A single-element extension of antimatroids

Masataka Nakamura

Department of Systems Science, College of Arts & Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan

Received 5 October 1999; received in revised form 13 September 2000; accepted 19 June 2001

Abstract

An antimatroid is a family of sets which is accessible, closed under union, and includes an empty set. A number of examples of antimatroids arise from various kinds of shellings and searches on combinatorial objects, such as, edge/node shelling of trees, poset shelling, node-search on graphs, etc. (Discrete Math. 78 (1989) 223; Geom. Dedicata 19 (1985) 247; Greedoids, Springer, Berlin, 1980) [1–3]. We introduce a one-element extension of antimatroids, called a lifting, and the converse operation, called a reduction. It is shown that a family of sets is an antimatroid if and only if it is constructed by applying lifting repeatedly to a trivial lattice. Furthermore, we introduce two specific types of liftings, 1-lifting and 2-lifting, and show that a family of sets is an antimatroid of poset shelling if and only if it is constructed from a trivial lattice by repeating 1-lifting. Similarly, an antimatroid of edge-shelling of a tree is shown to be constructed by repeating 2-lifting, and vice versa. © 2002 Elsevier Science B.V. All rights reserved.

1. Posets, lattices and antimatroids

We first present the definition of terminology. For a partially ordered set \(\mathcal{P} = (S, \leq)\), an ideal of \(\mathcal{P}\) is a subset \(K\) of \(S\) such that if \(x \in K\) and \(y \leq x\) for \(y \in S\), then \(y \in K\). A filter is the complement set of an ideal. \([x, y] = \{z \in S: x \leq z, z \leq y\}\) is the interval between \(x\) and \(y\). The lattice consisting only of an empty set is called a trivial lattice, and \(2^n\) denotes the Boolean algebra of all the subsets of an \(n\)-element set. For distinct elements \(x, y \in S\) with \(x \leq y\), if \(x \leq z \leq y\) necessarily implies \(x = z\) or \(z = y\), then \(x\) is covered by \(y\). A poset is called a forest if every element is covered by at most one element. In a forest, we call a maximal element a treetop. For the treetops \(t_1, \ldots, t_k\) of a forest \(Q = (S, \leq)\), clearly their principal ideals \(T_i = \{x \in Q: x \leq t_i\}\) for \(i = 1, \ldots, k\) form a partition of \(S\).

E-mail address: nakamura@klee.c.u-tokyo.ac.jp (M. Nakamura).
Let E denote a non-empty finite set, and \mathcal{L} a family of subsets of E. For a set X and an element p, we write $X \setminus p$, $X \cup p$ instead of $X \setminus \{p\}$, $X \cup \{p\}$ for the sake of simplicity. Also, We let $\mathcal{L} - p = \{X \setminus p: X \in \mathcal{L}\}$ and for a new element q not in E, $\mathcal{L} + q = \{X \cup q: X \in \mathcal{L}\}$.

\mathcal{L} is called an antimatroid on E if it satisfies the following:

(L1) $\emptyset \in \mathcal{L}$,
(L2) if $X \neq \emptyset$ and $X \in \mathcal{L}$, then $X \setminus x \in \mathcal{L}$ for some $x \in X$,
(L3) if $X, Y \in \mathcal{L}$ and $X \not\subseteq Y$, then $Y \cup x \in \mathcal{L}$ for some $x \in X \setminus Y$.

The element of \mathcal{L} is called a feasible set. Under the assumption (L2), (L3) is equivalent to (L3').

(L3') if $X, Y \in \mathcal{L}$, then $X \cup Y \in \mathcal{L}$.

The family of all the ideals of a poset is an antimatroid, which we call a poset-shelling antimatroid.

For a tree $T = (V, E)$,
\[\mathcal{L} = \{X \subseteq E: T - X \text{ is connected}\} \] (1)

is an antimatroid called an edge-shelling antimatroid of T.

2. Lifting and reduction of antimatroids

We shall define a one-element extension of antimatroids. Let \mathcal{L}_1, \mathcal{L}_2 be the subfamilies of an antimatroid \mathcal{L}. Suppose that they satisfy the following:

(E0) $\mathcal{L}_1 \cup \mathcal{L}_2 = \mathcal{L}$,
(E1) \mathcal{L}_1 is an antimatroid,
(E2) \mathcal{L}_2 is a filter in \mathcal{L},
(E3) $\mathcal{L}_2 = \{Y \in \mathcal{L}: X \subseteq Y \text{ for some } X \in \mathcal{L}_1 \cap \mathcal{L}_2\}$.

