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Abstract 

Micro-electromechanical-system (MEMS) based actuators, which transduce certain domains 

of energy into mechanical movements in the microscopic scale, are increasingly contributing 

to the areas of biomedical engineering and healthcare applications. They are enabling new 

functionalities in biomedical devices through their unique miniaturized features. An effective 

selection of a particular actuator, among a wide range of actuator types available in the 

MEMS field, requires to be made through assessment of many factors involved in both the 

actuator itself and a target application. This paper presents an overview of the state-of-the-art 

MEMS actuators that have been developed for biomedical applications. The actuation 

methods, working principle, and imperative features of these actuators are discussed along 

with their specific applications. An emphasis of this review is placed on temperature-

responsive, electromagnetic, piezoelectric, and fluid-driven actuators towards various 

application areas including lab-on-a-chip, drug delivery systems, cardiac devices, and 

surgical tools. It also highlights the key issues of MEMS actuators in light of biomedical 

applications.  
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1. Introduction 

The rapid development of micro-electromechanical-system (MEMS) technologies has 

increasingly provided means to miniaturize and advance various biomedical devices and 

bioMEMS [1-4]. The applications of these MEMS-based devices include cardiac devices [5, 

6], microneedles [7, 8], lab-on-a-chip devices for fast chemical/biological analysis [9-11], 

microsurgical robots [12-16], and in-vivo drug delivery systems for drug release with 

precision dosage and timing control [17-20]. MEMS actuators are widely used to realize 

these types of devices and enable accurate control of them [21]. Serving as core architectural 

elements, MEMS actuators have emerged as a promising technology that plays a vital role in 

enabling a wide range of biomedical devices. Among existing MEMS actuators, those with 

thermoresponsive [22], electromagnetic [23], piezoelectric [24], thermopneumatic [25], and 

pneumatic [26] mechanisms have been some of the representative types widely used for 

biomedical applications. Each of these actuator types possesses attractive features. For 

instance, shape memory alloys (SMAs), a type of smart materials that respond to temperature, 

offer high work density, large actuation force and displacement, simple structural design, 

resistance to corrosion, and biocompatibility [27-29]. Electromagnetic actuators generally 

provide large displacement, fast dynamic response, and an ability of low-voltage and remote 

actuation [30-32]. Piezoelectric actuators are often used in ultra-precision and high-speed 

applications due to their ability of nano-scale actuation, quick response, and self-locking at 

power-off state [33-36]. Pneumatic microactuators are well-known for simple structure, high 

flexibility, high force per unit volume, high energy density, and low cost [37-41].  

The capabilities of MEMS actuators are continuously growing with a great promise for 

diverse future applications. As those actuators exhibit different characteristics and 

shortcomings, however, a particular type should be wisely selected and applied for a targeted 

biomedical device while assessing the requirements involved in the device and its 

environment. In this paper, the working principles, designs, characteristics, and their key 

applications of MEMS actuators are comprehensively discussed with an aim to aid further 

development of bioMEMS and other biomedical microdevices functionalized by the 

actuators. This review is structured as follows: The working principles of thermoresponsive, 

electromagnetic, piezoelectric, and fluid-driven microactuators are discussed in Section 2. 

Section 3 presents critical applications of these actuators, including lab-on-a-chip, drug 

delivery systems, cardiac devices, and surgical and endoscopic tools. The review is 
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concluded with a discussion of major factors toward enabling elevated performance of these 

actuators in Section 4. 

 

2. Types of Biomedical MEMS Actuators 

2.1. Thermoresponsive Actuators 

SMAs, shape memory polymers (SMPs), and certain types of hydrogels are classified as 

smart materials that have an ability of shape recovery when triggered by an environmental 

stimulus. They commonly respond to heat, whereas specific responsive hydrogels also trigger 

with others such as radiation, moisture, pH level, and magnetic and electric fields [42-47]. 

This section reviews these thermoresponsive smart materials regarding their phase transition 

modes and characteristics that allow them to work as actuators in the micro domain. 

2.1.1 SMA 

The actuation of SMAs is based on the principle of a shape-memory effect called martensitic-

austenitic transformation. When a SMA is in its martensite phase, the alloy is in the form of 

monoclinic crystals, which makes it more flexible and hence more easily deformed. 

Following the deformation of the material’s crystalline orientation, cubic crystals are 

constructed within the molecular arrangement, while the material becomes rigid and hard to 

deform above the austenite temperature upon heating. When a SMA is cooled in the absence 

of a load, the materials crystal structure follows twinned martensite. During this phase, the 

SMA can be deformed by applying an external force or by employing a bias spring to achieve 

reversible motion. The changes in the crystalline state of SMA are illustrated in Figure 1a 

[48]. There are several phase transformation temperatures that must be considered when 

selecting a SMA with respect to its applications. During the shape recovery process, the 

transformation from the martensite cold state to the austenite hot state begins at the austenite 

starting temperature and ends at the austenite finishing temperature. Meanwhile, the 

transformation from the hot austenite phase to the cold martensite phase begins at the 

martensite starting temperature and ends at the martensite finishing temperature. The SMA 

typically consists of a few elements, and the composition level among these elements 

determines the transformation temperature. In other words, the elemental composition can be 

adjusted to achieve a specific transformation temperature depending on the application. 

