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Abstract—Internet traffic classification has moved in the last
years from traditional port and payload–based approaches to-
wards methods employing statistical measurements and machine
learning techniques. Despite the success achieved by these tech-
niques, they are not able to explain the relation between the
features, which describe the traffic flow, and the corresponding
traffic classes. This relation can be extremely useful to network
managers for quickly handling possible network drawback. In
this paper, we propose to tackle the traffic classification problem
by using multi-objective evolutionary fuzzy classifiers (MOEFCs).
MOEFCs are characterised by good trade-offs between accuracy
and interpretability. We adopt two Internet traffic datasets
extracted from two real-world networks. We discuss the results
obtained both by applying a cross validation on each single
dataset, and by using a dataset as training set and the other
as test set. We show that, in both cases, MOEFCs can achieve
satisfactory accuracy in the face of low complexity and, therefore,
high interpretability.

I. INTRODUCTION

Nowadays, the classification of the Internet traffic is, to-
gether with its management, one of the most important tasks
carried out by Internet Service Providers. Although historically
this task was mainly performed for security purposes, as it
supports the detection and the identification of intrusions and
malicious behaviors, recently it is gaining new momentum.
Indeed, since it is able to reliably characterize the Internet
traffic and its workloads, it is currently one of the most
cost-effective ways to perform traffic engineering and to take
decision on policing, traffic shaping, billing, dynamic Quality
of Service and so on. In general, network traffic flows can
be classified according to different granularity levels. Never-
theless, especially in recent years, one of the most popular
classification challenges in this field regards the task of dis-
covering the specific application-layer protocol that generated
a certain network flow (simply “flow”, in the following) [1].

In the literature, two main approaches have been used for
the Internet traffic classification (ITC), namely port-based and
payload-based approaches. While port-based ITC techniques
rely on the observation of server port numbers (informa-
tion carried in the transport-layer header) to map flows to
application-layer protocols following the assignment made by

the Internet Assigned Numbers Authority1, payload-based ITC
techniques imply deep packet inspections (of both header
and/or payload) to look for signatures and fingerprints that
are typical of certain application-layer protocols [2]. Unfortu-
nately, in the last decade, there has been a steep growth of
computer and network applications, which use non-standard
ports and encrypted traffic. This new trend has deeply affected
the classification performances of any port-based and payload-
based ITC technique. With the aim of coping with this growth,
two main categories of approaches are emerging in the ITC
scenario: statistical methods and behavioral classifiers. While
the latter regard the observation of the whole traffic received
by a host, or an endpoint, in the network, the former are based
onto concepts of statistics and information theory to charac-
terize flows, sessions or even isolated packets themselves [3].

Statistical techniques take advantage of different machine
learning and data mining techniques to perform ITC; more-
over, depending on whether the available traffic traces for
building the dataset are labeled or not they may be based
on predictive or descriptive models [4]. In the first case,
only previously known application-layer protocols may be
identified, while in the second one novel patterns and classes
can be discovered [5], [6]. Analyzing the specialized literature
[7], [8], [9], we highlight that the use of data mining and
machine learning methods for ITC is quite popular, hence still
representing a hot research topic.

The main drawback of the aforementioned approaches,
including the ones based on data mining and machine learning,
is that the generated models are black boxes characterized
by a low “interpretability” level. Indeed, researchers and
practitioners cannot extract any useful information regarding
how the Internet traces have been classified. On the other hand,
it could be very useful to extract, analyze and exploit the
insights hidden in the classification models. For this reason, in
this work, we propose a traffic classification approach based
on multi-objective evolutionary fuzzy classifiers (MOEFCs)
[10], [11]. Since MOEFCs are characterized by good trade-
off between their accuracy and their interpretability level, these
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models have been widely used for approaching classification
problems. Indeed, MOEFCs deal with the design of fuzzy rule-
based classifiers (FRBCs) by means of multi-objective evo-
lutionary algorithms: during the evolutionary design process,
both the accuracy and the interpretability level of the models
are concurrently optimized. The final models are usually
characterized by compact fuzzy rules, namely linguistic IF-
THEN rules, which are able to describe the classification
process in an interpretable way.

