Masataka Tsuda

Masataka Tsuda
Tohoku University | Tohokudai

About

206
Publications
15,197
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,142
Citations

Publications

Publications (206)
Article
Bacterial iron-sulfur (Fe-S) clusters are essential cofactors for many metabolic pathways, and Fe-S cluster-containing proteins (Fe-S proteins) regulate the expression of various important genes. However, biosynthesis of such clusters has remained unknown in genus Burkholderia. Here, we clarified that B. multivorans ATCC 17616 relies on the ISC sys...
Article
Full-text available
Conjugative transfer of bacterial plasmid is one of the major mechanisms of horizontal gene transfer, which is mediated by direct contact between donor and recipient cells. Gene expression of a conjugative plasmid is tightly regulated mostly by plasmid-encoded transcriptional regulators, but it remains obscure how differently plasmid genes are expr...
Article
Sphingobium japonicum strain UT26, whose γ-hexachlorocyclohexane-degrading ability has been studied in detail, is a typical aerobic and heterotrophic bacterium that needs organic carbon sources for its growth, and cannot grow on a minimal salt agar medium prepared without adding any organic carbon sources. Here, we isolated a mutant of UT26 with th...
Article
Full-text available
Repairing of DNA termini is a crucial step in a variety of DNA handling techniques. In this study, we investigated mechanically-sheared DNA 3’-ends (MSD3Es) to establish an efficient repair method. As opposed to the canonical view of DNA terminus generated by sonication, we showed that approximately 47% and 20% of MSD3Es carried a phosphate group a...
Article
IncP-9 plasmids are important mobile genetic elements for the degradation of various aromatic hydrocarbons. Elucidation of conjugative transfer of such plasmids is expected to greatly contribute to our understanding of its role in the bioremediation of polluted environments. The present study mainly focused on the conjugation system of NAH7, a well...
Article
Full-text available
We determined the complete genome sequence of Thalassococcus sp. strain S3, a marine carbazole degrader isolated from Tokyo Bay in Japan that carries genes for aerobic anoxygenic phototrophy. Strain S3 has a 4.7-Mb chromosome that harbors the carbazole-degradative gene cluster and three (96-, 63-, and 46-kb) plasmids.
Article
Bacterial strains capable of degrading man‐made xenobiotic compounds are good materials to study bacterial evolution toward new metabolic functions. Lindane (γ‐hexachlorocyclohexane, γ‐HCH, or γ‐BHC) is an especially good target compound for the purpose, since it is relatively recalcitrant but can be degraded by a limited range of bacterial strains...
Article
In natural environments contaminated by recalcitrant organic pollutants, efficient biodegradation of such pollutants has been suggested to occur through the cooperation of different bacterial species. A phenanthrene-degrading bacterial consortium, MixEPa4, from polluted soil was previously shown to include a phenanthrene-degrading strain, Mycobacte...
Article
Full-text available
Here, we present the complete genome sequence of Azoarcus sp. strain DN11, a denitrifying bacterium capable of anaerobic benzene degradation. The DN11 genome is 4,956,835 bp long with a G+C content of 66.3%. Genome analysis suggested the possibility that DN11 utilizes three proposed pathways for anaerobic benzene degradation, namely, methylation, h...
Article
Full-text available
Bacillus licheniformis strain TAB7 degrades short-chain fatty acids responsible for offensive odor in manure and is used as a deodorant in a compost-deodorizing technology. Here, we report the complete genome sequence of strain TAB7, which consists of a 4.37-Mb chromosome and two plasmids (42 kb and 31 kb).
Chapter
Bacterial strains capable of degrading man-made xenobiotic compounds are thought to have evolved to degrade such compounds within only several decades. Various sphingomonad strains belonging to Alphaproteobacteria were isolated that degrade highly recalcitrant compounds including man-made xenobiotics, indicating the versatility of this bacterial gr...
Article
Full-text available
We determined the complete genome sequence of Erythrobacter sp. strain KY5, a bacterium isolated from Tokyo Bay and capable of degrading carbazole. The genome consists of a 3.3-Mb circular chromosome that carries the gene clusters involved in carbazole degradation and biosynthesis of the photosynthetic apparatus of aerobic anoxygenic phototrophic b...