SMA actuators in the MEMS area are typically fabricated in a form of patterned thin 

film or bulk-micromachined structures [49-59]. They possess general attractive attributes 

https://doi.org/10.1088/1361-6439/ab8832


The published version is available at https://doi.org/10.1088/1361-6439/ab8832  

4 

including large displacement, large force, high mechanical robustness, and corrosion-resistant 

[60-66]. The NiTi alloy known as Nitinol is one of the most widely used SMA materials for 

biomedical applications owing to its high biocompatibility that facilitates the application for 

implantable devices such as surgical tools, cardiac devices, and drug delivery systems [22, 

56, 67-71]. General disadvantages of SMA actuators lie in relatively slow temporal response 

as well as high power consumption when actuated with self-heating by passing an electrical 

current to the material.  

2.1.2 SMP 

The SMPs have gained significant interest in biomedical applications due to its general  

features such as structural flexibility, large strains, low density, tunable transition 

temperature, and biodegradable properties [72, 73]. These features make them suitable for 

applications in endovascular and drug delivery devices [74, 75]. The thermoresponsive SMP 

exhibits a shape-memory effect based on the polymer’s dual-segment system comprised of 

cross-links and switching segments. The cross-links determine the permanent shape of the 

polymer whereas the switching segments coupled with transition temperature fix the 

temporary shape. The SMP is stiff when its temperature is below the transition temperature, 

whereas heating it over the transition temperature makes it relatively soft. For shape setting, 

an external force must be applied to an SMP while it is heated above the transition 

temperature. This step causes the switching segments to fix the molecular chain positions. 

Afterwards, the SMP is cooled while removing the external force to result in a memorized 

 

Figure 1. Phase transformations of shape-memory materials. (a) Changes in the crystalline 

orientation of SMA at different phases. Reproduced with permission [48]. Copyright 2016, 

Elsevier. (b) Shape recovery process in SMP. Reproduced with permission [76]. Copyright 

2016, Wiley-VCH. 
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shape for the polymer. Applying heat to the SMP induces recovery of the memorized shape 

through the shape memory effect as illustrated in Figure 1b [76]. Although this actuator 

possesses the aforementioned beneficial properties, SMPs often suffer from slow response 

and low recovery stress.  

2.1.3 Temperature-Sensitive Hydrogels 

Hydrogels are three-dimensional polymeric networks with hydrophilic structures that allow 

the absorption of a large amount of aqueous solution in the networks [77]. Depending on the 

type of cross-linking between polymers, some of them display mass reversible changes in 

response to physical or chemical stimulus [77]. Poly(N-isopropyl acrylamide), or PNIPAM in 

short, is a thermoresponsive hydrogel that changes its size at a phase transition temperature 

called the lower critical solution temperature (LCST) in the solution [78]. When temperature 

of PNIPAM hydrogel is raised above the LCST, the material shrinks by releasing the uptake 

solution, whereas reducing the temperature reverses the process [79]. Different material 

compositions of PNIPAM can be used to modify its LCST level to tailor it to a specific 

application [80]. Besides intrinsic phase transition behavior, the hydrogels also possess 

distinct attributes such as tunable mechanical and degradation features, sensitivity towards 

stimuli, and ability to conjugate with hydrophilic and hydrophobic therapeutic compounds. 

Additionally, PNINAM can be synthesized to be ultraviolet-light sensitive in its 

polymerization, which enables precise patterning and complex structure formation of the 

polymer through a photolithographic process [81]. These features have promoted the 

application of PNIPAM for biomedical devices, such as microvalves in drug delivery systems 

as well as encapsulation and delivery of cells [79, 82-90]. In spite of many advantages, 

thermoresponsive hydrogels inherently suffer from relatively slow temporal responses similar 

to SMA and SMP, and may pose leakage of the solution through the material.  

 

2.2 Electromagnetic Actuators 

Electromagnetic actuators generally employ the interaction of one or more magnetic 

structures with the magnetic field (B) produced by a current-carrying circuit [91]. A common 

configuration of these actuators consists of a coil and a ferromagnetic movable structure 

placed in the field produced by the coil as illustrated in Figure 2 with a suspended cantilever 

beam being the movable magnetic structure [92, 93]. When the driving current, i, is passed 

through the coil, it produces B  defined by Biot-Savart law [94, 95] as:  
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        (1) 

where μ0, μr, Ni, and l are the permeability of free space, the relative permeability of the 

material, the number of the coil’s turns, and the length of the coil, respectively. The 

interaction with B induces an attractive force, F, acting on the cantilever beam to cause a 

displacement, X, at the beam’s free end, which can be expressed as [96]: 

        (2) 

where L, E, w, and t are the length of the beam, the Young’s modulus of the material, the 

width of the beam, and the thickness of the beam, respectively. This type of actuators has 

been used in various MEMS applications given its advantages such as simple drive mode, 

high field energy density, fast response time, and large deflection that are attainable with low 

input voltages [31, 32]. Their applications extend to micro positioning systems [97], 

micromirrors [98, 99], microgrippers [100], and microfluidics [23, 101] for micropumps 

[102, 103] and microvalves [104]. Electromagnetic actuators also exhibit common 

disadvantages, e.g., volumetric scaling of produced electromagnetic forces that rapidly drop 

 
Figure 2. Schematic diagram on the working mechanism of an electromagnetic actuator 

under (a) the off state without current and (b) the on state with a driving current fed to the 

solenoidal coil creating a magnetic field to displace the ferromagnetic movable 

microstructure. 
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as the device size shrinks, high power dissipation for driving coils, and parasitic loss at high 

frequency [105], which should be taken into account in the design of application device. 

