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Abstract
Immune-mediated inflammatory diseases (IMIDs) are a group of common heterogeneous disorders, characterized by an 
alteration of cellular homeostasis. Primarily, it has been shown that the release and diffusion of neurotransmitters from 
nervous tissue could result in signaling through lymphocyte cell-surface receptors and the modulation of immune function. 
This finding led to the idea that the neurotransmitters could serve as immunomodulators. It is now manifested that neuro-
transmitters can also be released from leukocytes and act as autocrine or paracrine modulators. Increasing data indicate that 
there is a crosstalk between inflammation and alterations in neurotransmission. The primary goal of this review is to dem-
onstrate how these two pathways may converge at the level of the neuron and glia to involve in IMID. We review the role of 
neurotransmitters in IMID. The different effects that these compounds exert on a variety of immune cells are also reviewed. 
Current and future developments in understanding the cross-talk between the immune and nervous systems will undoubtedly 
identify new ways for treating immune-mediated diseases utilizing agonists or antagonists of neurotransmitter receptors.

Keywords Neurotransmitters · Immune-mediated inflammatory disorders

Introduction

Immune-mediated inflammatory diseases (IMIDs) are 
a diverse group of common, chronic, and complex dis-
orders which are characterized by dysregulation of the 
normal immune response causing chronic inflammation 
of targeted organs or systems. One underlying mani-
festation of this immune dysregulation is the relative 
over‐expression and inappropriate activation of pro-
inflammatory mediators, such as IL-12, IL-6, or TNF 
alpha, whose actions lead to pathological consequences 
[1]. IMIDs might lead to end-organ damage that is asso-
ciated with disability and high mortality [2]. Although 

the etiology of this disease is unknown, its pathogen-
esis is multifactorial including environmental factors, 
dietary habits, and infectious mediators in patients 
with a genetic predisposition [3]. The pathogenesis of 
immune-mediated inflammatory diseases, such as mul-
tiple sclerosis (MS), rheumatoid arthritis (RA), inflam-
matory bowel disease (IBD), Alzheimer’s disease (AD), 
and Parkinson’s disease (PD) may involve hormonal 
and neural mediators that link the immune and nervous 
system [4]. MS is an autoinflammatory demyelinating 
disease affecting the central nervous system (CNS) and 
characterized by inflammation, immune dysregulation, 
and immune overactivity. Experimental autoimmune 
encephalomyelitis (EAE) is a primarily mouse model 
used as an experimental model of MS [5].

RA is the most common autoinflammatory disease char-
acterized by chronic joint inflammation, articular bone ero-
sion, and consequently joint destruction that can lead to 
complete loss of function [6].

IBD is a chronic intestinal inflammatory condition. Two 
major types of IBD are ulcerative colitis and Crohn’s disease 
[7]. The interaction between the gut mucosal immune system 
and the enteric nervous system (ENS) plays an important 
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role in IBD [8]. Furthermore, IBD as a chronic inflammatory 
disease may impact the mammalian GI tract [9].

AD is a progressive neurodegenerative disease of the 
CNS and the most common form of dementia characterized 
by progressive loss of memory and other cognitive func-
tions. Evidence now suggests that the pathogenesis of AD 
is not restricted to neuronal activity, but may involve strong 
interactions with immunological mechanisms in the brain 
[10].

PD is a progressive and degenerative nervous system dis-
order characterized by the death of dopaminergic neurons 
in the substantia nigra. Preclinical investigations indicated 
the role of neuroinflammation in the pathophysiology of PD 
[11].

The nervous and endocrine systems are closely linked to 
the immune system [4]. The interaction between the neu-
roendocrine and immune systems is necessary to maintain 
homeostasis of the whole body in an appropriate manner, by 
responding to environmental changes [12]. The neuroendo-
crine system regulates immunity and inflammation primarily 
via releasing neural mediators including neurotransmitters, 
neuropeptides, and endocrine hormones as they regulate 
a broad spectrum of physiological processes [13]. The 
immune system can affect nervous and endocrine systems 
through secreting immunocompetent substances including 
cytokine [14]. The pathogenesis of several IMIDs might 
involve immunocompetent substances and neural mediators 
that link the immune and nervous systems [15, 16].

Neurotransmitters are synthesized and released from 
nerve endings into the synaptic cleft. As well to be produced 
by neurons, neurotransmitters are produced by other cells, 
including lymphocytes and other immune system cells, and 
also release as a hormone into the blood [17]. The expres-
sion of several receptors for different neurotransmitters on 
the immune cell surface suggested that neurotransmitters 
show a physiological effect in the regulation of the immune 
response. It also demonstrates that the dysregulation of the 
activity of the neurotransmitter’s receptors has been involved 
in the development of autoinflammatory disease [18]. More-
over, the expression of neurotransmitter receptors on the 
immune cell surface and the expression of cytokine recep-
tors on cells from the nervous system reveal new capacities 
of bidirectional communication networks between the cen-
tral nervous and the immune systems (Table 1) [19].

Bidirectional neuroimmune communication has consid-
ered the nervous system as a central partner of the immune 
system in the regulation of inflammation [21]. Neuronal 
pathways, like the vagus nerve-based inflammatory reflex, 
are physiological regulators of immune function and 
inflammation [22]. In competition, the neuronal function is 
changed in conditions categorized by immune dysregula-
tion and inflammation [21]. Under normal conditions, this 
bidirectional regulatory system forms a negative feedback 

loop, which keeps the immune system and CNS in homeo-
static balance [23]. Disturbance of these regulatory systems 
can lead to either overactivation of immune responses and 
inflammatory disease, or over suppression of the immune 
system and increased susceptibility to infectious disease 
[24].

