.32. Only
halos with relative X-ray luminosities exceeding the threshold
on the abscissa are taken into account. The top pair of curves
was obtained without mass selection, while only massive halos
with mass larger than 7.5×1014M⊙h−1 contribute to the bottom
pair.

whereΛ(T ) is the cooling function, depending on the rele-
vant radiative processes, andρg(r) is the gas-density profile.
We assume that the gas density follows the dark matter density,
ρg = fgρ, with a constant factor constantfg. This is of course
not strictly true, especially in the inner region where the dark-
matter density profile is cuspy while the gas distribution forms
a finite core due to the gas pressure. However, the final result
is insensitive to this simplifying assumption. Further assuming
that the intracluster gas is isothermal, the luminosity canbe
written as

LX(M200, z, c) = 200Λ(T )

(

fg
3µmp

)2

M200ρc(z)
c3

F(c)2
. (18)

If the main emission mechanism of the intra-cluster gas is
thermal bremsstrahlung, thenΛ(T ) ∝ T 1/2. Hence, recalling
Eq. (16) and collecting all constant factors intoγ, we get

LX(M200, z, c) = γM4/3
200h(z)7/3 c7/2

F(c)5/2
. (19)

The common dependence of the luminosity on the mass and
the redshift of the host dark matter halo is retained again, and
an additional dependence on the concentration appears. Note
that the concentration dependence is steeper here than for the
temperature. Note that the dependence of the bolometric X-ray
luminosity on the concentration shown in Eq. (19) differs by
a factor of 1− (1 + c)−3 from the formula given in Eke et al.
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(1998). This is because the integral in Eq. (17) extends to infin-
ity, while it was limited to the virial radius in Eke et al. (1998).
This is unimportant because the missing factor is very closeto
unity for all reasonable values of the concentration.

In the following, we refer the temperature and the X-ray
luminosity of the gas inside each dark-matter halo of our sub-
sample to the temperatureTr according to (16) and the lumi-
nosity LX,r according to (19) of a reference halo with mass
M200,r = 1015M⊙h−1 placed at redshiftzr = 0. It has a nomi-
nal concentrationcr = 3.74 according to the Eke et al. (2001)
algorithm. Thus, for each halo, we only consider the relative
temperature

T (M200, z, c)
Tr

=

[

M200h(z)
M200,rh

]2/3 c
F(c)

F(cr)
cr
, (20)

and the relative luminosity

LX(M200, z, c)
LX,r

=

(

M200

M200,r

)4/3 [

h(z)
h

]7/3 c7/2

F(c)5/2

F(cr)5/2

c7/2
r

. (21)

Figure 7 shows the median and mean concentrations for dark-
matter halos with a relative gas temperature exceeding the
threshold on the abscissa. We show the results both with-
out any mass selection and selecting halos more massive than
7.5 × 1014M⊙h−1. Evidently, the mean and median halo con-
centrations decrease in both cases as the relative temperature
threshold increases. This illustrates that particularly hot gas re-
sides in the most massive halos, quite irrespective of the con-
centration. Also, if we consider only the most massive objects,
a plateau appears at low temperatures because low-temperature
clusters are then removed from the sample. Thus, the gas tem-
perature depends so weakly on the halo concentration com-
pared to its dependence on mass that even a narrow mass selec-
tion does not reveal the increasing concentration-temperature
relation.

Figure 8 shows the mean and median concentrations in ha-
los selected for their X-ray luminosity. If all halos in the sub-
sample are included, the curves are almost flat, showing that
the concentrations are typically independent of the X-ray lu-
minosity. If only massive halos are included, the mean and me-
dian concentrations increase such that the most luminous X-ray
clusters can be up to≈ 25% more concentrated than the entire
cluster population.

Hence, unlike for the temperature, we here find increasing
mean and median concentrations as a function of the luminos-
ity threshold. In summary, a concentration bias in temperature-
selected clusters is not expected, but the most massive and
X-ray luminous clusters are typically more concentrated than
the population of X-ray clusters indicating a concentration bias
similar to that found in strongly-lensing clusters.