 

2.3 Piezoelectric Actuators 

Piezoelectric actuators have been widely adopted in the fields of ultra-precision engineering 

and microactuation owing to its advantageous features such as fast response, high 

displacement resolution, high efficiency, compact structure, and immunity to magnetic field 

[34, 106-108]. The operation of the actuators relies on the converse piezoelectric effect of a 

piezoelectric crystal to induce strain by applying an electric potential to the crystalline 

material [109]. The converse piezoelectric effect can be theoretically described with the 

following relationships [110]: 

        (3) 

        (4) 

where S, E, sE, T, D, d, and ε are the strain, the electric field, the compliance with zero field, 

the surface stress, the charge displacement, the piezoelectric strain coefficient, and the 

dielectric constant of a piezoelectric material, respectively. The performance of this type of 

actuators largely depends on the crystal structure of a piezoelectric material where d acts as a 

medium for the transduction mechanism. Given the orientations of polarization and electric 

field (P and E, respectively), three different modes, i.e., longitudinal mode (d33), transversal 

mode (d31), and shear mode (d15) define the actuation of the material. Figure 3a shows the 

piezoelectric actuation mode with the six orientations of the coordinate systems (x, y, z, θx, 

θy, and θz) and the polarization of a single layer piezoelectric crystal under P. For d33 and d31 

modes, E applied parallel to P results in a longitudinal deformation (δh) and a transversal 

deformation (δl) simultaneously (Figure 3b), whereas E is perpendicular to P for d15 and 

produces shear deformation (δs) (Figure 3c) [111]. Among these modes, d33 and d31 provide 

higher strains than d15. Piezoelectric actuators produce small strains in an accurate and fast 

manner, and thus have been used for a variety of high-precision actuation applications such 

as micro/nano-positioning systems [112, 113], micropumps [114, 115], and micro-robotics 

[116]. In spite of their advantages, incorporation of piezoelectric materials such as lead 

zirconate titanate (PZT) and lead magnesium niobate-PZT ceramics in MEMS fabrication is 

often challenging due to the need for high-temperature thermal processes and the instability 

of deposited materials [117, 118]. Besides, the need for relatively high driving voltages and 
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the large hysteresis/nonlinearity are other factors that can limit their application range [105, 

119, 120]. 

  

2.4 Fluid-Driven Actuators  

Soft and flexible actuators have been attracting attention for biomedical applications as tissue 

interaction with mechanically rigid actuators could lead to damage to the tissue. In this 

context, many studies have looked at hyperelastic-material-based pneumatic and hydraulic 

actuators. These types of actuators are typically comprised of fibreless or fibre-reinforced 

polymeric channel structures that allow for supply of gas or liquid (typically air or water, 

respectively) to the channels [121] (e.g., McKibben artificial muscle [122]). Once fluidic 

pressure is applied to the actuator’s channel, it causes elastic deformation in its overall 

structure, resulting in a designed mode of actuation such as expansion, contraction, bending 

or twisting motions [123, 124]. For example, pneumatic actuators having symmetric cross 

sections expand or contract, while those with asymmetric cross sections (created by, e.g., 

bonding two flexible layers with different wall thicknesses or stiffness levels), such as 

 
Figure 3. Piezoelectric actuation modes: (a) Orientations of the actuation field and 

polarization field; (b) longitudinal and transversal modes; (c) shear mode. 
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pneumatic balloon actuators (PBA), show bending deformations [125]. Likewise, two arrays 

of PBAs combined in the opposite bending directions cause twisting motions (Figure 4) [126, 

127]. In addition, the pneumatic actuator with a single or dual-channel structure can produce 

bidirectional curling or bending motions, respectively [128-131], while a three-channelled 

pneumatic soft actuator offers bending motions in up to six different directions [132]. Based 

on these features, Suzumori et al. developed a flexible microactuator having three chambers 

for pneumatic supply [133, 134]. The actuator had a cylindrical fibre-reinforced rubber 

structure that provided 3-degree-of-freedom motions. Another study investigated a MEMS-

based hydraulic actuator based on a finger-shaped chamber structure for its actuation, which 

used an integrated heater to pressurize the fluid through its thermal expansion [135]. The 

fluid-driven actuators offer advantageous features such as high flexibility, large displacement, 

biocompatibility (when fabricated/coated with biocompatible materials), lightweight, high 

power-to-weight ratio, simple/low-cost fabrication [136, 137], which makes them suitable for 

 
Figure 4. Overview of flexible pneumatic actuators showing four different actuation 

modes. Reproduced with permission. [127] Copyright 2014, Elsevier. 
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applications in medical and surgical devices, whereas the need for means of fluid supply and 

pressurization, actuation precision, and miniaturization are general areas of limitations.  

 

3. Biomedical Applications of MEMS Actuators 

This section emphasizes the applications of the aforementioned actuators in biomedical areas 

with a focus on lab-on-a-chip, drug delivery systems, cardiac devices, and surgical tools. The 

key functions of reported devices and the particular contributions of microactuators to them 

are discussed.  