Inflammation is a necessary response of the immune sys-
tem to disturbed homeostasis caused by infection, injury, and 
trauma [25]. In addition to protecting the body, however, it 
can damage organs or lead to infectious and autoimmune 
inflammatory disorders including ankylosing spondylitis, 
psoriasis, psoriatic arthritis, Behcet’s disease, arthritis, IBD, 
and allergy, as well as many cardiovascular, neuromuscular, 
and infectious diseases [26].

Over the past decades, evidence has accumulated clearly 
demonstrating a pivotal role for neuroendocrine-derived 
control mechanisms of immune function and specifically the 
role of neurotransmitters in the regulation of inflammation. 
Here, we review an assortment of neurotransmitters that 
modify the immune system. Understanding these mecha-
nisms discloses the potential to use targeted neuromodu-
lation as a therapeutic approach for treating inflammatory 
and autoimmune disorders. These findings and the current 
clinical investigation of neuromodulation in the treatment 
of inflammatory diseases describe the developing field of 
bioelectronic medicine.

Acetylcholine

Acetylcholine (ACh) is one of the old and abundant neuro-
transmitters in the body released from nerve terminals of 
postganglionic parasympathetic neurons and functions in 
both the central and peripheral nervous systems [27]. There 
are two core classes of acetylcholine receptors (AChR): 
nicotinic acetylcholine receptors (nAChR) and muscarinic 
acetylcholine receptors (mAChR) [28]. ACh, synthesized 
and released by the parasympathetic nerves, directly affects 
immune cells via muscarinic and nicotinic acetylcholine 
receptors and involves in the changes in central and periph-
eral inflammation [29]. In immune cells, signaling by ACh 
is mediated by these receptors [30]. Acetylcholine exerts 
an anti-inflammatory effect on macrophages, basophils, 
and mast cells via α7-nicotinic acetylcholine receptors 
(α7nAChRs) [31], receptors on inflammatory macrophages. 
Furthermore, ACh implicates in the anti-inflammation 
through inhibition of NF-κB nuclear translocation and down-
regulation of ongoing inflammatory cytokine synthesis [32]. 
It has been also indicated that non-neuronal cells including 
immune cells can directly produce and release ACh, which 
may induce biological functions in an autocrine or paracrine 
manner [33]. In immune cells, ACh is accompanied by the 
expression of acetylcholinesterase and nicotinic/muscarinic 
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acetylcholine receptors and, as one of the immunomodula-
tory signals, plays a key role in the regulation of immune 
function by triggering signals that affect differentiation, anti-
gen presentation, or cytokine production in immune cells 
[30]. Accumulating evidence has suggested the presence of 
a strong association between cholinergic signaling and IMID 
[34]. Since acetylcholinesterase (AChE) inactivates acetyl-
choline, Li et al. reported that inhibition of acetylcholinester-
ase can show positive effects in the treatment of autoimmune 
diseases [35]. Serum levels of ACh are higher in MS patients 
and appear to associate with better disease outcomes, and 
also higher serum levels of ACh have been shown in MS 
patients receiving treatment than in treatment‐naïve patients. 
These results propose that augmentation of cholinergic sign-
aling in MS patients may ameliorate their symptoms [36]. 
Zabrodskii proposed that the interaction between ACh and 
the α7nAChR on monocytes, macrophages, and neutrophils 
is responsible for the cholinergic anti-inflammatory mecha-
nism. Also, ACh treatment may diminish the blood levels 
of proinflammatory cytokines such as TNF-α, IL-1β, and 
IL-6 in mice [37].

Activation of the cholinergic system via α7 nAChR can 
reduce experimental autoimmune encephalomyelitis (EAE) 
that was associated with a decrease in the level of neuro-
inflammation in the CNS. Furthermore, the expression of 
immune cell markers was changed by α7 nAChR agonist, 
GAT107, treatment which provoked a significant decrease 
in macrophages, dendritic cells, and B cells, as well as a 
diminution in anti-myelin oligodendrocyte glycoprotein 
(MOG) antibodies. In addition, GAT107 directly activates 
α7 nAChR in murine macrophage cells. GAT107 can attach 
the cholinergic anti-inflammatory path for long-lasting and 
wide-ranging modification and downregulation of neu-
roinflammation in EAE. α7 nAChR activation exhibits a 
long-lasting widespread therapeutic effect on the immune 
response and disease course and, hence, shows the therapeu-
tic management of inflammatory autoimmune diseases [38].

Dimethyl fumarate exhibits anti-inflammatory impacts on 
MS which is activated by ACh via alpha-7 nicotinic acetyl-
choline receptors (α7 nAChR) [39]. In the MS hippocampus, 
the activity and expression of choline acetyltransferase, the 
acetylcholine-synthesizing enzyme, was diminished. MS-
specific cholinergic imbalance in the hippocampus may be 
the target of future treatment choices for memory deficit 
in this disease [40]. ACh is involved in the modification of 
central and peripheral inflammation. ACh stimuli stimulate 
immune cells as well as astrocytes and microglia through 
activation of cholinergic receptors. Cholinergic alterations 
may contribute to the dysregulated inflammatory processes 
of MS. Recent therapeutic ways for MS are according to 
anti-inflammatory drugs. Furthermore, cholinesterase 
inhibitors or ACh agonists may display a novel therapeutic 
approach in MS [41].