The different results for clusters selected by temperature or
X-ray luminosity can be understood considering the following
numbers. As remarked before, the nominal concentration of the
reference cluster iscr = 3.74. Had we adopted a reference mass
of 2.5× 1014M⊙h−1, the nominal concentration wascr = 4.73.
These two concentrations are 1-σ compatible with the same un-
derlying mass, given the variance ofσc = 0.2 in the log-normal
concentration distribution. The increase in the gas temperature

Fig. 9. Therms of the concentration distribution accounting for
halos in the subsample with strong-lensing cross sections (left
panel) or relative X-ray luminosities (right panel) exceeding the
thresholds on the abscissa. The solid black lines are obtained
without mass selection, while only massive halos with mass
larger than 7.5×1014M⊙h−1 contribute to the red dashed curves.

due to the higher concentration is only≈ 5%, while the X-ray
luminosity increases by≈ 45%. On the other hand, the gas tem-
perature drops by a factor of≈ 2.5 because of the lower halo
mass, while the bolometric X-ray luminosity drops by a factor
of ≈ 6.3. On the whole, the ratio between the changes in tem-
perature due to the halo mass and due to the concentration is
≈ 12, while the ratio between the changes in X-ray luminos-
ity due to the mass and due to the concentration is≈ 1.9. This
shows that the effect of the concentration on the X-ray lumi-
nosity is almost comparable to the effect of the mass, but much
less important for the temperature.

In other words, the mass dependence of the gas temperature
is overwhelmingly stronger than its concentration dependence,
cancelling any kind of concentration bias that could appearin
temperature-selected halos. Very hot clusters are actually less
concentrated (more massive) than average. On the other hand,
the stronger dependence of the luminosity on the concentration
allows to invert this trend if only massive clusters are consid-
ered. Thus, very X-ray luminous clusters have higher mean and
median concentrations than clusters with lower luminositybut
comparable mass.

To see which concentrations we can expect in suitably se-
lected cluster samples, we plot in Fig. 9 therms (〈c2〉 − 〈c〉2)1/2

of the concentration distribution as a function of the cross-
section and X-ray luminosity thresholds, respectively, both
with and without further mass selection. According to Figs.6
and 8, the median and the mean of the distribution are quite
similar, hence the distribution itself is quite symmetric,and the
rms is a good estimator of its width.

Without mass selection, therms always remains around
unity. If we introduce mass selection, it is close to unity for
the entire subsample, but drops towards 0.4 when only efficient
strong lenses are included, and to 0.6 when only very X-ray lu-
minous clusters are included. This means that the concentration
distribution tends to narrow in the latter cases.

4.5. Additional effects

Finally, we explore the consequence for our results of two ad-
ditional effects not included so far. The first is the correlation
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of the concentration with the triaxiality of dark-matter halos
(Jing & Suto 2002). The second is the ellipticity distribution
of projected halos due to the random orientation of the three-
dimensional halos with respect to the line-of-sight (Oguriet al.
2003; Oguri et al. 2005; Corless & King 2006). The second ef-
fect affects only the strong lensing properties of galaxy clus-
ters, for whose lensing potential we assumed an ellipticityof
e = 0.3 throughout this work. The scaling laws we used for
the X-ray characteristics are insensitive to the ellipticity of the
dark-matter halo. Besides, the gas distribution approximately
follows equipotential surfaces and thus tends to be more spher-
ical than the dark matter distribution (Gavazzi 2005).

We assess the impact of these two effects in the following
experiment. First, we considered a dark-matter halo with mass
2 × 1015M⊙h−1 and redshiftzl = 0.3. We computed its cross
section for arcs with length-to-width ratiod ≥ 10, assuming
sources atzs = 1, a lensing-potential ellipticitye = 0.3 and
concentration derived from the algorithm of Eke et al. (2001).
Then, we produced 1,000 triaxial modifications of this origi-
nal halo by drawing axis ratios from the distributions givenin
Jing & Suto (2002). The axis ratios allow changing the concen-
tration of each modified halo according to the prescription of
Jing & Suto (2002), predicting higher concentrations for more
spherical halos. Finally, each modified halo is projected along
a randomly selected line-of-sight and the ellipticity of the pro-
jected density is computed following Oguri et al. (2003). To
each halo is then assigned a new lensing-potential ellipticity
assuming that it is half of the ellipticity of the projected den-
sity.