Let p be a new element not in E. Then we can define a one-rank higher lattice by
\[(\mathcal{L} \uparrow p)_{(\mathcal{L}_1, \mathcal{L}_2)} = \mathcal{L}_1 \cup (\mathcal{L}_2 + p) = \mathcal{L}_1 \cup \{Y \cup p: Y \in \mathcal{L}_2\} \] (2)

which we call a lifting of \mathcal{L} at $(\mathcal{L}_1, \mathcal{L}_2)$ by p. We write $\mathcal{L} \uparrow p$ to denote $(\mathcal{L} \uparrow p)_{(\mathcal{L}_1, \mathcal{L}_2)}$ when no confusion may occur.

Then we have the following theorem.

Theorem 2.1. A lifting $(\mathcal{L} \uparrow p)_{(\mathcal{L}_1, \mathcal{L}_2)}$ is an antimatroid on a set $E \cup p$.

Proof. $\emptyset \in \mathcal{L} \uparrow p$ is obvious. To see (L2), take any $X \in \mathcal{L} \uparrow p$. If $X \in \mathcal{L}_1$, (L2) is clear. Otherwise suppose $X = X' \cup p$ and $X' \in \mathcal{L}$. If X' is not minimal in \mathcal{L}_2, there exists an element $x \in X'$ such that $X' \setminus x \in \mathcal{L}_2$, and we have $X \setminus x = (X' \setminus x) \cup p \in \mathcal{L} \uparrow p$.

If X' is minimal in \mathcal{L}_2, $X' \in \mathcal{L}_1$ follows from (E3). Hence $X \setminus p = X' \in \mathcal{L}_1 \subseteq \mathcal{L} \uparrow p$.

So (L2) holds. Finally we shall show (L3'). The only interesting case is that $X \in \mathcal{L}_1$ and $Y = Y' + p \in \mathcal{L}_2 + p$. By (E2) \mathcal{L}_2 is a filter, and we have $X \cup Y' \in \mathcal{L}_2$. Hence $X \cup Y = (X \cup Y') + p \in \mathcal{L} \uparrow p$. ■
Next we introduce the converse operation of lifting. Take an element \(p \in E \). Then we have a one-rank lower lattice

\[
\mathcal{L} \downarrow p = \mathcal{L} - p = \{X \setminus p : X \in \mathcal{L}\}.
\]

As is easy to observe, \(\mathcal{L} \downarrow p \) is an antimatroid on \(E \setminus p \). We call it a reduction of \(\mathcal{L} \) at \(p \).

The reduction and the lifting are the converse of each other.

Theorem 2.2. (a) For any \(p \in E \), we have

\[
((\mathcal{L} \downarrow p) \uparrow p)_{(\mathcal{L}_1, \mathcal{L}_2)} = \mathcal{L},
\]

where \(\mathcal{L}_1 = \{X : X \in \mathcal{L}, p \notin X\} \), \(\mathcal{L}_2 = \{X - p : X \in \mathcal{L}, p \in X\} \).

(b) Conversely, take a new element \(q \) not in \(E \) and suppose \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) satisfy (E0)–(E3). Then

\[
((\mathcal{L} \uparrow q)_{(\mathcal{L}_1, \mathcal{L}_2)}) \downarrow q = \mathcal{L}.
\]

Proof. We shall first show (a). Obviously, (E0) and (E1) hold for \(\mathcal{L}_1, \mathcal{L}_2 \) in \(\mathcal{L} \downarrow p \). To see that (E2) holds, take any \(X' \in \mathcal{L} \downarrow p = \mathcal{L}_1 \cup \mathcal{L}_2 \) such that \(X \subseteq X' \) for some \(X \in \mathcal{L}_2 \), and we shall show that \(X' \in \mathcal{L}_2 \). Suppose contrarily \(X' \notin \mathcal{L}_2 \). Then \(X' \in \mathcal{L}_1 \), so we have \(X' \in \mathcal{L} \), while \(X \cup p \in \mathcal{L} \) holds from the assumption. It follows from (L3) that \(X' \cup p \in \mathcal{L} \). Hence \(X' \in \mathcal{L}_2 \), a contradiction. Accordingly, \(\mathcal{L}_2 \) is a filter in \(\mathcal{L} \downarrow p \).