To evaluate the proposed approach, we use two real-world
Internet traffic datasets. In particular, we first carry out a
five-fold cross validation analysis on each dataset. Then, we
perform a cross-network validation, that is, we use one dataset
for training the classification model and the other for testing it.
Results show that the classification models achieve accuracies
up to 93 % and 74%, in the cross-validation and cross-network
validation experiments, respectively. Moreover, the generated
models are characterized by high interpretability levels.

The paper is organized as follows: in Sec. II we describe
the flows and the features used to classify them; in Sec. III
we characterize the traces of the analyzed networks. Sec. IV
introduces the MOEFCs and Sec. V discusses the achieved
results, giving some comments on the extracted knowledge.
Finally, Sec. VI draws some conclusions and gives possible
future research directions.

II. TRAFFIC FLOWS DESCRIPTION

Generally, when dealing with data mining and machine
learning approaches for traffic classification, authors consider
scenarios where a bi-directional network flow is composed
by a distinguishable stream of ordered packets, exchanged
between two endpoints, identified by the following common
quintuple: {source IP address, destination IP address, source
port, destination port, transport protocol}, where source and
destination ports and addresses may be pairwise interchange-
able. Indeed, traffic classification platforms may take ad-
vantage of network sniffers and analyzing tools, such as
Wireshark2 or tcpdump3. These tools allow catching traces
of Internet traffic, flowing inside private or public networks:
traces are composed of various packets belonging to different
sessions or flows.

In the literature, the statistical traffic classification ap-
proaches usually perform their tasks at two different layers:
at a fine-grained level the procedure is able to identify the
particular application protocol that generated a certain flow,
while at a coarse-grained level it is able to identify only a
group of protocols (e.g., bulk transfer, mailing, web browsing,
etc). Whatever the granularity of the analysis is, the classifi-
cation algorithms usually consider transfer-based, time-based
and signaling-based features of packets to characterize a flow
(but the same holds for sessions) [12].

As discussed in [5], the description of flows in terms of
numerical features may be carried out at different levels of

2http://www.wireshark.org/
3http://www.tcpdump.org/

abstraction. On the one hand, there exist methods that look at
packets and at their inherent and simplest properties, such as
their size expressed in Bytes, their relative temporal distance
with respect to the beginning of the flow, their relative position
within the flow. In this case, it is reasonable to consider
packets and flows as bi-dimensional random variables and
stochastic processes, respectively. On the other hand, there
are methods that rely on some aggregated statistical features
characterizing the uni-directional components of a flow (sub-
flow, in the following), such as maximum, minimum, mean
and standard deviation of certain quantities of the sub-flow
(e.g., the packet size, the inter-arrival time, etc.), together
with certain other quantities of the whole flow (e.g., the
total volume in Bytes, the overall duration in milliseconds,
etc.). In this paper, we focus on the latter approach, namely
the one encompassing aggregated statistical features of the
flows (and their components). With respect to the granularity,
the approach we are going to describe belongs to the fine-
grained ITC family, since it aims to classify network flows as
specific application-layer protocols rather than classes of these
protocols.

Specifically, to perform our quantitative analysis, we start
from traffic flows and extract a set of statistical features, as
summarized in Table I: these features have been already suc-
cessfully adopted in the traffic classification schemes discussed
in [5], [6]. Table I lists, for each feature, a brief description,
the unit of measurement (U/M) of the feature (where ms and
B stand for milli-seconds and Bytes, respectively) and the
label used in the following to refer to it. For the sake of the
readability, we use prefixes f and r to distinguish between
the directions of the sub-flows (e.g.., “forward” and “reverse”),
while subscripts are used to specify the type of aggregation
(m, M , µ and σ for minimum, maximum, mean and standard
deviation, respectively). Hence, except for the duration, all the
features used in this paper are based on the sub-flow; the total
number of features is 21.

TABLE I
THE LIST OF THE 21 FEATURES USED TO CHARACTERIZE A FLOW.