3.1. Lab-on-a-Chip (LoC)  

LoC is a class of miniaturized microfluidic devices configured in a single-chip form that is 

primarily designed for biological or chemical processing and analysis [138]. These devices 

allow miniaturization and amalgamation of complex processes to be implemented on a small 

chip, which otherwise needs to be operated via repetitive laboratory tasks. The key features of 

these devices include compactness/portability, dramatic reduction of required chemicals and 

samples, higher process controllability, and faster analysis. The parallelization of many 

functions integrated on LoC is leading to an emerging trend in point-of-care diagnostics 

[139]. LoC devices are functionalized by forced fluid flow through microfluidic channels 

patterned on them. To control flow sequence, duration and timing, direction, and flow rate of 

each fluid being processed, micro-scale pumps, and valves are integrated with the channels 

on the chip, allowing for precise on-chip manipulation of small quantities of particular fluids. 

 Piezoelectric actuators have been one type of the actuators widely used as micropump 

elements in LoC to control the fluid flow with high accuracy. For example, a multi-chamber 

piezoelectric pump was reported to control the fluid flow rate [140] (Figure 5a). As a 

sinusoidal signal was applied to the actuator, the chamber expanded and opened the valve, 

causing the fluid flow based on the inverse piezoelectric actuation. For point-of-care testing 

and chemical analysis, a plug-and-play microfluidic chip integrated a piezoelectric peristaltic 

micropump was demonstrated [141]. The fluid in the microchannel was transported through 

impacting actions provided by the piezoelectric actuator (Figure 5b). In order to enhance the 

functionality and performance of LoCs, researchers have also incorporated surface acoustic 

wave (SAW) driven piezoelectric actuators into the LoCs to precisely control fluid flows and 

microparticles. SAW based actuators are advantageous in LoCs owing to their features such 

as low cost, simple fabrication, fast actuation, high adaptability, contact-free particle 
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manipulation, and biocompatibility [142]. For instance, Ding et al. demonstrated standing 

SAW based acoustic tweezers to trap and manipulate single microparticles, cells, and 

organisms in a microfluidic chip. These tweezers were shown for real-time manipulation of 

microparticles by utilizing a wide resonance band of interdigitated transducers [143]. For the 

fluid-driven actuation approach, a LoC based on thermo-pneumatic actuation was reported to 

control the flow rate inside the microfluidic channel (Figure 5c) [144]. In addition, a multi-

throughput multi-organ-on-a-chip system was developed by utilizing a pneumatic actuator 

 
Figure 5. LoC systems and their components. (a) Schematic and prototype of a piezo-

actuated pump. Reproduced with permission [140]. Copyright 2019, Elsevier. (b) 

Piezoelectric-actuator-based microfluidic pump module. Reproduced with permission 

[141]. Copyright 2019, Elsevier. (c) Thermopneumatically actuated microchamber. 

Reproduced with permission [144]. Copyright 2019, Elsevier. (d) Pneumatically driven 

multi-organ-on-a-plate system, showing (top) culture device, (middle) microfluidic plates, 

(bottom left) culture unit and Laplace valves, and (bottom right) membrane insert and 

culture chamber. Reproduced with permission [145]. Copyright 2019, RSC publishing. 
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(Figure 5d) [145]. This device could handle eight different conventional cell culture 

experiments (including cell seeding, medium change, live/dead staining, cell growth analysis, 

and gene expression analysis of collected cells) at a time offering a potential for drug 

discovery applications.  

 Electromagnetic actuators are another group that has been employed in micropump 

and microfluidic applications exploiting their favorable features for LoC such as rapid 

response, large force, and low-voltage operation. For instance, Pradeep et al. developed an 

electromagnetically actuated valves to control multiple fluid flow on a programmable 

microfluidics platform (Figure 6a) [146]. The device was comprised of polydimethylsiloxane 

(PDMS) based microfluidic channels and membranes with an electronic board that held 

solenoids. The activation of the solenoid attracted the valve to deflect the PDMS membrane, 

which in turn created a path for fluid flow. Another electromagnetically actuated micropump 

was reported to provide bidirectional flow [147]. This device used two pairs of power 

inductor and NdFeB magnet (Figure 6b), in which the two magnets were synchronously 

  
Figure 6. Electromagnetically actuated microfluidic devices. (a) Schematic and image of 

fabricated microfluidic channel with active valves. Reproduced with permission [146]. 

Copyright 2018, Elsevier. (b) Schematic diagrams of (left) a dual-chamber micropump 

and (right) operating principle of the actuation with positive and negative driving 

voltages. Reproduced with permission [147]. Copyright 2018, Elsevier. 
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actuated under either attractive or repulsive condition (by switching the polarity of voltage 

applied to the inductors) to pump the fluid inside the channel in either direction. In another 

example, Tahmasebipour et al. fabricated an electromagnetic uni-/bi-directional diffuser 

micropump, which used the magnetic membrane based on a PDMS-Fe3O4 nanocomposite for 

its electromagnetic actuation to create fluid flow through microchannels [148].  These 

micropump devices could be employed in various microfluidic and LoC devices.  

 

3.2. Implantable Drug Delivery Systems 

Advances in MEMS and miniaturization technologies have enabled implantable biomedical 

devices specifically designed to assist in the diagnosis and treatment of chronic or acute 

diseases. Micromachined drug delivery systems are among those emerging implantable 

devices. Many of these systems are comprised of micro reservoirs that store liquid-phase 

drugs and microactuators that constitute a mechanism to eject the drugs out of the systems 

and deliver them to the implanted sites [149]. Aside from the significant improvement in 

bioavailability of drugs, the advancement of this type of systems is expected to enable 

patient-tailored, pin-point treatments of targeted diseases such as cancer, diabetes, and 

osteoporosis, while significantly reducing in-vivo invasiveness of the systems due to their 

miniaturized forms.  