As outlined in Jing & Suto (2002), the isodensity surfaces
tend to be more elongated near the core of the halo than in its
outer regions. Since the innermost part of a galaxy cluster is
most relevant for strong-lensing events, we lowered the minor-
to-major and intermediate-to-major axis ratios by 0.15 prior to
the projection. This is consistent with Fig. 3 of Jing & Suto
(2002).

Cross sections were computed for each modified halo, us-
ing the new values of the concentration or of the ellipticty,or
both. The three resulting cross-section distributions areshown
in Fig. 10. The variation of the concentration with triaxiality in-
troduces additional scatter in the cross section (red dot-dashed
line), but significantly less than the concentration scatter intro-
duced before. The small difference between the black solid and
the green dashed curves in Fig. 10 corroborates this conclusion.

The distribution of cross sections obtained after random
projections of triaxial halos is centered on the cross section
for the original halo with fixed ellipticitye = 0.3, indicating
that this lensing-potential ellipticity is typical. This confirms
the result of Meneghetti et al. (2003b), who found this value
by fitting the deflection angle maps of simulated galaxy clus-
ters (see also Meneghetti et al. 2005). The good agreement also
shows that the reduced concentration of highly triaxial halos is
compensated by the higher ellipticity.

The scatter caused by the ellipticity distribution exceeds
that caused by the variation of the concentration with triaxi-
ality, but the total scatter in the cross sections due to halotriax-
iality shown in Fig. 10 is at most comparable to that caused by
the intrinsic concentration distribution. Moreover, it does not

Fig. 10. Cross section distributions. The vertical blue line
shows the cross section for arcs with length-to-width ratio
d ≥ 10 computed for a dark-matter halo of mass 2×1015M⊙h−1

at redshiftzl = 0.3 with sources at redshiftzs = 1 and lensing-
potential ellipticitye = 0.3. The red dot-dashed line is the dis-
tribution of the cross sections caused by the variation of halo
concentrations with triaxiality. The green dashed line includes
the ellipticity distribution of projected triaxial halos,and the
black solid line contains both effects.

systematically shift the cross sections towards higher or lower
values, hence leaving unchanged the conclusions of this work.
It should also be noted that these results are expected to hold if
more detailed gas physics (such as cooling and star formation)
is included because it tends to affect the inner slope rather than
the ellipticity of the cluster mass distribution (Puchweinet al.
2005).

We have applied the same test to halos of different mass
and found very similar results. The effect of the variation of
halo concentrations with triaxiality on the temperature and lu-
minosity of the X-ray gas is negligibly small.

5. Summary and discussion

We have investigated the effect of the scatter in the relation
between concentration and mass in dark-matter halos on grav-
itational arc statistics and X-ray properties of galaxy clusters.

We have addressed the effect on strong-lensing cross sec-
tions of different implementations of thec-M relation pro-
posed in the literature (Navarro et al. 1997; Bullock et al. 2001;
Eke et al. 2001). We found substantial differences, with the
algorithms by Navarro et al. (1997) and Bullock et al. (2001)
predicting the highest and the lowest cross sections, respec-
tively. We adopt the algorithm by Eke et al. (2001) because
it needs only one instead of two free parameters, has been
shown to be applicable to cosmological models with dynam-
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ical dark energy (Dolag et al. 2004), and was found to yield
strong-lensing results in good agreement with numerical simu-
lations.

This result shows that caution must be applied when mod-
elling galaxy cluster lenses with NFW density profiles, since
different implementations of thec-M relation may yield largely
different values for the lensing efficiency, in particular if axial
symmetry is assumed.

We then used the Eke et al. (2001) algorithm to compute
fiducial concentrations for a sample ofN = 500 dark-matter
halos with masses between 1014 and 2.5 × 1015M⊙h−1 at red-
shift zero. Each halo is evolved backwards in time in discrete
redshift steps up to a source redshift randomly drawn for each
halo from a parameterisation of the observed redshift distribu-
tion of faint blue galaxies. When the scatter in the concentration
was taken into account, it was drawn from a log-normal distri-
bution around the fiducial value, with a standard deviation of
σc = 0.2. The effect of cluster mergers on the strong-lensing
cross sections was also included (Torri et al. 2004; Fedeli et al.
2006), although the relative effect of the concentration scatter
is insensitive to mergers.

