Masoud AbkenarTechnische Universität München | TUM · Faculty of Physics
Masoud Abkenar
PhD
About
5
Publications
787
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
182
Citations
Introduction
Additional affiliations
May 2014 - February 2015
Publications
Publications (5)
Active agents—like phoretic particles, bacteria, sperm, and cytoskeletal filaments in motility assays—show a large variety of motility-induced collective behaviors, such as aggregation, clustering, and phase separation. The behavior of dense suspensions of engineered phoretic particles and of bacteria during biofilm formation is determined by two q...
Active agents - like phoretic particles, bacteria, sperm, and cytoskeletal filaments in motility assays - show a large variety of motility-induced collective behaviors, such as aggregation, clustering and phase separation. The behavior of dense suspensions of phoretic particles and of bacteria during biofilm formation is determined by two principle...
Theories that are used to extract energy-landscape information from single-molecule pulling experiments in biophysics are all invariably based on Kramers' theory of thermally-activated escape rate from a potential well. As is well known, this theory recovers the Arrhenius dependence of the rate on the barrier energy, and crucially relies on the ass...
Theories that are used to extract energy-landscape information from single-molecule pulling experiments in biophysics are all invariably based on Kramers' theory of the thermally activated escape rate from a potential well. As is well known, this theory recovers the Arrhenius dependence of the rate on the barrier energy and crucially relies on the...
Collective behavior of self-propelled particles is observed on a microscale for swimmers such as sperm and bacteria as well as for protein filaments in motility assays. The properties of such systems depend both on their dimensionality and the interactions between their particles. We introduce a model for self-propelled rods in two dimensions that...