 MEMS drug delivery systems use microvalves to channel/regulate the drug flow into 

the diseased location [150]. Thermoresponsive hydrogels have been often used to form smart 

microvalves in them [84, 86, 151-156]. A study reported an implantable drug delivery device 

that was fabricated to integrate PNIPAM microvalves with a wireless resonant heater and a 

drug reservoir [84]. The microvalves were patterned using an in-situ photolithography 

technique and were wirelessly operated by activating the resonant heater using a tuned 

external radiofrequency (RF) field. This hydrogel microvalve demonstrated 38% shrinkage in 

its size upon activation that allowed for release of test drug from the reservoir. Another drug 

delivery system using a thermoresponsive hydrogel valve was reported to demonstrate its 

repeatable drug release mechanism controlled by induction heating [152]. This device 

showed the release of drug as well as its reverse flow to refill the reservoir. A more 

comprehensive study on drug delivery through a MEMS device using reversible or 

irreversible polymeric valves reported reproducible release control utilizing hydrogel-based 

artificial muscle [153]. Eddington et al. developed a drug delivery device by employing an 

array of pH-sensitive hydrogels (Figure 7a) [154]. Besides above efforts, various studies have 

https://doi.org/10.1088/1361-6439/ab8832


The published version is available at https://doi.org/10.1088/1361-6439/ab8832  

14 

reported hydrogel-based microvalves that could be applied to MEMS-based drug delivery 

[155-159]. As a different approach, piezoelectric microvalves have also been studied for the 

same purpose. This was demonstrated, for example, in a study that developed a wirelessly 

controlled normally-closed piezoelectric microvalve activated by an inductor-capacitor (LC) 

resonant circuit (Figure 7b) [160]. The activation of the LC circuit required the field 

frequency to be modulated to 10 kHz resonant frequency that matched the optimal operating 

frequency of the device. 

 Micropumps are another essential element for MEMS drug delivery systems to 

transport drugs from the reservoirs to the outlets of the systems. SMA, thermopneumatic and 

piezoelectric actuators have been among those often used in micropump-driven systems. An 

implantable drug delivery chip reported in [70] integrated an SMA-based micropump for the 

release of stored drug from the chip. The SMA was bulk-micromachined to form a resonant 

circuit, which served as a self-heat source activated by RF power transfer to allow frequency-

selective actuation and pumping of drug out of the chip. Thermopneumatic micropumps 

based on a similar powering method were developed for release control [161], including 

multiple drug delivery and mixing with a zigzag micromixer [162]. Piezoelectric actuated 

micropumps were also reported for implantable drug delivery applications [163, 164]. 

Besides, a polymer-based reusable implantable drug delivery system with refillable 

functionality was developed [165]. This device was designed to provide control and refillable 

functionalities for broad drug compatibility. Some of the implantable drug delivery systems 

were reported to integrate SMP actuators [72, 166, 167]. For example, studies reported the 

SMP-pumped implantable device operated by external RF magnetic fields with an actuation 

range of 140µm using a 50-mW RF power and showed an average release rate of 0.172 

µL/min [72, 166]. A chemotherapy drug release system was realized using hydrolytic 

degradable SMPs and was evaluated in the impact of the drug release profile [167]. Apart 

from the actuation mechanisms discussed above, electrochemically driven micropumps have 

been shown in several reports [168-171]. These studies integrated an electrochemical bellow 

actuator, transcutaneous cannula, and a dual regulation valve to form an implantable drug 

delivery device [168], showing  in-vivo implementation for anti-cancer drug delivery through 

wireless powering [169], and demonstrated similar devices for controlled delivery of boluses 

from the fabricate prototypes (Figure 7c) [170, 171].  
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3.3.  Cardiac Devices 

Many implantable devices are targeted at providing enhanced diagnoses and/or therapeutic 

treatments for specific diseases in vivo. Cardiac implants are a good example of them. 

  
Figure 7. Drug delivery microsystems: (a) (Left) complete microfluidic device and (right) 

integrated array of hydrogel actuators. Reproduced with permission [154]. Copyright 

2004, IEEE. (b) (Top left) schematic and cross-sectional diagrams of the device, and 

fabrication results showing (top right) top and bottom molds and (bottom) device under 

off and on states. Reproduced with permission [160]. Copyright 2018, Elsevier. (c) (Left) 

schematic diagram and (right) fabrication result of wirelessly powered electrochemical 

bellow micropump. Reproduced with permission [171]. Copyright 2016, Elsevier.  
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Atherosclerosis is a type of cardiovascular disease where arteries become hardened and 

narrowed due to plaque build-up on their inner walls. In conjunction with balloon angioplasty 

to treat atherosclerosis, the endovascular mechanical implants called stents are commonly 

used as chronic vascular scaffolds to keep the blood vessel open. Most of commercially 

available stents are metallic, made of biocompatible alloys such as medical-grade stainless 

steel and Nitinol, to configure balloon-expandable or self-expanding stents. These stents with 

mesh-like walls are manufactured by laser micromachining of the specific alloy tubes. The 

deployment of the self-expanding stents in arteries relies on thermoresponsive actuation of 

Nitinol [170]. The stent is positioned at the target location via the delivery catheter and then 

(by removing the covering sheath) allowed to self-expand to its memorized diameter through 

the martensite-to-austenite phase transformation upon exposure to the body temperature [172, 