Signaling by ACh defends against IBD in rodents since 
decrement of AChE activity ameliorated experimental colitis 
in rats [42], and nicotine treatment blocked dextran sulfate 
sodium (DSS)‐induced colitis in mice [43, 44]. Intriguingly, 
though activation of muscarinic signaling suppresses experi-
mental colitis in mice, this effect is lost in animals exposed 
to either vagotomy or splenectomy [45, 46]. The muscarinic 
signaling in the nervous system moderates splenic immune 
cells to strongly change their inflammatory potential. Cho-
linergic may facilitate the clearance of the colitogenic 
mucosa-associated bacteria; though, the application of pro-
secretory drugs would increase irritating diarrheal signs. 
Therefore, cholinergic medication could be valuable in the 
future for ulcerative colitis managing but cautions should be 
taken about the timing and period of its usage which may 
cause different results [47]. Agonist of the cholinergic anti-
inflammatory pathway inhibits colonic inflammatory action 
by downregulation of the TNF-α production and inhibition 
of NF-κB activation, which shows that moderating the cho-
linergic anti-inflammatory pathway may be a novel possible 
management for IBD [48].

Al-Khotani A and et al. investigated a possible anti-
inflammatory effect of Ach. The results of this study showed 
that ACh decreases native and TNF-stimulated IL-6 release 
from RA human fibroblast-like synoviocytes. This finding 
could point to one pathway of how ACh exerts its previously 
shown anti-inflammatory effects, which in turn points to an 
important role for ACh in local regulation of the inflamma-
tory activity in RA [49]. Studying a model of RA showed 
that immune cell function is regulated by the cholinergic 
system and, at least in part, mediated by the α7nAChR [29].

5‑hydroxytryptamine or serotonin

Serotonin, which is also known as 5-hydroxytryptamine 
(5-HT), is an important multifunctional monoamine neu-
rotransmitter derived from L-tryptophan via a rate-limiting 
reaction catalyzed by tryptophan hydroxylase 1 (TPH1) [50]. 
TPH1 catalyzes the conversion of tryptophan into 5-HT and 
is found only in 5-HT–producing cells [51]. 5-HT regulates 
a wide variety of functions in the CNS and the periphery 
through the engagement of seven types of cell surface recep-
tors (HTR1–7) [52]. Most of the 5-HT in our body, and all 
of the peripheral 5-HT, is predominantly synthesized and 
secreted by enterochromaffin (EC) of the gastrointestinal 
mucosa [53]. Peripheral 5-HT plays an important role in 
peripheral tissues, including the immune system [54]. There 
is a growing body of evidence suggesting that the immune 
system can be regulated by the action of 5-HT on immune 
cells expressing 5-HT receptors (5-HTRs) and almost all 
immune cells express at least one serotonin component, 
including T cells, dendritic cells, natural killer cells, and 
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monocytes [55]. In recent years, the immunoregulatory role 
of serotonin is well established. For example, serotonin mod-
ifies both neutrophil recruitment and T-cell activation [56]. 
Furthermore, monocytes/macrophages’ cytokine secretion 
and also suppression of the release of TNF-α and IL-1β can 
be mediated by activating serotonin receptors [55]. Evidence 
demonstrates that Tph1 is a potent regulator of immunity 
and Tph1 deficiency intensifies neuroinflammation in mod-
els of experimental autoimmune encephalomyelitis [57]. 
Studies have found that 5-HT is involved in the regulation 
of immunoinflammatory pathways and peripheral 5-HT 
levels and signaling have been changed in individuals with 
arthritis [58, 59]. Also, 5-HT could be directly involved in 
RA physiopathology through the regulation of the Th17/T-
regulatory cell balance and osteoclastogenesis. The absence 
of peripheral 5-HT, in a murine model of RA, intensifies the 
clinical score, osteoclast differentiation, and the inflamma-
tory response, while the addition of 5-HT in exvivo cultures 
restores the Th17 profile [58]. Recent investigations also 
suggest that 5‐HT can play an important role in the patho-
genesis of IBD. Changes in 5-HT signaling, including EC 
cell numbers and 5-HT content, have been demonstrated in 
patients with both Crohn’s disease and ulcerative colitis [60, 
61]. The recent study revealed a novel function of 5-HT in 
the regulation of gut inflammation concerning the recruit-
ment of inflammatory cells and activation of proinflamma-
tory cytokine production in TPH1-deficient  (TPH1−/−) mice 
[62]. The results of the current study revealed that a lack of 
5-HT reduces the severity of inflammation in experimental 
colitis and this diminution can be reversed by the reforma-
tion of 5-HT synthesis in the gut.

Clinical efficacy of tropisetron, a 5-HT3 receptor antag-
onist, on an immune-based animal model of IBD and in 
patients with chronic inflammatory joint diseases and soft 
tissue rheumatism has been documented. It is likely that the 
protective effects of tropisetron on TNBS-induced colitis, at 
least partly arise from the ability of this drug the blockade 
5-HT3 receptors [63]. All of the mentioned studies show 
that the regulation of immune cells by 5-HT in the patho-
genesis of autoimmune diseases provides a new pointcut for 
the treatment of autoimmune diseases.

Specified bacteria in the gut can yield serotonin. In mam-
mals, gut microbiota-derived serotonin can work locally in 
the intestinal tract or enter the blood circulation and enhance 
blood–brain barrier permeability and hence influences brain 
function [64]. Gut-derived serotonin through modification 
of gut microbiota composition impacts intestinal immune 
response and susceptibility to colitis. Therefore, the seroto-
nin-microbiota axis is a potential new therapeutic target in 
intestinal inflammatory disorders [65].