Description of the feature U/M
Features

forward reverse
Flow duration ms ∆
Number of transferred packets - f N r N
Transferred volume B f V r V
Minimum packet size B f Sm r Sm
Maximum packet size B f SM r SM
Average packet size B f Sµ r Sµ
Standard deviation of packet size B f Sσ r Sσ
Minimum inter-packet time ms f Tm r Tm
Maximum inter-packet time ms f TM r TM
Average inter-packet time ms f Tµ r Tµ
Standard deviation of inter-packet time ms f Tσ r Tσ

III. THE ANALYZED INTERNET TRAFFIC DATASETS

In our experiments, we adopted two different packet traces,
namely KEIO and WIDE traces, which come from two differ-
ent network locations and temporal periods. Both traces are



provided by the public traffic data repository maintained by
the MAWI Working Group of the WIDE Project4.

The KEIO trace refers to 1 Gbps Ethernet link traffic
of a Japanese campus captured in August 2006, while the
WIDE trace encompasses 2008 trans-Pacific backbone traces
from USA and Japan and vice versa. The characterization of
both traces is provided in Table II: shortly, KEIO presents
6 application-layer protocol classes, namely BitTorrent (BT),
HTTP, IMAP, POP3, RAZOR and SMTP, while WIDE in-
cludes 8 application-layer protocol classes, namely BT, FTP,
HTTP, IMAP, POP3, RAZOR, SMTP and SSH. Similar to the
work in [5], where both the KEIO and WIDE traces have been
analyzed, we randomly sample 500 flows for each application-
layer protocol.

An important aspect, when assessing the reliability of a
generic traffic classifier, is the provenance of the so-called
ground truth information: indeed, it is necessary to know the
actual application-layer protocol associated with a specific
flow for assessing the correctness of the estimated protocol.
In the past, when dealing with application-layer protocols
using standard port numbers, such numbers could determine
directly the actual protocol. Nowadays, deep packet inspection
(DPI) tools are generally used to build up reliable ground
truth information. In this paper, we adopt the same ground
truth procedure used in [5] and based on DPI. Due to space
limitation, we cannot describe the procedure: the interested
reader can refer to [5] for details.

TABLE II
CHARACTERISTICS OF THE TWO INTERNET TRAFFIC DATASETS.

Network Link # application-layer application-layer protocols
type protocols (aka classes)

WIDE backbone 8 BT, FTP, HTTP, IMAP,
POP3, RAZOR, SMTP, SSH

KEIO edge 6 BT, HTTP, IMAP,
POP3, RAZOR, SMTP

IV. MULTI-OBJECTIVE EVOLUTIONARY FUZZY
CLASSIFIERS

In this work, we approach the traffic classification prob-
lem adopting Multi-objective Evolutionary Fuzzy Classifiers
(MOEFCs) [10], [11]. MOEFCs represent the hybridization
of Multi-Objective Evolutionary Algorithms (MOEAs) and
Fuzzy Rule-based Classifiers (FRBCs). MOEAs have been
widely and successfully used in the last years for designing the
architecture of FRBCs. During the evolutionary optimization
process, in general two main objectives are concurrently
optimized, namely the accuracy and the interpretability, which
are in conflict with each other.

An FBRC basically includes a rule base (RB), a database
(DB) containing the definition of the fuzzy sets used in the RB,
and an inference engine. RB and DB comprise the knowledge
base of the rule-based system.

Let X = {X1, . . . , XF } be the set of input variables
and XF+1 be the output variable of the classifier. Let Uf ,

4MAWI Working Group Traffic Archive. URL:
http://mawi.wide.ad.jp/mawi/

with f = 1, ..., F , be the universe of the f th input variable
Xf . Let Pf = {Af,1, . . . , Af,j , . . . , Af,Tf

} be a partition
of variable Xf consisting of Tf fuzzy sets. The output
variable XF+1 is a categorical variable assuming values in
the set Γ of K possible classes Γ = {C1, . . . , CK}. Let
{(x1, xF+1,1), . . . , (xN , xF+1,N )} be a training set composed
of N input-output pairs, with xt = [xt,1 . . . , xt,F ] ∈ <F ,
t = 1, . . . , N and xF+1,t ∈ Γ.

With the aim of determining the class of a given input
vector, we adopt an RB composed of M rules expressed as:

Rm : IF X1 is A1,jm,1 AND . . .AND XF is AF,jm,F

THEN XF+1 is Cjmwith RWm (1)

where Cjm is the class label associated with the mth rule,
and RWm is the rule weight, i.e., a certainty degree of the
classification in the class Cjm for a pattern belonging to the
subspace delimited by the antecedent of rule Rm.