Article
Full-text available
In this study, we investigated CIS reaction (clamping-mediated incorporation of single-stranded DNA with concomitant DNA syntheses) of Moloney murine leukaemia virus reverse transcriptase (MMLV-RT), and established a set of conditions with which single-stranded DNA is ligated to a G-tailed model substrate DNA at efficiencies close to 100%. Prior to...
Article
Plasmid vector and allelic exchange mutagenesis systems were established for the genetic analysis of a phenanthrene-degrading mycobacterial strain, Mycobacterium sp. EPa45. Successful application of these systems revealed the necessity of the EPa45 phdI gene for the degradation of 1-hydroxy-2-naphthoate, which has been proposed to be an intermediat...
Article
Full-text available
In a previous study, we showed that MMLV-RT has a strong terminal transferase activity, and that the C-, G-, and T-tailing activities are enhanced by dGMP, dCMP, and dAMP, respectively. In this study, to achieve faster reaction and higher tailing efficiency, we screened other compounds for the ability to enhance the tailing activities of MMLV-RT, a...
Article
Iron and heme play very important roles in various metabolic functions in bacteria, and their intracellular homeostasis is maintained because high concentrations of free forms of these molecules greatly facilitate the Fenton reaction-mediated production of large amounts of reactive oxygen species that severely damage various biomolecules. The ferri...
Article
Full-text available
We report the complete genome sequence of Bradyrhizobium diazoefficiens USDA 122, a nitrogen-fixing soybean symbiont. The genome consists of a 9.1 Mb circular chromosome, and 8,551 coding sequences (CDSs) were predicted on the genome. The sequence will provide insight into the evolution of rhizobial genome, and the symbiotic compatibility with host...
Article
Moloney murine leukemia virus reverse transcriptase (MMLV-RT) is a widely used enzyme for cDNA synthesis. Here we show that MMLV-RT has a strong template-independent polymerase activity using blunt DNA ends as substrate that generates 3′ overhangs of A, C, G, or T. Nucleotides were appended efficiently in the order A > G > T > C, and tail lengths v...
Article
Importance: Various studies have strongly suggested an important contribution of conjugative transfer of catabolic plasmids to the rapid and wide dissemination of the plasmid-loaded degradation genes to microbial populations. Degradation genes on such plasmids are often loaded on transposons, which can be inserted into the genomes of the recipient...
Article
Full-text available
γ-Hexachlorocyclohexane (γ-HCH) is a recalcitrant man-made chlorinated pesticide. Here, the complete genome sequences of four γ-HCH-degrading sphingomonad strains, which are most unlikely to have been derived from one ancestral γ-HCH degrader, were compared. Together with several experimental data, we showed that (i) all the four strains carry almo...
Article
Full-text available
The complete genome sequence of Sphingopyxis terrae strain 203-1, which is capable of growing on polyethylene glycol, was determined. The genome consisted of a chromosome with a size of 3.98 Mb and a plasmid with a size of 4,328 bp. The strain was deposited to the National Institute of Technology and Evaluation (Tokyo, Japan) under the number NBRC...
Article
Full-text available
We determined the complete genome sequence of Sphingopyxis macrogoltabida strain 203N, a polyethylene glycol degrader. Because the PacBio assembly (285× coverage) seemed to be full of nucleotide-level mismatches, the Newbler assembly of MiSeq mate-pair and paired-end data was used for finishing and the PacBio assembly was used as a reference. The P...
Article
Full-text available
Key message: γ-HCH was successfully degraded using LinA-expressed transgenic hairy root cultures of Cucurbita moschata . Fusing an endoplasmic reticulum-targeting signal peptide to LinA was essential for stable accumulation in the hairy roots. The pesticide γ-hexachlorocyclohexane (γ-HCH) is a persistent organic pollutant (POP) that raises public...
Article
Full-text available
Nonrhizobial Methylobacterium spp. inhabit the phyllosphere of a wide variety of plants. We report here the complete genome sequence of Methylobacterium sp. AMS5, which was isolated from a soybean stem. The information is useful for understanding the molecular mechanisms of the interaction between nonrhizobial Methylobacterium spp. and plants.