173]. After their implantation, expanded stents experience elastic recoil of blood vessels, 

which can lead to their mechanical failures, a continuing issue for these implants. As an 

approach to address this type of failure, a Nitinol-based actuator called the recoil-resilient 

ring was investigated to show its ability to improve the radial stiffness of stents when 

integrated with them [174]. A newer work demonstrated multiple stage expansion of SMA-

based stent via wireless RF control aiming to address recoil and restenosis issues of stents 

[175]. While not as extensive as the case of SMA, the use of SMP has also been investigated 

in several studies towards self-expanding stent applications. For example, one study 

presented a synthesized SMP for stent application, reporting that the polymer showed 100% 

strain recovery [176]. The device displayed high rubbery shear moduli in the range of 2 MPa 

and the constrained stress-strain recovery cycle showed very low hysteresis. Another work 

presented a biodegradable and self-expandable SMP stent showing excellent mechanical 

properties as well as biocompatibility [177].  

 Thermal therapy commonly known as hyperthermia is a noninvasive technique that 

has been used to kill cancerous cells [178]. This therapeutic approach was also reported to be 

effective in suppressing the occurrence of restenosis, the most common post-stenting 

complication, and following this path, stent-based endohyperthermia was investigated to 

enable post-stenting thermal stimulation in a wireless manner [179]. This active “hot” stent 

was designed to electrically resonate when exposed to a RF field and implement frequency-

selective heating for vascular treatment. A stent-hyperthermia system based on this principle 

was demonstrated through animal tests [180, 181]. To circumvent overheating of the stent 

device under excitation, a biocompatible MEMS circuit breaker chip was developed and 

integrated with the hot stents (Figure 8a) [182]. This circuit breaker chip functioned as a  
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thermoresponsive contact switch with a SMA actuator, or an absolute temperature limiter, 

enabling self-regulation of stent’s resonance and thus temperature [182, 183]. Figure 8b 

shows an expansion process of the integrated stent device demonstrating automatic switching 

and overheat prevention when wirelessly powered [184]. The reported circuit breaker chip 

was claimed to be used for temperature regulation of other types of electronic implants. 

Aside from stent related applications, shape memory materials have been utilized in 

other cardiac devices that exploit their actuation and deployment triggered by the body 

temperature. One example is the SMP-based rings that have been used for cardiac valve 

repair to reduce mitral regurgitation [185]. Closure devices have been widely used in 

intervention treatment for congenital heart disease that is known as abnormal anatomy caused 

by dysplasia. Several studies were reported to develop Nitinol-based closure devices (Figure 

9) [186]. This type of devices is delivered into the body using its delivery system in a 

compressed state and then deployed to its original shape at the target location. A well-known 

occlude device was realized with two Nitinol woven discs for closure of congenital heart 

defects [187].    

 

3.4 Surgical and Endoscopic Tools 

MEMS actuators offer promising opportunities in creating novel surgical devices as well. In 

particular, these actuators based on shape-memory materials, piezoelectric, and pneumatic  

  
Figure 8. RF-powered resonant “hot” stent for wireless restenosis treatment. (a) MEMS 

circuit-breaker microchip for self-regulation of stent temperature. Reproduced with 

permission [182]. Copyright 2017, IEEE. (b) Deployment of the stent device with circuit-

breaker microchip. Reproduced with permission [184]. Copyright 2015, IEEE.  
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principles and related fabrication processes are paving avenues to miniaturizing and 

improving the tools for surgical, interventional, and related procedures including catheters, 

manipulators, endoscopes, and imaging devices. Utilizing the features of nanometer-range 

resolution and fast response, piezoelectric microactuators have been applied for delivering 

and scanning high-frequency laser pulses for microsurgery purposes. For example, 

Ferhanoglu et al. reported  rapid removal of bulk tumors and bones using the 5-mm-diameter 

fiber device comprised of an air-core photonic bandgap fiber for delivery of high energy laser 

pulses, a piezoelectric tube actuator for fiber scanning, and two aspheric lenses for focusing 

the laser beam [188]. To enhance the visualization of fine biopsy needles under ultrasound 

imaging, the needle-like catheter that equipped a miniaturized ultrasonic actuator was 

developed with a PZT layer sandwiched between two flexible electrodes using MEMS 

technology [189]. Being attached to a catheter, the actuator radiated low-intensity ultrasound 

for detection of a biopsy needle tip under sonography. Likewise, to perform a non-abdominal 

operation or microsurgery, a micro ultrasonic scalpel was developed using PZT deposited 

through a hydrothermal method [190, 191].  

 Pneumatic actuators shaped with soft and flexible elastomers are considered as one of  

 

Figure 9. Nitinol-based closure devices for congenital heart disease: (a) Amplatzer ASD 

Occluder; (b) Occlutech Figulla ASD Occluder. Reproduced with permission [186]. 

Copyright 2019, Elsevier. 
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the most suitable candidates for surgical device applications. Many studies utilized the 

anisotropic rigidity of PBA in developing bending actuators for active catheter tools. For 

example, Ruzzu et al. reported a system for fixing and orientating the catheter tip consisting 

of three inflatable microballoons [192]. The microballoons were mounted on the three sides 

of the catheter tip and controlled by electro-thermo-pneumatic microvalves. When deflated, 

these balloons exerted a force on the wall of the vessel, causing a change in the position and 

orientation of the catheter tip. In addition, a telescopic motion was achieved by connecting 

several PBA pairs in series in order to actuate commercial forceps [193]. Another PBA-based 

device with a cylindrical microstructure was developed to solve a bubbling problem in the 

intestinal tract, which caused undesirable stagnation blocking the observation of cells [194]. 