Usually, a purposely-defined fuzzy set Af,0 (f = 1, . . . , F )
is considered for all the F input variables. This fuzzy set,
which represents the “don’t care” condition, is defined by a
membership function equal to 1 on the overall universe. The
term Af,0 allows generating rules that contain only a subset
of the input variables.

A specific reasoning method uses the information from the
RB to determine the class label for a given input pattern. We
adopt the maximum matching as reasoning method (see [13]
for details).

As regards the DB, we adopt triangular fuzzy sets: each
fuzzy set Af,j is identified by the tuples (af,j , bf,j , cf,j),
where af,j and cf,j correspond to the left and right extremes
of the support, and bf,j to the core. In particular, in the
experiments, we use strong fuzzy partitions, where af,1 =
bf,1, bf,Tf

= cf,Tf and, for j = 2, ..., Tf − 1, bf,j = cf,j−1

and bf,j = af,j+1.
In order to concurrently design the RB and tune the pa-

rameters of the fuzzy sets, we adopt the PAES-RCS algorithm
introduced in [13]. The multi-objective evolutionary learning
scheme is based on the (2+2)M-PAES, which is an MOEA
successfully employed in the last years in the context of
MOEFSs. We concurrently optimize two objectives: the first
objective considers the intepretability of the RB, calculated as
the total rule length (TRL), that is, the number of propositions
used in the antecedents of the rules contained in the RB; the
second objective takes into account the accuracy, assessed in
terms of classification rate.

In the learning scheme, we first generate an initial RB and
then select, during the evolutionary process, the most relevant
rules and conditions in the rules. Moreover, we concurrently
tune the parameters of the fuzzy sets by using a mapping
strategy based on a piecewise linear transformation [14]. Once
defined an initial strong fuzzy partition for each input variable,
we extract the initial RB from a decision tree: in particular,
in this work, we use a recent algorithm, discussed in [15], for
generating multi-way fuzzy decision trees. One rule is created
for each path from the root to a leaf node.



In PAES-RCS each solution is codified by a chromosome C
composed of two parts (CR, CT ), which define, respectively,
the RB and the positions of the representatives of the fuzzy
sets, namely the cores, in the transformed space.

Let JDT and MDT be the initial RB generated by the
decision tree and the number of rules of this RB, respectively.
In order to generate compact and interpretable RBs, we allow
that the RB of a solution contains at most Mmax rules. The
CR part, which codifies the RB, is a vector of Mmax pairs
pm = (km, vm), where km ∈ [0,MDT ] identifies the selected
rule of JDT and vm = [vm,1, . . . , vm,F ] is a binary vector
which indicates, for each variable Xf , if the condition is
present or not. In particular, if km = 0 the mth rule is not
included in the RB. Thus, we can generate RBs with a lower
number of rules than Mmax. Further if vm,f = 0 the f th

condition of the mth rule can be replaced by a “don’t care”
condition.
CT is a vector containing F vectors of Tmax − 2 real

numbers: the f th vector [bf,2, . . . , bf,Tmax−1] determines the
positions of the fuzzy set representatives in the specific vari-
able Xf .

In order to generate the offspring populations, we exploit
both crossover and mutation. We apply separately the one-
point crossover to CR and the BLX-α-crossover, with α =
0.5, to CT . As regards the mutation, we apply two distinct
operators for CR and an operator for CT . More details
regarding the mating operators and the steps of PAES-RCS
can be found in [13], [14].

V. EXPERIMENTAL ANALYSIS

In this section, we discuss the results achieved by the
adopted MOEFCs on ITC problems. In particular, we first
show the results obtained by considering the two datasets
discussed in Section III separately. For each dataset, we
performed a five-fold cross-validation and executed three trials
for each fold with different seeds for the random function
generator (15 trials in total). Then, we build MOEFCs by using
one dataset, extracted from a network, and then test them on
the other dataset extracted from the other network. In this
way, we aim to evaluate the generalization capability of the
MOEFCs on traffic data extracted from a network different
from the one used for the training phase. We denote this
experiment as cross-network evaluation.

Table III shows the parameters of PAES-RCS used in the
experiments.