To show (E3), take any \(X \in \mathcal{L}_2 \). Let \(Z \) be a minimal element of \(\mathcal{L}_2 \) such that \(Z \subseteq X \). We shall show that \(Z \) belongs to \(\mathcal{L}_1 \). By assumption, \(Z' = Z \cup p \in \mathcal{L} \). By (L2), there exists \(a \in Z' = Z \cup p \) such that \(Z' \setminus a \in \mathcal{L} \). If \(a = p \), we have \(Z = Z' \setminus a \in \mathcal{L} \) and \(Z \in \mathcal{L}_1 \) follows. If \(a \neq p \), then \(Z' \setminus a = (Z \setminus a) \cup p \in \mathcal{L} \). Hence, we have \(Z \setminus a \in \mathcal{L}_2 \), which contradicts the minimality of \(Z \). Hence we have \(Z \setminus a \in \mathcal{L}_2 \), and (E3) follows. Since it is easy to check that the lifting of \(\mathcal{L} \downarrow p \) at \((\mathcal{L}_1, \mathcal{L}_2) \) is equal to \(\mathcal{L} \), (a) readily follows.

Similarly (b) can be shown.

From Theorems 2.1 and 2.2, we have the following.

Corollary 2.1. Let \(\mathcal{L} \) be a family of subsets of \(E \). Then \(\mathcal{L} \) is an antimatroid if and only if it can be constructed from a trivial lattice by applying lifting repeatedly.

Proof. Order arbitrarily the elements of \(E \) as \(p_1, p_2, \ldots, p_n \). Then \((\mathcal{L} \downarrow p_1 \downarrow p_2 \cdots) \downarrow p_n \) is a trivial lattice, and repeating the reverse lifting \(n \) times gives \(\mathcal{L} \).

3. Characterizations of poset-shelling antimatroids and edge-shelling antimatroids of trees

In this section, we shall present the characterizations of poset-shelling and tree edge-shelling antimatroids in terms of certain special liftings.
Let \(\mathcal{L} \) be an antimatroid on \(E \), and \(A \) a feasible set of \(\mathcal{L} \). When we define \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) by
\[
\mathcal{L}_1 = \mathcal{L}, \quad \mathcal{L}_2 = [A, E],
\]
then (E0)–(E3) are trivially satisfied, and the resultant lifting is a 1-lifting. If \(E \setminus A \in \mathcal{L} \) is further satisfied, we call it a self-dual 1-lifting.

The poset-shelling antimatroids are characterized by 1-lifting.

Theorem 3.1. Let \(\mathcal{L} \) be a family of subsets of \(E \). Then \(\mathcal{L} \) is a poset-shelling antimatroid if and only if it can be constructed from a trivial lattice by repeating 1-lifting.

Proof. First, suppose \(\mathcal{L} \) is a poset-shelling antimatroid on \(E \), we shall prove that \(\mathcal{L} \) can be constructed by 1-lifting. We use induction on \(n = |E| \). If \(n = 0 \), the assertion is trivial. Suppose the assertion holds until \(n = k \), and let \(\mathcal{L}' \) be a poset-shelling antimatroid on the underlying set \(E' \) with \(|E'| = k + 1 \). Take a maximal element \(p \) of \(E' \) and set \(A' = \{ x \in E' : x \leq p \} \). Then the reduction \(\mathcal{L} = \mathcal{L}' \setminus p \) is easily seen to be equal to the shelling antimatroid of the poset on \(E = E' \setminus p \). Obviously \(A = A' \setminus p \) is an ideal in \(E \).

Hence, we can define a 1-lifting \(\mathcal{L}'' = (\mathcal{L} \uparrow p)(\mathcal{L}, [A, E]) \) of \(\mathcal{L} \) and it is easy to check that \(\mathcal{L}'' \) is equal to \(\mathcal{L} \). This completes the induction step.