Supplying air to the artificial intestinal tract via microchannel, the PBA gradually 

transformed from flat to circular tube that allowed perfusion of the culture media. For 

endoscopic fluorescence imaging and diagnosis, a flexible end-effector was developed via 

integration of a PDMS-based PBA, serving as scanning actuator, with an SU-8 optical 

waveguide using MEMS fabricated techniques [195]. 

Besides the PBA-based approaches, various efforts have tailored pneumatic and other 

fluid-driven actuators to develop different surgical tools. For example, a pneumatically 

actuated micro-gripper was reported to manipulate embryos for cloning applications, (Figure 

10a) [196]. The micro-gripper consisted of two main parts; the micro pneumatic chamber 

with a flexible membrane and the hinged gripper arms connected to the membrane. Supplying 

pressurized air to the membrane, it deflected both the arms to provide a gripping motion. 

Traditional laparoscopes used for certain surgical interventions (such as total mesorectal 

excision) lack a flexibility sufficient to safely maneuver and reach difficult surgical targets. 

This need was approached through the development of the robotic device composed of two 

pneumatically actuated identical modules, capable of omnidirectional bending and 

elongation, to allow for highly dexterous and safe navigation [197, 198]. Becker et al. 

developed a tissue retraction device for treatment of lesions in the gastrointestinal tract [199]. 

This device was comprised of three main integrated components, i.e., a rigid expandable 

geometric structure, inflatable pneumatic actuators, and a vacuum gripper fabricated using the 

pop-up book MEMS technique. Similarly, to improve the distal dexterity and enable tissue 

retraction, the soft pop-up actuators were exploited to form a multi-articulated robotic arm 

(Figure 10b) [200]. Here, the millimeter-scale hybrid soft pop-up actuators were embedded 

with capacitive sensing elements to achieve proprioceptive actuation. Endoscopic devices 

also often suffer from limited distal tip dexterity, and this issue has been tacked by  
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incorporating pneumatic actuation mechanisms with them. For example, pneumatic tubular 

actuators were developed and optimized for applications in flexible microactuator-based 

endoscopes to facilitate colonoscopy [201, 202] as well as a bronchoscope to observe lung 

airway and obstructions in the bronchus [203]. Combining a chip-on-tip CMOS camera with 

an elastic inflatable microactuator, Gorissen et al. presented a flexible endoscope for 

navigating through intricate topologies of the human body [204].   

The endoscopic devices with active scanning functions have been developed by 

adopting different actuation methods besides pneumatic one. For example, to obtain in-vivo 

local images for tissue diagnostics, an active optical coherence tomography (OCT) probe was 

developed with two-axis scanning electrothermal MEMS micromirror, gradient refractive 

   
Figure 10. MEMS-enabled surgical and endoscopic tools. (a) Pneumatically actuated 

micro-gripper. Reproduced with permission [196]. Copyright 2015, Elsevier. (b) 

Conceptual 3D model and optical image of the soft pop-up actuator. Reproduced with 

permission [200]. Copyright 2014, Elsevier. (c) Electrothermally actuated MEMS 

scanning mirror for OCT probe and optical images of fabricated micromirrors. 

Reproduced with permission [205]. Copyright 2008, IOP Publishing. (d) MEMS-based 3D 

confocal scanning microendoscope. Reproduced with permission [207]. Copyright 2013, 

Elsevier. (e) Side-viewing Raman probe with integrated MEMS rotary motor. Reproduced 

with permission [208]. Copyright 2019, Wiley-VCH. 
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index lens, and single-mode fiber integrated on silicon optical bench (SiOB) substrate (Figure 

10c) [205]. For three-dimensional (3D) imaging, a 2-axis MEMS mirror with a preset (45°) 

angle was directly integrated on a SiOB. The probe was enclosed within a biocompatible, 

transparent and waterproof polycarbonate tube for in-vivo applications. A similar active OCT 

probe enabled by an electrothermal MEMS mirror was also reported for real-time imaging of 

internal organs such as gastrointestinal tract, stomach, small intestine, and esophagus [206]. 

The unique features of this MEMS-mirror design were a large scan range of ±30°, a high 

speed of about 2.5 frames per second, and a body-safe driving voltage of 5.5 V. Following 

the same scanning approach, a fiber-optic 3D microendoscope with a confocal scanning 

function was developed for early cancer diagnosis (Figure 10d) [207]. The probe was 

comprised of electrothermal MEMS scanning mirrors that offered a large imaging field via 

both lateral and axial scans with low driving voltages. For endoscopic probes, full 

circumferential scanning around the probe is an important ability for screening and detecting 

lesions on the walls of luminal organs without blind spots; however, this need is difficult to 

meet with 2D MEMS scanners. A tubular MEMS rotary motor was developed for this 

application segment and enabled a side-viewing Raman spectroscopy (RS) probe (Figure 

10e) [208-210]. This electromagnetic MEMS motor, developed using a self-sustained 

ferrofluid bearing in the catheter tube, provided both stepping and continuous rotations of a 

probing laser beam and demonstrated full 360° tissue imaging/analysis via RS [208] as well 

as OCT [210] modalities ex vivo and in vivo. The motor was also engineered to provide 

hydraulic axial motion in addition to rotation for 3D luminal imaging without requiring an 

external probe positioning system [209]. 
 