Article
Complete genome sequence of Burkholderia caribensis Bcrs1W, isolated from a phenanthrene-degrading mixed culture, was determined. The genomic information of Bcrs1W will be beneficial in elucidation of the mechanisms of its positive effects on phenanthrene degradation by co-residing Mycobacterium sp. Epa45, and in exploiting their degradation potent...
Article
Full-text available
Here, we report the complete genome sequence of a γ-hexachlorocyclohexane (γ-HCH) degrader, Sphingobium sp. strain TKS, which was isolated from a γ-HCH-degrading microbial community. The genome of TKS consists of two chromosomes and nine plasmids. The lin genes for conversion of γ-HCH to β-ketoadipate are dispersed on chromosome 1 and three out of...
Article
Full-text available
Strain EY-1 was isolated from a microbial consortium growing on a random polymer of ethylene oxide and propylene oxide. Strain EY-1 grew on polyethylene glycol and polypropylene glycol and identified as Sphingopyxis macrogoltabida . Here, we report the complete genome sequence of Sphingopyxis macrogoltabida EY-1. The genome of strain EY-1 is compri...
Article
Full-text available
Microbacterium (formerly Corynebacterium ) sp. No. 7 was isolated from activated sludge as a polypropylene glycol (PPG)-assimilating bacterial strain. Its oxidative PPG degradation has been proposed on the basis of PPG dehydrogenase activity and the metabolic products. Here, we report the complete genome sequence of Microbacterium sp. No. 7. The ge...
Article
Full-text available
Sphingopyxis macrogoltabida strain 203, the type strain of the species, grew on polyethylene glycol (PEG) and has been deposited to the stock culture at the Biological Resource Center, National Institute of Technology and Evaluation (NITE), under the number NBRC 15033. Here, we report the complete genome sequence of strain NBRC 15033. Unfortunately...
Article
Full-text available
The phenanthrene-degrading Burkholderia sp. HB-1 was isolated from a phenanthrene-enrichment culture seeded with a pristine farm soil sample. We report the complete genome sequence of HB-1, which has been deposited to the stock culture (NBRC 110738) at Biological Resource Center, National Institute of Technology and Evaluation (NITE), Tokyo, Japan....
Article
rRNA is essential for life because of its functional importance in protein synthesis. The rRNA (rrn) operon encoding 16S, 23S, and 5S rRNAs is located on the "main" chromosome in all bacteria documented to date and is frequently used as a marker of chromosomes. Here, our genome analysis of a plant-associated alphaproteobacterium, Aureimonas sp. AU2...
Article
Full-text available
Strain 113P3 was isolated from activated sludge and identified as a polyvinyl alcohol (PVA)-degrading Pseudomonas species; it was later reidentified as Sphingopyxis species. Only three genes are directly relevant to the metabolism of PVA and comprise the pva operon, which was deposited as accession no. AB190228. Here, we report the complete genome...
Article
Full-text available
Soil microbial communities have great potential for bioremediation of recalcitrant aromatic compounds. However, it is unclear which taxa and genes in the communities, and how they contribute to the bioremediation in the polluted soils. To get clues about this fundamental question here, time-course (up to 24 weeks) metagenomic analysis of microbial...
Article
Full-text available
Haloalkane dehalogenases (HLDs) convert halogenated compounds to corresponding alcohols, halides, and protons. They belong to α/β-hydrolases, and their principal catalytic mechanism is SN2 nucleophilic substitution followed by the addition of water. Since HLDs generally have broad and different substrate specificities, they have various biotechnolo...
Article
Full-text available
A phenanthrene degrader, Mycobacterium sp. EPa45, was isolated from a phenanthrene-degrading consortium. Here, we report the complete genome sequence of EPa45, which has a 6.2-Mb single circular chromosome. We propose a phenanthrene degradation pathway in EPa45 based on the complete genome sequence.
Article
Full-text available
Metagenomes contain the DNA from many microorganisms, both culturable and non-culturable, and are a potential resource of novel genes. In this study, a 5.2-Gb metagenomic DNA library was constructed from a soil sample (artificially polluted with four aromatic compounds, i.e., biphenyl, phenanthrene, carbazole, and 3-chlorobenzoate) in Escherichia c...