Conversely, suppose \(\mathcal{L} \) is constructed from a trivial lattice by applying 1-lifting \(n \) times. We shall show \(\mathcal{L} \) is a poset-shelling antimatroid. We use induction on \(n \). If \(n = 0 \) then the assertion is trivial. Let \(p \) be a new element not in \(E \). Take a feasible set \(A \in \mathcal{L} \), and consider 1-lifting \(\mathcal{L}' = (\mathcal{L} \uparrow p)(\mathcal{L}, [A, E]) \). We extend the partial order to that on \(E' = E \cup p \) by
\[
\begin{align*}
\{ x \leq p \text{ for } x \in A, \\
x \text{ and } p \text{ are incomparable in } E' \text{ for } x \in E \setminus A,
\end{align*}
\]
(In \(E' \), the other relations of elements are the same as those in \(E \).) Now it is an easy routine to check that \(\mathcal{L}' \) is the poset-shelling antimatroid of \((E', \leq) \). This completes the proof.

An antimatroid of shelling of a forest, which is a special case of posets, can be characterized by self-dual 1-lifting.

Corollary 3.1. \(\mathcal{L} \) is a poset-shelling antimatroid of a forest if and only if it is constructed from a trivial lattice by repeating self-dual 1-lifting.

Proof. We shall show the sufficiency part first. Let \(\mathcal{L} \) be an antimatroid on \(E \) obtained by repeating self-dual 1-lifting. We use induction on \(n = |E| \). The case of \(n = 0 \) is trivial. Take a feasible set \(A \in \mathcal{L} \) such that \(E \setminus A \) is also feasible. Let \(\mathcal{L}' = (\mathcal{L} \uparrow q)(\mathcal{L}, [A, E]) \) be the associated self-dual 1-lifting. By induction hypothesis, \(\mathcal{L} \) is a shelling antimatroid of a certain forest \(F = (E, \leq) \). Let \(S \) be the set of the treetops of \(F \). Since \(A \) and \(E \setminus A \) are both feasible sets, they are ideals of \(F \). So if \(x \leq y \in F \), then either \(x, y \in A \) or...
Suppose we have:

\[A = \bigcup_{t \in S_1} T(t), \quad E \setminus A = \bigcup_{t \in S_2} T(t), \]

where \(T(t) = \{ x \in E : x \leq t \} \). We define a relation between a new element \(q \) and the elements of \(E \) by

\[
\begin{align*}
 x \preceq q & \quad \text{if } x \in T(t) \text{ for some } t \in S_1, \\
 x \text{ and } q \text{ are incompatible} & \quad \text{otherwise.}
\end{align*}
\]

This gives a well-defined partial order on \(E \cup q \), which is again a forest. And it is easy to check that \(\mathcal{L}' \) is a shelling antimatroid of this forest on \(E \cup q \).

Next we shall show the necessity part. Let \(\mathcal{L} \) be a shelling antimatroid of a forest \(F = (E, \preceq) \). And we shall show that \(\mathcal{L} \) can be constructed by self-dual 1-lifting. We use induction on \(n = |E| \). The case of \(n = 0 \) is trivial. Let \(S \) be the set of the treetops of \(F \). Take a treetop \(p \in S \), and let \(T \) be the set of elements covered by \(p \) in \(F \). Deleting \(p \) from \(F \), we have a forest \(F' = (E', \preceq') \) where \(E' = E \setminus p \). Then, clearly, the post-shelling antimatroid of \(F' \) is equal to the reduction \(\mathcal{L}' = \mathcal{L} \setminus p \). By induction hypothesis, \(\mathcal{L}' \) is constructed from a trivial lattice applying self-dual 1-lifting \(n-1 \) times. The set of treetops of \(F' \) is a disjoint union of \(S \setminus p \) and \(T \). Then \(A = \{ x \in E' : x \preceq t \text{ for some } t \in T \} \) and \(E \setminus A = \{ x \in E' : x \preceq s \text{ for some } s \in S \setminus p \} \) are ideals of \(F' \) and hence feasible sets of \(\mathcal{L}' \). Then the lifting \((\mathcal{L}' \uparrow p)_{(\mathcal{L}', [A, E'])} \) is a self-dual 1-lifting, and is equal to the original \(\mathcal{L} \). Hence, the induction step is completed. \(\square \)

Now we introduce another type of lifting. Suppose \(A \) and \(E \setminus A \) are both non-empty feasible sets of \(\mathcal{L} \). Then the families

\[
\mathcal{L}_1 = \mathcal{L}, \quad \mathcal{L}_2 = [A, E] \cup [E \setminus A, E]
\]

satisfy conditions (E0)–(E3), and define a lifting of \(\mathcal{L} \), which we call a 2-lifting.