TABLE III
VALUES OF THE PARAMETERS USED IN THE EXPERIMENTS.

Parameter short name value
Total number of fitness evaluations Nval 50000
(2+2)M-PAES archive size AS 64
Maximum number of rules in a RB Mmax 50
Probability of applying crossover operator to CR PCR

0.1
Probability of applying crossover operator to CT PCT

0.5
Probability of applying first mutation operator to CR PMRB1 0.1
Probability of applying second mutation operator to CR PMRB2

0.7
Probability of applying mutation operator to CT PMT

0.2
Number of fuzzy sets for each linguistic variable Tf 5

Since several solutions can lie on the Pareto front approxi-
mations, typically only some representative solutions are con-
sidered in the comparison. Like the analysis carried out in [13],
for each fold and each trial, the Pareto front approximations
of each algorithm are computed and the solutions in each
approximation are sorted according to decreasing accuracies
on the training set. Then, for each approximation, we select
the first (the most accurate), the median and the last (the
least accurate) solutions. We denote these solutions as FIRST,
MEDIAN and LAST, respectively.

Table IV summarizes the average results achieved by PAES-
RCS on the WIDE and KEIO networks. Specifically, it shows
the average values of the accuracy on training, AccTR, and
test, AccTST , sets, respectively, TRL, number of rules (#R),
number of features (#F ) of the FIRST, MEDIAN and LAST
solutions.

TABLE IV
AVERAGE RESULTS ACHIEVED BY PAES-RCS ON THE WIDE AND KEIO

NETWORKS.

NET SOLUTION AccTR AccTST TRL #R #F

WIDE
FIRST 90.05% 88.36% 178.47 45.60 19.00
MEDIAN 86.61% 85.44% 84.43 24.60 17.33
LAST 53.90% 53.51% 26.53 11.67 11.13

KEIO
FIRST 93.53% 90.79% 160.80 43.13 18.00
MEDIAN 91.02% 88.50% 73.20 22.47 15.73
LAST 55.58% 54.87% 24.73 11.60 10.87

From Table IV, we can observe that the average FIRST
solutions, though requiring a quite limited number of rules
(i.e., lower than 46 and 44 for WIDE and KEIO, respectively),
is able to achieve satisfactory results (i.e., more than 88% of
the accuracy on the test set for the WIDE dataset and more
than 90% for the KEIO one). The results achieved by the ME-
DIAN solutions are even more interesting: on average, using
just less of half rules with respect to the FIRST counterparts
(24.60 and 22.47 for WIDE and KEIO networks, respectively),
a MEDIAN solution is able to reach accuracies on test sets
which are only less than 4% worse than the FIRST counterpart
(85.44% and 88.50% are the absolute MEDIAN accuracies,
computed for the WIDE and KEIO networks, respectively).
Even though the LAST solutions are characterized by a low
complexity level, they achieve poor accuracies. Thus, we must
discard them for traffic classification tasks.

We highlight that the shown results, in terms of classi-
fication accuracy, are better than the ones achieved by a
state-of-the-art fuzzy classifier, namely FARC-HD [16], and
slightly worse than the ones achieved by the C4.5 decision
tree classifier [17]. Indeed, the FARC-HD achieves average
accuracies on the test set equal to 79.60% and to 78.53% for
WIDE and KEIO, respectively. On the other hand, the C4.5
achieves average accuracies on the test set equal to 93.75%
and to 92.01% for WIDE and KEIO, respectively. We recall
that the C4.5 is not a linguistic classifier and its interpretability
level is much more lower than the one of an FRBC. Moreover,
the average size of the generated trees, which more or less
corresponds to the TRL, is equal to 233 and to 151 for WIDE
and KEIO, respectively.



TABLE V
TRUE POSITIVE RATE (TPR) AND FALSE POSITIVE RATE (FPR) EXPRESSED IN PERCENTAGE, FOR THE BEST, MEDIAN AND LAST SOLUTIONS, ON THE

TRAINING AND TEST SETS (TRAIN AND TEST) OF WIDE AND KEIO NETWORK TRACES.