Dysregulation of gut-derived serotonin and kynurenic 
pathways was detected in several neurodegenerative disor-
ders such as AD [66]. Gut microbes impact the metabolism 

of tryptophan. Restoration of the intestinal microbiome 
to a healthy composition in patients with AD will signifi-
cantly slow down the development of neurodegeneration by 
depressing the level of inflammatory reactions and/or amy-
loidogenesis [66].

Selective serotonin reuptake inhibitors (SSRIs) are 
the first-line treatments for major depressive disorder in 
MS [67]. SSRIs induce a reduction of the clinical signs 
of experimental MS, by limitation of pro-inflammatory 
cytokine release (IFN-γ, TNF-a, IL-6, IL-7) and dropping 
T-cell proliferation. Diminishing stress-related relapses is 
of severe importance for attaining a significant delay in the 
start of severe weakening and hence agents like SSRIs that 
show efficiency in this field should be extremely considered 
as a complementary therapeutic option for all MS patients 
[68]. SSRIs exhibit a neuroprotective and anti-inflammatory 
effect in EAE animals. In EAE animals, SSRIs decrease the 
synthesis of inflammatory cytokines like IFN-γ, TNF-α, 
IL-6, IL-10, and IL-2 and upregulate the synthesis of anti-
inflammatory mediators like IL-4 [69].

Previous studies show the positive effect of the long-last-
ing administration of SSRI antidepressants in delaying the 
development of AD and improving patient performance [70]. 
Furthermore, SSRIs reduced the objective signs of IBD [71].

Serotonin-norepinephrine reuptake inhibitors (SNRI) 
such as venlafaxine reduced the secretion of pro-inflamma-
tory cytokines such as TNF-a, IFN-γ, and IL-6, therefore 
decreasing inflammation in the CNS, though regulating 
NK cell and T-cell gene expression in MS patients. Pro-
inflammatory cytokines such as TNF-a, IFN-γ, IL-6, Ccl5, 
and IL-12 were downregulated while CNS inflammation was 
also diminished by venlafaxine which shows its efficacy in 
MS. Venlafaxine is useful through decrement or augmen-
tation of mRNA expression of pro-inflammatory and anti-
inflammatory factors, respectively [68].

Dopamine

Dopamine, 3-hydroxytryptamine, is a catecholaminergic 
neurotransmitter and peripheral chemical mediator that is 
associated with critical functions in a variety of neurological 
and peripheral processes [72]. Dopamine is not only syn-
thesized by cells of the central nervous system but also in 
types of immune cells, and under certain conditions can be 
released by these cells and result in autocrine and parac-
rine effects [73], suggesting that dopamine functions as a 
bidirectional mediator between the central nervous system 
and the immune system. Growing research increasingly sup-
ports the key role of dopamine in the suppression of the 
immune system and suggested that dopamine functions as 
a fundamental regulator of inflammation [74]. Multifunc-
tional effects of dopamine are mediated by the activation 
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of dopamine receptors (DRs), a class of G protein-coupled 
receptors expressed on various cell types in various organs 
and tissues [75]. There are five different subtypes of DRs, 
including DRD1, DRD2, DRD3, DRD4, and DRD5 which 
are grouped into 2 subgroups: (1) the D1‐like dopamine 
receptors  D1 and  D5, which activate adenylate cyclase and 
(2) the D2‐like dopamine receptors  D2,  D3, and  D4, which 
inhibit adenylate cyclase [76]. Most types of immune cells 
including T cells and B cells, dendritic cells (DCs), mac-
rophages, neutrophils, and natural killer (NK) cells, express 
dopamine receptors, and other dopamine-related proteins, 
allowing them to actively reply to dopamine. It may show 
that dopaminergic immunoregulation is a vital part of proper 
immune function [77]. Dysregulated dopaminergic signaling 
through different dopamine receptors has been implicated in 
the development and progression of different autoimmune 
and inflammatory disorders [78]. Hoeger et al. demonstrated 
that dopamine induces an anti-inflammatory mechanism 
during renal inflammation. In this study, the brain-dead ani-
mal group that was treated with dopamine showed a down-
regulated level of cytokine-induced neutrophil chemoat-
tractant 1 (CINC-1) compared with controls [79]. Another 
study revealed that dopamine dose-dependently inhibits the 
production of the chemokines Gro-α, ENA-78, and IL-8 in 
proximal tubular epithelial cells [80, 81]. Different studies 
highlight the emerging role of dopamine on the systemic 
immune response as well as on abnormal bone remodeling 
and synovial inflammation, both in humans and in different 
animal models of arthritis [6]. Some studies have shown an 
increase in serum dopamine in patients with RA [82, 83], 
although conflicting results have been shown that dopamine 
was localized with DCs in the synovial tissue of RA (RASFs) 
patients and significantly increased in RASFs and dopamine 
released by DCs induces IL-6-dependent IL-17 production 
and leading to aggravation of synovial inflammation of RA 
[84]. Another observation in both animal models of arthritis 
and patients with RA suggests increased expression of dopa-
mine receptors D1 and D5 in RASFs and this augmented 
expression may result in anti-inflammatory effects [82]. 
Lina van et al. revealed that mobility of fibroblasts from 
patients with chronic arthritides was performed under DR-
stimulation, thus suggesting a functional role for dopamine 
in fibroblast activity in RA [85]. Recent findings indicate a 
strong increase of  D1DR expression on B cells, as well as 
a significant increase of dopamine in PBMCs from female 
RA patients and involvement of the dopaminergic pathway 
in the immune response in these patients [86]. Therefore, the 
synovial dopaminergic pathway might represent a new thera-
peutic target for future treatment approaches in RA. Dopa-
mine and its receptors may be involved in IBD. Dopamine 
levels display a reduction in biopsy specimens of inflamed 
gut mucosa from IBD patients and animal models [87, 88]. 
The association of dopamine receptor polymorphism with 