Article
Full-text available
Two haloalkane dehalogenases, LinBUT and LinBMI, each with 296 amino acid residues, exhibit only seven amino acid residue differences between them, but LinBMI's catalytic performance towards β-hexachlorocyclohexane (β-HCH) is considerably higher than LinBUT's. To elucidate the molecular basis governing this difference, intermediate mutants between...
Article
α-Proteobacterial strains belonging to the so-called sphingomonads group degrade various highly recalcitrant compounds, including xenobiotics, but generally each strain degrades only a limited set of compounds, suggesting that sphingomonads tend to be specialists for the degradation of extremely recalcitrant compounds. In this chapter, the appearan...
Chapter
IVET (in vivo expression technology) and STM (signature-tagged mutagenesis) are suitable methods for revealing genes that are induced in soil and are essential in soil, respectively. These methods are potentially advantageous over newer methods, such as microarray and RNA-seq, because they allow analyses of bacteria under non-sterile conditions. Ho...
Article
Full-text available
To identify bacterial genetic determinants for fitness in a soil environment, signature-tagged mutagenesis (STM) was applied to a soil bacterium, Burkholderia multivorans ATCC 17616. This strain was randomly mutagenized by each of 36 different signature-tagged plasposon, and 36 mutants with different tags were grouped as a set. A total of 192 sets...
Article
Full-text available
Pseudomonas aeruginosa MTB-1 does not degrade gamma-hexachlorocyclohexane (γ-HCH), but this bacterium persistently coexists with a γ-HCH-degrading strain, Sphingomonas sp. MM-1, in a microbial community enriched by the technical formulation of HCH. Here we report the complete MTB-1 genome sequence, with a 6.6-Mb circular chromosome.
Article
Full-text available
Geobacillus sp. strain JF8 (NBRC 109937) utilizes biphenyl and naphthalene as sole carbon sources and degrades polychlorinated biphenyl (PCB) at 60°C. Here, we report the complete nucleotide sequence of the JF8 genome (a 3,446,630-bp chromosome and a 39,678-bp plasmid). JF8 has the smallest genome among the known PCB degraders.
Article
Full-text available
Pseudomonas sp. strain TKP does not degrade γ-hexachlorocyclohexane (γ-HCH), but it persistently coexists with the γ-HCH-degrading Sphingobium sp. strain TKS in a mixed culture enriched by γ-HCH. Here, we report the complete genome sequence of strain TKP, which consists of one circular chromosome with a size of 7 Mb.
Article
Bacterial capabilities to degrade various recalcitrant compounds are often encoded on mobile genetic elements (MGEs) such as transposons, plasmids, and integrative and conjugative elements (ICEs). The movement of the transposons and consequently induced rearrangements of genome in a cell and the intercellular transfer of the latter two MGEs greatly...
Book
"Biodegradative Bacteria" highlights the novel nature of bacterial cell functions in the field of biodegradation by putting them into three parts: (1) Genetic and genomic systems, (2) Degradative enzyme systems, and (3) Bacterial behavior in natural environmental systems. The first part of the book includes cell functions as degradative machinery,...
Article
Full-text available
Geobacillus sp. strain JF8 (NBRC 109937) utilizes biphenyl and naphthalene as sole carbon sources and degrades polychlorinated biphenyl (PCB) at 60°C. Here, we report the complete nucleotide sequence of the JF8 genome (a 3,446,630-bp chromosome and a 39,678-bp plasmid). JF8 has the smallest genome among the known PCB degraders.
Article
Pseudomonas aeruginosa MTB-1 does not degrade gamma-hexachlorocyclohexane (γ-HCH), but this bacterium persistently coexists with a γ-HCH-degrading strain, Sphingomonas sp. MM-1, in a microbial community enriched by the technical formulation of HCH. Here we report the complete MTB-1 genome sequence, with a 6.6-Mb circular chromosome.
Article
Pseudomonas sp. strain TKP does not degrade γ-hexachlorocyclohexane (γ-HCH), but it persistently coexists with the γ-HCHdegrading Sphingobium sp. strain TKS in a mixed culture enriched by γ-HCH. Here, we report the complete genome sequence of strain TKP, which consists of one circular chromosome with a size of 7 Mb.
Article
Full-text available
The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S...