The 2-lifting characterizes the edge-shelling antimatroids of trees. More precisely, we have:

Theorem 3.2. Suppose \(k \geq 0, m \geq 1 \). \(\mathcal{L} \) is an antimatroid of edge-shelling of a tree of \(m \) end edges and \(k \) interior edges if and only if \(\mathcal{L} \) can be constructed from a Boolean algebra \(2^{[m]} \) by applying 2-lifting \(k \) times.

Proof. Sufficiency part: Suppose \(\mathcal{L} \) is an antimatroid obtained by applying 2-lifting \(k \) times starting from a Boolean algebra \(2^{[m]} \). We shall show that \(\mathcal{L} \) is an edge-shelling antimatroid of a tree. We use induction on \(k \), and the case for \(k = 0 \) is obvious since the edge-shelling antimatroid of a star graph of \(m \) edges is just a Boolean algebra \(2^{[m]} \). (Here a star graph is a tree consisting of \(m + 1 \) vertices \(\{w, u_1, \ldots, u_m\} \) and \(m \) edges \(\{wu_1, \ldots, wu_m\} \).) Suppose \(k \geq 1 \). Let \(\mathcal{L}' \) be an antimatroid constructed from \(\mathcal{L} \) by 2-lifting. That is, let \(A \) be a non-empty feasible set of \(\mathcal{L} \) such that \(E \setminus A \) is also a non-empty feasible set, and suppose \(\mathcal{L}' = (\mathcal{L} \uparrow p)_{(\mathcal{L}, [A, E] \cup [E \setminus A, E])} \). By induction
hypothesis, \mathcal{L} is an edge-shelling antimatroid of a tree $T = (V,E)$. Since A and $E \setminus A$ are non-empty feasible sets, the subgraphs T_A and $T_{E\setminus A}$ spanned by A and $E \setminus A$ in T are both connected subgraphs. And if $V(T_A)$ and $V(T_{E\setminus A})$ have two vertices in common, then there would be a path between them in A as well as another path in $E \setminus A$, and we have a circuit in T, which is a contradiction. Hence $V(T_A)$ and $V(T_{E\setminus A})$ have a unique common vertex, say v. Clearly, v is not an end-node. Let $X = \{x \in V(T_A): xv \in E\}$ and $Y = \{y \in V(T_{E\setminus A}): yv \in E\}$. We extend tree T to T' by replacing v with two new nodes v_1, v_2 and inserting a new edge $p = v_1v_2$, and we put edges uv_1 for $u \in X$ and uv_2 for $u \in Y$. We denote the resultant tree by $T' = ((V\setminus \{v\}) \cup \{v_1, v_2\}, E \cup \{p\})$, and the edge-shelling antimatroid of tree T' is denoted by $\mathcal{L}_{T'}$. It is an easy routine to check that $\mathcal{L}_{T'}$ is equal to \mathcal{L}'. This completes the proof of sufficiency.

Necessity part: Suppose \mathcal{L} is an edge-shelling antimatroid of a tree $T = (V,E)$ with m end-edges and k interior edges. We use induction on k. If $k = 0$, the assertion is obvious. Suppose $k \geq 1$. Take any interior edge $p = xy$ of T. Deleting edge p from T gives two separate subtrees T_1 and T_2. Let A_1, A_2 be the set of edges of T_1, T_2, respectively. Let T/p denote the tree obtained from T by contracting edge p. By induction hypothesis, the edge-shelling antimatroid of T/p, which we denote by \mathcal{L}_p, is constructed from a Boolean algebra $2^{[m]}$ applying 2-lifting $k - 1$ times. Obviously we have $\mathcal{L}_p = \mathcal{L} \downarrow p$. Also it is easy to show that

$$\mathcal{L} = ((\mathcal{L} \downarrow p) \uparrow p) \cup [A_1,E \setminus p] \cup [A_2,E \setminus p]).$$

That is, \mathcal{L} is constructed from $\mathcal{L} \downarrow p$ by applying 2-lifting once. This completes the step of induction and the proof is completed.

References