4. Conclusion   

Continuous advancement of microactuator technologies, along with their fabrications and 

integration methods, has led to the emerging areas of biomedical microsystems including 

smart implants and surgical devices in miniaturized forms. The success in a targeted 

application critically relies on the appropriate selection of a particular actuator, which 

depends on various factors besides the fundamental performance of the actuator itself, 

including powering and control methods, biocompatibility, level of required packaging, and 

cost effectiveness. With an aim to facilitate the development of this emerging field while 

addressing those key factors, this paper has presented a comprehensive review of the MEMS 

actuators investigated for their biomedical uses with a focus on several common transduction  
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types. Table 1 presented a clear comparison of these actuation techniques and their 

characteristics. The use of thermoresponsive materials is a promising route to enabling smart 

actuation functions with simple designs, an advantageous feature towards device 

miniaturization. Among them, SMA offers large displacement and force whereas SMP 

possesses relatively high recoverable strain levels. The PNIPAM hydrogel can be compatible 

with the standard photo-patterning process and allows for adjustment of its temperature 

threshold. The above attributes often make them suitable for applications in drug delivery, 

cardiac and surgical devices. The electromagnetic actuators with their large displacement, 

fast response and low-voltage powering features are usable for the development of LoC and 

their active elements such as micropumps and microvalves. The piezoelectric actuators are a 

powerful enabling technology for devices targeted at micro/nano-scale positioning, 

micropumps, and micro-robotics. Being softer and flexible, the fluid-driven actuators offer a 

variety of application opportunities in surgical devices.  

 Exploiting these favorable features, thermoresponsive, electromagnetic, and 

piezoelectric actuators are widely applied for implantable devices. However, they require an 

attention in a few factors. For their medical and implant applications, these actuators are often 

powered using batteries. This may cause not only the need for periodic replacement through 

surgical procedure but also significantly increase the overall device sizes and hence their 

invasiveness in the body. While wireless powering and control methods for smart implants 

are being widely explored, the issues around their efficiency, reliability, and 

biocompatibility/safety will need to be addressed. The safety factor includes proper heat 

management and necessary packaging that, in turn, can negatively impact on the device 

performance and size. One of the key approaches to addressing powering issues would be in-

situ energy harvesting from the implanted environment, which may be achieved using similar 

principles of some of the abovementioned MEMS actuators but with reversed transductions 

converting environmental stimuli to electrical energy. 
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Types Working 
principle 

Advantages Disadvantages Energy 
density 
(J/m3) 

Efficiency 
(%) 

MEMS Applications 

 

 

 

 

 

Thermoresponsive 

actuators 

SMA Shape-
memory effect 

• Large displacement 
• Large force 
• High mechanical 

robustness 
• Corrosion-resistant 

• Slow temporal 
response 

• High power 
consumption 

~107  

[211] 
<10  

[212, 213] 
Surgical tools [22, 68]  

 

Implantable devices [65] 

Microgrippers [60, 67] 

Micropumps [60, 63, 70] 

SMP Shape-
memory effect 

• Structural flexibility 
• Large strains 
• Low density 
• Tunable transition 

temperature 
• Biodegradable 

properties 

• Slow temporal 
response 

• Low recovery 
stress 

2-6×105 
[214] 

<10 [213] 
 

Endovascular devices [74, 75, 
176, 177, 185] 

Drug delivery devices [74, 
166, 167] 

Temperature-
Sensitive 
Hydrogels 

Phase 
transition 

• Tunable 
degradation features 

• Tunable mechanical 
features 

• UV-sensitive 

• Slow temporal 
response 
 

3.5×105 

[211] 
1.32 [215] 

 
Surgical tools [85] 

Microvalves [153-157] 

Drug delivery [84, 86, 88-90, 
151, 153] 

 

 

Electromagnetic actuator 

 

 

Magnetization 
effect 

• Simple drive mode 
• No nonlinear effect 
• High field energy 

density 
• Fast response 
• Large deflection at 

low input voltage 

• High power 
dissipation for 
driving coils 

• Volumetric scaling 
of produced 
electromagnetic 
forces that rapidly 
drop as the device 
size shrinks 

4×106  
[213] 

>90  
[212, 213] 

Microgrippers [100] 

 

 

Micropumps [101-103] 
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Table 1. Performance comparison of actuation techniques 

 

• Parasitic loss at 
high frequency 

Microvalves [104] 

 

 

Piezoelectric actuator 

 

 

Piezoelectric 
effect 

• Fast response 
• High displacement 

resolution 
• High efficiency 
• Compact structure 
• Immunity to 

magnetic field 

• Require high-
temperature thermal 
processes for 
incorporation of 
piezo materials 

• High driving 
voltage 

• Large hysteresis 
nonlinearity 

105 [213] >90  
[212, 213] 

Micropumps [114, 115] 

Micro-robotics [116] 

 

Fluid-Driven actuator 

 

 

Elastic 
deformation 

• High flexibility 
• Large displacement 
• Lightweight 
• High power-to-

weight ratio 
• Simple/low-cost 

fabrication 
 

• Low force exertion 
• Limited number of 

degree of freedom 

1.2×106 

[216] 
30-40  

[212, 213] 
Medical and surgical devices 

[136, 137] 
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