Article
Full-text available
Ralstonia pickettii strain DTP0602 utilizes 2,4,6-trichlorophenol as its sole carbon and energy source. Here, we report the complete genome sequence of strain DTP0602, which comprises three chromosomes and no plasmids. We also found that the two had gene clusters responsible for the degradation of 2,4,6-trichlorophenol are located on the 2.9-Mb chr...
Article
Conjugative plasmid transfer systems have been well studied, but very little is known about the recipient factors that control horizontal transmission. A self-transmissible IncP-9 naphthalene-catabolic plasmid, NAH7, carries the traF deletion gene, whose product is considered to be a host-range modifier of NAH7, since its traF mutant (NAH7dF) is tr...
Article
Full-text available
γ-Hexachlorocyclohexane (γ-HCH) is a man-made chlorinated insecticide that has caused serious environmental problems. Here, we report the complete genome sequence of the γ-HCH-degrading bacterium Sphingomonas sp. strain MM-1, which consists of one chromosome and five plasmids. All the specific lin genes that are almost identical to those of Sphingo...
Article
Full-text available
The enzymes LinBUT and LinBMI (LinB from Sphingobium japonicum UT26 and Sphingobium sp. MI1205, respectively) catalyze the hydrolytic dechlorination of β-hexachlorocyclohexane (β-HCH) and yield different products, 2,3,4,5,6-pentachlorocyclohexanol (PCHL) and 2,3,5,6-tetrachlorocyclohexane-1,4-diol (TCDL), respectively, despite their 98% identity in...
Article
Full-text available
We report the complete genome sequence of Acidovorax sp. strain KKS102, a polychlorinated-biphenyl-degrading strain isolated from a soil sample in Tokyo. The genome contains a single circular 5,196,935-bp chromosome and no plasmids.
Article
Extracellular alginate lyase (alyA) has an important role in the use of alginate in the marine bacterial strain Pseudoalteromonas atlantica AR06. Green fluorescent protein (GFP) is a convenient, useful tool for visualization of gene expression, and here we introduced the gfp gene at the end of alyA by homologous recombination in AR06. The gfp gene...
Article
Activity-based screening techniques were applied to clone a gene encoding γ-hexachlorocyclohexane (γ-HCH) dehydrochlorinase with its flanking regions from a cosmid-based library of DNA that was extracted from a γ-HCH-added suspension of HCH-contaminated soil. A total of 11 cosmid clones showing the γ-HCH dehydrochlorinase activity were obtained thr...
Article
Full-text available
Pseudomonas putida KT2440 is an ideal soil bacterium for expanding the range of degradable compounds via the recruitment of various catabolic plasmids. In the course of our investigation of the host range of IncP-7 catabolic plasmids pCAR1, pDK1 and pWW53, we found that the IncP-7 miniplasmids composed of replication and partition loci were excepti...
Article
Full-text available
A polychlorinated biphenyl (PCB)/biphenyl degradation gene cluster in Acidovorax sp. strain KKS102, which is very similar to that in Tn4371 from Cupriavidus oxalaticus A5, was transferred to several proteobacterial strains by conjugation. The mobilized DNA fragment consisted of 61,807 bp and carried genes for mating-pair formation (mpf), DNA transf...
Article
In our recent screen for soil-induced genes, the expression of andA operon (andAcAdAbAa) for anthranilate catabolism in Burkholderia multivorans ATCC 17616 was found to increase dramatically in a soil sample (Nishiyama et al., Environ Microbiol 12: 2539, 2010). The operon was preceded by andR encoding a putative transcriptional regulator for the an...
Article
Full-text available
Fur (ferric uptake regulator) is an iron-responsive transcriptional regulator in many bacterial species, and the fur mutant of Burkholderia multivorans ATCC 17616 exhibits pleiotropic phenotypes, such as an inability to efficiently use several carbon sources, as well as high sensitivity to hydrogen peroxide (H(2)O(2)), paraquat (a superoxide-produc...
Article
The complete genome sequencing of a γ-hexachlorocyclohexane-degrading strain, Sphingobium japonicum UT26, revealed that the genome consists of two circular chromosomes [with sizes of 3.5 Mb (Chr1) and 682kb (Chr2)], a 191-kb large plasmid (pCHQ1), and two small plasmids with sizes of 32 and 5kb. The lin genes are dispersed on Chr1, Chr2, and pCHQ1....