CLASS BT FTP HTTP IMAP POP3 RAZOR SMTP SSH
NET SET SOL TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

WIDE

TRAIN
BEST 86.30 1.94 93.38 0.95 86.32 1.94 88.10 1.70 85.72 2.04 97.80 0.31 83.03 2.42 99.72 0.04

MEDIAN 83.80 2.30 91.27 1.26 82.00 2.54 81.70 2.61 80.13 2.82 96.78 0.46 78.25 3.08 99.77 0.03
LAST 74.48 3.84 74.28 3.80 54.37 6.17 35.07 8.64 45.17 7.61 47.08 7.06 34.63 8.66 66.12 4.27

TEST
BEST 84.47 2.21 92.33 1.10 83.80 2.29 86.13 1.99 83.20 2.40 97.47 0.36 79.80 2.87 99.67 0.05

MEDIAN 82.00 2.56 90.93 1.30 81.60 2.60 79.53 2.91 77.87 3.14 96.13 0.55 76.40 3.34 99.80 0.03
LAST 74.27 3.82 73.40 3.92 55.07 6.05 32.87 8.90 45.40 7.58 47.60 6.99 33.53 8.80 65.93 4.30

KEIO

TRAIN
BEST 96.88 0.62 - - 91.67 1.65 92.80 1.44 88.32 2.31 98.65 0.27 92.85 1.44 - -

MEDIAN 95.42 0.92 - - 90.35 1.92 89.47 2.10 84.30 3.10 98.03 0.39 88.73 2.25 - -
LAST 61.75 7.64 - - 55.35 8.14 45.75 9.76 53.98 8.62 67.45 5.86 49.22 9.53 - -

TEST
BEST 94.53 1.09 - - 89.73 2.04 89.13 2.14 84.13 3.13 97.40 0.52 89.80 2.05 - -

MEDIAN 94.00 1.20 - - 90.07 1.98 83.80 3.16 80.73 3.81 96.87 0.63 85.80 2.83 - -
LAST 64.33 7.22 - - 55.33 8.13 42.27 10.54 51.27 9.09 68.13 5.71 47.87 9.70 - -

To carry out an overall per class analysis of the performance
achieved by the generated FRBCs, Table V shows, for each
network, the average per class True Positive Rate (TPR)
and False Positive Rate (FPR), associated with the FIRST,
MEDIAN and LAST solutions. As regards the WIDE network,
on the test set, FTP, RAZOR and SSH flows are better
recognized than the others. Further, the TPRs on the test set are
generally higher than 80% and 76% for FIRST and MEDIAN
solutions, respectively. The FPRs span between 0.03% and
3.34% for the FIRST and MEDIAN solutions. As regards the
KEIO network, on the test set, the highest TPRs and FPRs
are achieved on BT and RAZOR flows, for both the FIRST
and MEDIAN solutions. The remaining TPRs and FPRs span,
respectively, between 80% and 90%, and 1.98% and 3.80%,
for the FIRST and MEDIAN solutions.

To discuss in detail a specific FRBC generated by applying
PAES-RCS, we focus on a single Pareto front approximation
obtained in the first trial and first fold over the WIDE
network and we analyze the MEDIAN solution. This solution
is characterized by 24 rules and 17 features, with a TRL of
81, and achieves accuracy values of 88.91% and 88.38% on
the training and test sets, respectively.

Fig. 1 shows a graphical version of the confusion matrix
associated with the chosen solution when classifying the
test set. By observing this graph, we can deduce that the
MEDIAN solution was able to correctly classify 99% of the
SSH flows; RAZOR, FTP and HTTP flows were also quite
reliably classified (96%, 95% and 89% of correct classifica-
tion, respectively); then the performances degrades towards
80%, when classifying the remaining application flows (83%
for SMTP and POP3, 82% for BT and 80% for IMAP).

Fig. 2 summarizes how the rules are distributed among the
classes, that is, the number of rules which have a specific class
in the consequent. By analyzing the information contained
in Figs. 1-2, we can draw interesting conclusions: the most
impressive is that the selected solution actually employs only
one rule to correctly classify the 99% of the SSH flows.
Further, the solution uses 3 rules to correctly classify the 96%
(resp. the 95%) of the RAZOR (resp. the FTP) flows. Also,
the solution uses 4 rules to correctly classify the 80% of the
IMAP flows.