The skewness of the log-normal distribution renders con-
centrations much above the fiducial value more likely than
much below it, thus increasing on average the strong-lensing
cross sections. Thus, the total optical depth, and hence also the
total number of arcs expected on the sky, is increased by up to
50% by the concentration scatter. Moreover, the optical depth
per unit redshift displays isolated significant peaks whichare
due to individual dark-matter halos with relatively low mass
that happen to reach a particularly large concentration. Such
halos can thus be turned into efficient lenses and contribute
strongly to the optical depth because of their high abundance.

We then used our merger trees to better understand the rela-
tionship between dark-halo concentrations and their lensing ef-
ficiency. We found that selecting halos by concentration yields
average cross sections similar to those of the complete sample.
This shows that the higher concentrations of lower-mass halos
compensates for their lower masses in terms of their strong-
lensing efficiency until their caustic curves become too small
compared to the sources to produce large arcs. Massive halos,
however, reveal the concentration-dependence of the strong-
lensing cross sections.

Conversely, the median and mean halo concentrations do
not increase if the most efficient lensing halos are selected.
However, selecting massive strong lenses reveals the depen-
dence of the cross sections on the concentration, yielding me-
dian and mean concentrations increasing with the lensing effi-
ciency. The most massive, strong lenses turn out to be 10-20%
more concentrated than average lensing clusters.

This confirms a bias found earlier in numerically simulated
clusters. Hennawi et al. (2007) found that strong cluster lenses
have three dimensional concentrations≈ 18% higher than typ-
ical clusters with similar mass. We found that the median con-
centration is≈ 12% higher in halos with very high lensing ef-
ficiency compared to average halos with similar mass, and can
grow up to 25% if massive clusters are selected.

Apart from the qualitative agreement, the quantitative
agreement is quite reassuring especially in view of our different

approach of modelling the halo population and its lensing ef-
ficiency semi-analytically compared to fully numerically.The
12% increase found here is certainly consistent with their 18%
increase because a broader mass selection was applied here.
Caution must thus be applied when extrapolating results on the
inner structure of strongly lensing clusters to the entire cluster
population.

Finally, we performed a similar analysis using the tempera-
ture and the bolometric luminosity of the X-ray emitting intra-
cluster medium instead of the strong-lensing cross section. We
assigned a temperature and an X-ray luminosity to each dark-
matter halo in our sample by extending scaling relations first
derived by Eke et al. (1998). They maintain the usual scalings
T ∝ [M200h(z)]2/3 andLX ∝ M4/3

200h(z)7/3, but include a depen-
dence on the concentration of the host dark matter halo.

According to this analysis, there is no concentration bias
in temperature-selected clusters, while a bias similar to strong
lensing occurs for objects selected by their X-ray luminosity, if
clusters of similar mass are selected. In particular, the mean and
median concentrations of dark halos with increasing gas tem-
perature decrease, reflecting that the temperature is much more
sensitive to the halo mass than to its concentration. This result
remains true when the halos are selected by mass. Likewise,
dark halos with increasing X-ray luminosity have virtuallyun-
changed concentrations if no mass selection is applied. If only
massive objects are selected, the dependence of the bolometric
luminosity on the concentration appears.

It is then an interesting question whether the two concen-
tration biases due to strong lensing and X-ray luminosity con-
spire to produce a stronger effect. We computed the mean and
median concentrations of clusters selected for strong lensing
among those already selected for their X-ray luminosity and
with mass larger than 7.5 × 1014M⊙h−1. The further increase
in concentration is very small compared to very X-ray lumi-
nous objects only. This is because selecting massive clusters
for their high bolometric X-ray luminosity, we already select
objects with high concentration that are typically also themost
efficient lenses.

We also checked the effect of halo triaxiality on our results,
which adds scatter to the halo concentrations and projectedhalo
ellipticities, and, even though the latter is relatively significant,
it leaves the conclusions of our paper unchanged.

These results confirm the general expectation that the gas
temperature is more sensitive to the depth of the overall poten-
tial well and thus to the halo mass than to the internal halo
structure. This does not hold true for the luminosity, which
scales with the squared gas density and is thus substantially
more sensitive to structural properties of the halo other than the
mass. Similarly, the lensing efficiency is very sensitive to the
details of the internal structure of the lens, as demonstrated in
a variety of studies (Bartelmann et al. 1995; Meneghetti et al.
2003a,b; Oguri et al. 2003; Meneghetti et al. 2007).
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