IBD has been shown, in this regard, several polymorphisms 
of dopamine D2 receptor were evaluated in IBD patients 
(Crohn’s disease and ulcerative colitis) and healthy controls. 
A 2 A 2 polymorphism represented a 2.5 times lower risk 
for development of refractory Crohn’s disease (CD) than A 
1 A 1 and A 1 A 2 carriers suggesting the involvement of 
DA receptor in CD that represent a novel target for therapy. 
Refractory CD patients exhibited lower disease duration than 
non-refractory ones and hence more aggressive disease [89]. 
Results showed that the dopaminergic system might impli-
cate IBD by changes in the T cell signaling [90]. Dopamin-
ergic regulation has emerged a relevant role in the control of 
MS and EAE development [91]. Dopamine production and 
expression of D5R (D1-like DR) are reduced in peripheral 
blood mononuclear cells (PBMC) from MS patients com-
pared with PBMCs from healthy subjects and is affected by 
treatment with interferon (IFN)-β [92]. In chronic progres-
sive MS or relapsing–remitting MS, the evidence demon-
strated that dopamine production is reduced in stimulated 
lymphocytes [93]. Also, the studies displayed that dopamine 
decreases proliferation, IFN-γ secretion, and matrix metal-
loproteinase-9 production of activated PBMCs in healthy 
donors, but not in MS patients [94]. Deregulation of D1-like 
DRs expression in Tregs and T effector obtained from MS 
patients supports the involvement of dopaminergic pathways 
in MS pathogenesis and suggests new therapeutic targets in 
autoimmune disorders [93].

Pramipexole (PPX), a dopamine D2/D3 receptor-prefer-
ring agonist with a potent anti-inflammatory activity and 
suppressing immune cell responses, prevents EAE devel-
opment and may represent a novel therapeutic strategy for 
slowing MS progression and the control of major symptoms 
[95].

Dopamine mostly exists in the colonic lumen of the GI 
tract. In humans, more than 50% of dopamine is synthesized 
in the gut, and peripheral dopamine levels can be regulated 
by the gut microbiota [64]. The perturbations of the gut-
microbiota-brain axis impact PD development and targeting 
this axis may be a therapeutic approach for PD [96]. Chronic 
inflammation in the intestine by the gut microbes increases 
neurodegeneration and the probability of PD [97]. Gut 
microbiota suppresses the inflammation of the substantia 
nigra in chronic PD by protecting the function of dopamine 
neurons [98]. Furthermore, gut microbiota comprises intrin-
sic enzymatic activity that is highly contributed to dopamine 
metabolism, facilitating dopamine synthesis [99].

Gamma‑aminobutyric acid (GABA)

GABA is the major inhibitory neurotransmitter in the 
mammalian CNS produced by decarboxylation of the 
amino acid glutamate by glutamate decarboxylase enzyme 



Neurological Sciences 

1 3

(GAD), which includes two isoforms GAD65 and GAD67 
[92]. After being secreted by neurons, GABA performs its 
function by engaging with GABA receptor subtypes [100]. 
There are two pharmacologically and molecularly types of 
GABA receptors:  GABAA and  GABAB.  GABAA receptors 
are pentameric ligand-gated ion channels whereas  GABAB 
receptors are heterodimeric G protein-coupled receptors 
[101].  GABAA can be formed by assembling the α1 − 6, 
β1 − 3, γ1 − 3, δ, ε, θ, π, and ρ1 − 3 subunits. In contrast, the 
 GABAB receptor is normally composed of two isoforms. 
Certain immune cells may also produce GABA and express 
GABA receptors. The binding of GABA to these receptors 
initiates chemical signaling and promotes the immune regu-
latory responses that lead to a decrease in the inflammatory 
response and inhibit autoimmune diseases.

Several recent studies have shown that GABA has some 
effects on the immune cells for instance activation or inhibi-
tion of cytokine secretion, alteration of cell proliferation, and 
migration of the cells. The immune cells entered the brain 
and encounter GABA released by the immune cells them-
selves [102]. GABA signaling is complicated in the modula-
tion of immune responses, mostly via negative regulation of 
T cell proliferation and the production of pro-inflammatory 
cytokines through downregulation of some related signaling 
pathways. Thus, the GABAergic system has great potential 
to inhibit inflammatory responses. These findings indicate 
that the components of the GABAergic system have a phar-
macological effect and can be a new therapeutic target for 
inflammatory and autoimmune diseases [103].

GABAA receptor has a significant role in anti-inflam-
mation by suppressing the expression of inflammatory 
cytokines [104]. For instance, the functional  GABAA recep-
tor in CD4 + T cells and macrophages inhibits the prolif-
eration of antigen-specific T cells and the creation of IL-6, 
IL-12, IL-1β, and TNF-α [105–107]. Furthermore, the ago-
nist of the  GABAA receptor prevents the immune responses 
to stimulation, including cytotoxic immune responses and 
cutaneous delayed-type hypersensitivity [103]. GABA 
suppresses the plasma level of IL-6 through both  GABAA 
and  GABAB receptors, and the plasma level of IL-1β via 
the GABAA receptor. TNF-α induces the endocytosis of 
the  GABAA receptor in mice and a high concentration of 
TNF-α upregulates the expression of the  GABAA receptor 
[108]. It has been found that the activation of the GABAA 
receptor stops the release of TNF-α and IL-6 from alveolar 
macrophages [109].