Taking into account that the main goal of this preliminary
work was to build (and rely on) more interpretable models

for accurate traffic flows classification, due to space limit,
we show only the rule used for classifying SSH in (2). We
re-labeled the fuzzy sets as “very low”, “low”, “medium”,
“high” and “ very high” (VL, L, M, H, VH, respectively), while
maintaining the feature labels of Table I.

R12 : IF f Sm is M AND f SM is M AND

f Sσ is H AND f N is H AND

r Sm is M THEN Class is SSH (2)
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Fig. 1. A graphical view of the confusion matrix on the test set associated
with the selected solution for the WIDE network.
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Fig. 2. Distribution of the rules among the classes for the selected MEDIAN
solution.

Finally, in Table VI we show the results achieved when
we use the dataset extracted from one network as training
set, and the other dataset as test set. In the table, the label
KEIO TO WIDE (WIDE TO KEIO) states that the classi-
fiers were trained by using KEIO (resp. WIDE) and tested



TABLE VI
AVERAGE RESULTS ACHIEVED BY PAES-RCS FOR CROSS-NETWORK EVALUATION.

CLASS BT HTTP IMAP POP3 RAZOR SMTP
Experiment SOL AccTST TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

KEIO TO WIDE BEST 74.09 79.93 4.10 87.73 2.53 83.13 3.66 48.67 9.56 86.80 2.53 58.27 7.92
MEDIAN 72.99 70.80 5.75 84.27 3.19 83.73 3.62 49.13 9.50 91.00 1.77 59.00 7.81

WIDE TO KEIO BEST 69.41 59.20 7.75 77.87 4.29 66.47 6.92 69.67 6.54 71.07 5.43 72.20 5.55
MEDIAN 67.77 53.40 8.74 73.93 5.03 69.20 6.47 66.00 7.31 78.00 4.22 66.07 6.78

by using WIDE (resp. KEIO). In the experiments, in order
to deal with the same number of classes, we removed the
FTP and SSH flows from the WIDE network. For the sake
of brevity, in the table we show only the per class TPRs and
FPRs and the accuracies on the test set. The complexities of
the models correspond more or less to the ones shown in Table
IV. Moreover, as stated before, we do not show the LAST
solutions.

Table VI shows that the overall accuracies on the test net-
works drastically decreases in comparison with the accuracies
on the test set shown in Table IV. We must recall, as stated
in Section III, that we are considering two networks that are
very different. Thus, we might expect even worse accuracies
associated with the test networks. Indeed, the achieved accura-
cies span between 67.77% and 74.09%. If we check the TPRs
associated with the KEIO TO WIDE network, except for the
POP3 and SMTP flows, they are generally higher than 80%.
As regards the WIDE TO KEIO network, we observe that
the performance deteriorates even more. On the other hand,
we highlight that the TPRs, for the HTTP, the RAZOR and
the SMTP flows are generally higher than 70%.

VI. CONCLUSION

In this paper, we have discussed a preliminary study on the
application of multi-objective evolutionary fuzzy classifiers for
approaching the Internet traffic classification problem. In par-
ticular, we have concentrated our efforts on the possibility of
generating interpretable classification models, also character-
ized by a good accuracy level. Indeed, we have experimented a
state-of-the-art algorithm, namely PAES-RCS, for generating
sets of fuzzy rule-based systems for classifying the Internet
traffic flows extracted from two real-world networks. We
have first performed a cross validation, considering the data
extracted from each network as an independent classification
dataset. Then, we have carried out a cross-network validation,
where one network has been used for training the classifiers
and the other network has been adopted for evaluating the
generalization capability of the trained models.

We have shown that the results achieved on the cross
validation are promising. Indeed, the obtained fuzzy rule-based
classifiers are characterized by very interesting trade-offs
between their accuracy, expressed in terms of classification
rate and also in terms of per class true positive and false
positive rates, and their interpretability, expressed in terms
of number of rules and total number of antecedents in each
rules. As regards the cross-network evaluation, even though
we have observed a substantial decrease of the accuracies, the

generated classification models still maintain acceptable levels
of classification rate, true positive rate and false positive rate.

Future works will cover a more detailed analysis of more re-
cent application-layer protocols, considering a higher number
of networks. Moreover, we will also analyze and study ap-
proaches for describing the network flows in terms alternative
features.
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