GABA plays some important roles in autoimmune dis-
eases like MS, type 1 diabetes, colitis, and RA and may 
moderate the immune response to infections [102]. GABA 
receptor transcripts are present in immune cells [106, 110, 
111]. MS may be associated with diminished serum levels 
of GABA and its synthetic enzyme glutamic acid decarboxy-
lase (GAD) [112]. Taken together, these clues demonstrate 

the use of GABAergic agonists in a mouse model of MS 
[113]. GABA agonist, progabide, is an effective antispas-
tic agent that reduces spasticity in MS but increases motor 
weakness. The use of the drug, however, has adverse side 
effects such as fever and weakness which will likely limit 
progabide’s therapeutic usefulness. DSS-induced colitis 
was aggravated by  GABAA receptors, while the expression 
of pro-inflammatory cytokines was stopped. Activation of 
 GABAARs in colon mucosa disturbs the intestinal barrier 
and augments the intestinal permeability which facilitates 
inflammatory reactions in the colon. The suppression of 
pro-inflammatory cytokines results in inadequate bacteria 
eradication and further aggravated the bacteria invasion and 
inflammatory damage [114].

Oral GABA application can downregulate inflammatory 
responses in a mouse model of RA. Activation of periph-
eral GABA receptors may suppress the activity of T cell, B 
cell, and antigen-presenting cells and improve RA and other 
inflammatory diseases [115]. GABA by an inhibitory sig-
nal to the spinal cord may downregulate mitogen-activated 
protein kinase (MAPK) and limit proinflammatory cytokine 
production. This could diminish the RA by further proin-
flammatory cytokines [116].

Moreover, GABA is formed by the bacteria Lactobacillus 
and other species of the Bifidobacterium genus. Disturbances 
in their levels in the CNS may arise from the action of these 
neurotransmitters on the vagus and peripheral nerves that 
may lead to cognitive disorders such as AD [117].

Glutamate

Glutamate is an extremely abundant excitatory neurotrans-
mitter and is important for many features of normal brain 
function. Glutamate activates ionotropic (ion channel-
forming) and metabotropic (G protein-activating) gluta-
mate receptors. In excess, however, glutamate is harmful 
and makes neuronal death by a massive calcium influx 
through ionotropic glutamate receptor channels, resulting 
in injury to mitochondria and activation of proapoptotic 
genes. Glutamate toxicity arises as part of the ischemic 
state in spinal cord injury, stroke, traumatic brain injury, 
and various diseases of the central nervous system, includ-
ing AD, amyotrophic lateral sclerosis, PD, and MS [118]. 
A combination of low reuptake and elevated release of glu-
tamate through glial cells during immune activation results 
in glutamate increment and causes abnormal extrasynaptic 
signaling by ionotropic and metabotropic glutamate recep-
tors, ultimately leading to synaptic dysfunction and loss. It 
has been shown that high levels of inflammatory cytokines 
such as TNF and IL-1β released by activated inflamma-
tory cells including microglia, astroglia, and macrophages 
result in rises of the synaptic glutamate and spillover of 
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the glutamate into the extrasynaptic space [119]. Inflam-
mation results in clear increases in glutamate release and 
“spillover” of glutamate into the extrasynaptic space by 
decreasing the capacity of glial transporters to buffer glu-
tamate [120]. Excessive activation of glutamate receptors 
in nigrostriatal neurons might cause cellular death via glu-
tamate excitotoxicity and concomitant motor dysfunction 
in PD [121]. Glutamate activates intrasynaptic α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
and N-methyl-d-aspartate receptors (NMDA) and extra-
synaptic NMDA receptors. This results in atrophy and 
regression of dendritic spines and processes and loss of 
synaptic integrity, eventually causing neuronal loss, and 
suppression of neurotrophic protection from factors such 
as brain-derived neurotrophic factor (BDNF) [122, 123]. 
Furthermore, rises in extrasynaptic glutamate can activate 
presynaptic metabotropic glutamate receptors (mGluR2/3) 
causing decreases in synaptic glutamate transmission [124, 
125]. Besides, changes in the ratio between synaptic and 
extrasynaptic activation of ionotropic receptors by gluta-
mate may lead to the loss of synaptic fidelity and specific-
ity of neurotransmission [126, 127].

In another study, it was revealed that glutamate may slug-
gish PD development by postponing progressive dopamine 
neuron degeneration. Glutamate drives a regulatory T cell 
response that ameliorates neuroinflammation in a mouse 
model of this paralyzing disease. This increment of regula-
tory T cells is mediated by the mGluR4 expressed on den-
dritic cells, a cell type crucial for supporting an immune 
response [128]. Therefore, glutamate may play a defensive 
role in inflammatory neurodegenerative diseases. Also, a 
mGluR4 enhancer is used to reduce glutamate release in 
the brain and hence would be a treatment for PD [129]. 
Antagonists of NMDA receptors reverse motor symptoms, 
levodopa-induced dyskinesias, and neurodegeneration in PD 
models. While AMPA receptor antagonists display effec-
tiveness in the treatment of levodopa-induced dyskinesias, 
AMPA receptor agonists display neuroprotection. Antago-
nists of mGluRs, as well as activators of group II mGluRs 
and mGluR4, protect against neurodegeneration. Taken 
together, glutamate receptors demonstrate exciting targets 
for the development of new pharmacological therapies for 
PD [130].

High amounts of glutamate, as a neurotoxin, are an indi-
cator of the autoimmune neurological disease MS and may 
involve in its pathology. The glutamate receptor can inhibit 
autoimmunity development and defend against neuroinflam-
mation in a mouse model of MS [128]. Therefore, glutamate 
may also have a defensive role and its receptor may show 
a therapeutic target. Excessive glutamate is released from 
leukocytes and activated microglia at the location of demy-
elination and axonal degeneration in MS plaques. Therefore, 
modification of glutamate release and transport, as well as 

blockade of receptors, may be appropriate targets for future 
therapeutic interventions [131].

NMDAR-enhancing agents can recover cognition in AD 
or PD patients. These studies show that glutamate metabo-
lized by gut bacteria may impact the glutamate NMDAR and 
cognition in AD patients [132].

Norepinephrine

Norepinephrine (NE) limits microglial activation and 
diminishes the production of pro-inflammatory mediators 
including TNF-α, IL-1β, and inducible nitric oxide synthase 
activity. Therefore, noradrenaline inhibits the cytotoxicity 
of midbrain dopaminergic neurons by inflammatory stimuli 
[133]. Noradrenaline shows a bi-modal neuroprotective role 
in the brain in some neurodegenerative diseases through 
interactions with glial cells, predominantly by downregulat-
ing microglial pro-inflammatory gene expression [134, 135], 
and also through promoting a neurotrophic effect in the brain 
via astrocytic growth factor production [136].

Moreover, in the MS field, CNS noradrenaline deficiency 
impairs EAE [137]. Similarly, the serotonin noradrenaline 
reuptake inhibitor venlafaxine suppresses CD3, CD8, IL-12 
p40, TNFα, IFN-γ, CCL2, and RANTES gene transcripts in 
the CNS lesions of an experimental adoptive myelin-spe-
cific T-cell model of EAE, while concomitantly upregulat-
ing BDNF expression in the inflamed spinal cord of these 
animals [138].

The main source of noradrenaline in the CNS originates 
from the locus coeruleus, situated in the lateral face of the 
fourth ventricle in the upper dorsolateral pontine tegmen-
tum [139]. Noradrenaline released from locus coeruleus 
neurons activates adrenergic receptors of neurons and glial 
cells through adenylate cyclase and phospholipase C signal 
transduction. Noradrenaline can modify membrane poten-
tial, synaptic transmission, and excitability of neurons. In 
astrocytes, noradrenaline stimulates glycogen metabolism 
and calcium signaling, and blood vessels normalize blood 
flow and blood–brain barrier permeability. The locus coer-
uleus contributes to the regulation of arousal, memory, 
stress, attention [140, 141], neuroinflammation, neuronal 
survival, and neurogenesis [142].

Previous studies have shown that noradrenaline is neuro-
protective and reduces inflammatory responses. Noradren-
aline diminishes class II antigen and cytokine expression 
in astrocytes and attenuates expression of inducible nitric 
oxide synthase type 2 in astrocytes, microglia, and neurons 
[143]. In vivo, augmentation of noradrenaline using an 
alpha-2-adrenoceptor antagonist diminished inflammation 
by accumulated amyloid-beta. Furthermore, selective inhibi-
tors of noradrenaline reuptake attenuated CNS cytokine and 
chemokine resulting from systemic endotoxin injection and 



Neurological Sciences 

1 3

augmented anti-inflammatory cytokines. Noradrenaline also 
decreased neurotoxicity following inflammatory or excito-
toxic stimuli. It has been shown that loss of locus coeruleus, 
noradrenergic neurons in some neurodegenerative diseases 
including AD and PD are augmented [143].

Depletion of NE provokes a neurotoxic proinflammation, 
reduces Aβ clearance, and negatively influences cognition-
recapitulating main features of AD [144]. LC injury and 
NE deficiency decrease anti-neuroinflammatory molecules 
which normally limit cortical responses to amyloid-beta. 
Thus, LC loss is permissive for augmented inflammation 
and neuronal cell death in AD. Noradrenergic depletion 
potentiates beta-amyloid-induced cortical inflammation in 
AD [145]. The agonists of peroxisome proliferator-activated 
receptor-gamma (PPARgamma) can reverse the effect of 
noradrenergic depletion and beta-amyloid-induced cortical 
inflammation. These findings suggest one mechanism by 
which PPARgamma agonists could provide benefit in neu-
rological diseases having an inflammatory component [146]. 
Inhibitors of NE transport and precursor of NE that are used 
for the treatment of neurologic and psychiatric disorders 
have been shown to treat animal models of AD and are now 
used for early-phase clinical trials in humans. Developing 
proinflammatory responses, weakening anti-inflammatory 
responses, restoration of NE, and decreasing Aβ degradation 
and clearance, LC degeneration, and NE loss are considered 
to slow neurodegeneration in animal models and may delay 
or reverse AD-related pathology. Inhibitors of noradrenaline 
reuptake limit neuroinflammation in the rat cortex following 
a systemic inflammatory challenge [144].

Noradrenergic dysfunction accompanying non-motor 
signs of PD. Thus, loss of LC NE and subsequently its 
immune-modulatory and neuroprotective effects may worsen 
or even accelerate the progression of PD. It has been shown 
that LC-NE dysregulation may promote the progression of 
PD. Immune mediators including IL-1ß, TGFß, IFNγ, and 
IL-6 are augmented in the cerebral spinal fluid and nigros-
triatal regions appear particularly sensitive to pro-inflam-
matory cytokines in PD. Neuroinflammation is demonstra-
ble preceding signs of neuronal degeneration, signifying a 
potential early role for inflammation in PD pathogenesis 
[147]. Norepinephrine has been found in the gut microbi-
ota, including Escherichia coli, Bacillus subtilis, Bacillus 
mycoides, Proteus vulgaris, and Serratia marcescens [64].

Substance P

Substance P as a peptide mainly formed by sensory neurons 
originates in the brainstem and dorsal horns of the spinal 
cord but is also more widely in the brain [148]. Substance P 
is a mediator of nociceptive stimuli, neurogenic inflamma-
tion, and neuroimmunoregulation [149, 150].

Substance P is produced by lymphocytes [151]. Sub-
stance P binds to cell surface G protein-coupled receptors of 
the neurokinin (NK) family including NK1, NK2, and NK3 
[152, 153]. NK1 is expressed in neurons [154] and leads 
to intracellular signaling that regulates gene expression. 
Furthermore, NK1 is expressed by immune cells including 
NK cells [155], T and B cells [156], eosinophils, mast cells 
[157], macrophages [158], microglia, astrocytes [159], and 
dendritic cells [160]. In lymphocytes, NK1 regulates T cell 
proliferation, differentiation, and production of cytokines 
[161]. NK1R antagonists are attractive potential therapeu-
tic agents in the treatment of different neurodegenerative 
diseases [162]. CP-96,345, a selective NK1R antagonist, 
reduces the clinical and histological signs of EAE [163].

Moreover, substance P causes the migration of innate 
immune cells including neutrophils by stimulating the syn-
thesis of cytokines and the expression of cytokine receptors 
[164, 165]. In CNS trauma, pro-inflammatory cytokines 
[166] and immunomodulatory neuropeptides including 
substance P are elevated [167]. It has been shown that 
tachykinin antagonists by downregulation of cytokines can 
improve MS [152, 153, 168]. In disease states, substance P 
involves the maintenance of inflammation in MS by causing 
widespread infiltration of the CNS by macrophages, den-
dritic cells, T cells, and other immune cells [169, 170].

Endocannabinoids

Endocannabinoids, bioactive lipids of the brain [171], act 
on CB1 and CB2 receptors [172, 173]. Endocannabinoids 
have physiological roles in the immune system, metabolism, 
and locomotion [173, 174]. Endocannabinoids are released 
from activated T and B lymphocytes [175, 176]. Cannabi-
noid receptors are expressed in the ventral tegmental area 
and affect drug-seeking behavior [177]. CB2 cannabinoid 
receptors are expressed in cells of the immune system [173, 
178]. Cannabinoids suppress autoreactive lymphocytes 
[179] and T-cell function [180]. In a mouse model of IBD, a 
CB2 agonist improved the disease [181]. Endocannabinoids 
have been shown to suppress T cell activity [182].

Cannabinoids are used in medicine [183, 184] and immu-
nosuppression in autoimmune diseases [185] like rheumatic 
disease [186] and type 1 diabetes [187]. The endocannabi-
noid system (ECS) plays an important role in the immu-
nomodulation of inflammation in IBD. The manipulation 
of the system through agonists and antagonists suggests a 
potential therapeutic role for ECS in IBD [188]. Results of 
recent studies have shown the modulatory effect of the endo-
cannabinoid system in the control of symptoms and disease 
progression in MS. It has been widely reported that can-
nabinoids might be used to control MS symptoms and that 
they also might exert neuroprotective effects and slow down 
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disease progression [189]. In MS, cannabinoids are utilized 
for the treatment of spasticity but do not improve disease 
activity [190]. WOBE437, as a new class of ECS modulators 
and selective endocannabinoid reuptake inhibitors (SERIs), 
significantly reduced the severity of disease and accelerated 
recovery through CB1 and CB2 receptor-dependent mecha-
nisms in EAE (C57BL/6 mice) and may represent a possible 
new venue for an effective MS treatment [191].

Endorphins

Endorphins or endogenous opioids include mainly beta-
endorphin that is produced by the pituitary gland and the 
enkephalins that are produced more widely in the brain 
[192, 193]. Endorphins activate opioid receptors includ-
ing mu, delta, and kappa of which the mu receptor (the 
morphine receptor) is best recognized [192, 194, 195]. 
Endorphins modify the response to pain and stress [196]. 
Endorphins are produced following social happiness and 
exercise [197]. Lymphocytes also release opioids that 
involve in analgesia in inflammation [198]. Activation of 
opioid receptors on lymphocytes leads to immune suppres-
sion [199–201]. There are studies that β-endorphins could 
control autoimmunity [202] and may play a role in the inhi-
bition of carcinogenesis [203].

Conclusion

The pathogenesis of several IMIDs might involve immu-
nocompetent substances and neural mediators that link the 
immune and nervous systems. The expression of several 
receptors for different neurotransmitters on the immune cell 
surface suggested that neurotransmitters play a physiological 
role in the regulation of the immune response. Various evi-
dence has clearly shown a physiological role for neuroendo-
crine-derived control mechanisms of immune function and 
specifically the role of neurotransmitters in the regulation 
of inflammation. Understanding these mechanisms reveals 
possibilities to use targeted neuromodulation as a thera-
peutic approach for treating inflammatory and autoimmune 
disorders.
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