Marvin Fritz

Marvin Fritz
Johann Radon Institute for Computational and Applied Mathematics (RICAM) · Computational Methods for PDEs

PhD

About

19
Publications
3,269
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
114
Citations
Citations since 2016
19 Research Items
112 Citations
2016201720182019202020212022010203040
2016201720182019202020212022010203040
2016201720182019202020212022010203040
2016201720182019202020212022010203040

Publications

Publications (19)
Article
Full-text available
Time-fractional partial differential equations are nonlocal-in-time and show an innate memory effect. Previously, examples like the time-fractional Cahn-Hilliard and Fokker-Planck equations have been studied. In this work, we propose a general framework of time-fractional gradient flows and we provide a rigorous analysis of well-posedness using the...
Article
In this paper, we derive the time-fractional Cahn-Hilliard equation from continuum mixture theory with a modification of Fick's law of diffusion. This model describes the process of phase separation with nonlocal memory effects. We analyze the existence, uniqueness, and regularity of weak solutions of the time-fractional Cahn-Hilliard equation. In...
Article
In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. T...
Article
In this work, we present and analyze a mathematical model for tumor growth incorporating ECM erosion, interstitial flow, and the effect of vascular flow and nutrient transport. The model is of phase-field or diffused-interface type in which multiple phases of cell species and other constituents are separated by smooth evolving interfaces. The model...
Thesis
Different systems for modeling tumor growth are presented. We follow the path of diffusive interface models and investigate these tumor models with respect to their well-posedness. Many biological phenomena, such as temporal and spatial nonlocal effects, complex nonlinearities, and mixed-dimensional couplings, are involved in mathematical oncology....
Article
In this work, we present mixed dimensional models for simulating blood flow and transport processes in breast tissue and the vascular tree supplying it. These processes are considered, to start from the aortic inlet to the capillaries and tissue of the breast. Large variations in biophysical properties and flow conditions exist in this system neces...
Preprint
Full-text available
In this work, we present mixed dimensional models for simulating blood flow and transport processes in breast tissue and the vascular tree supplying it. These processes are considered, to start from the aortic inlet to the capillaries and tissue of the breast. Large variations in biophysical properties and flow conditions exist in this system neces...
Article
In this work, we present a coupled 3D–1D model of solid tumor growth within a dynamically changing vascular network to facilitate realistic simulations of angiogenesis. Additionally, the model includes erosion of the extracellular matrix, interstitial flow, and coupled flow in blood vessels and tissue. We employ continuum mixture theory with stocha...
Preprint
Full-text available
Time-fractional partial differential equations are nonlocal in time and show an innate memory effect. In this work, we propose an augmented energy functional which includes the history of the solution. Further, we prove the equivalence of a time-fractional gradient flow problem to an integer-order one based on our new energy. This equivalence guara...
Preprint
Full-text available
In this paper, we derive the time-fractional Cahn-Hilliard equation from continuum mixture theory with a modification of Fick's law of diffusion. This model describes the process of phase separation with nonlocal memory effects. We analyze the existence, uniqueness, and regularity of weak solutions of the time-fractional Cahn-Hilliard equation. In...
Preprint
Full-text available
In this work, we present a coupled 3D-1D model of tumor growth within a dynamically changing vascular network to facilitate realistic simulations of angiogenesis. Additionally, the model includes ECM erosion, interstitial flow, and coupled flow in vessels and tissue. We employ continuum mixture theory with stochastic Cahn--Hilliard type phase-field...
Preprint
Full-text available
In this work, we present and analyze a mathematical model for tumor growth incorporating ECM erosion, interstitial flow, and the effect of vascular flow and nutrient transport. The model is of phase-field or diffused-interface type in which multiple phases of cell species and other constituents are separated by smooth evolving interfaces. The model...
Preprint
Full-text available
In this work, we present a model for tumour growth in terms of reaction-diffusion equations with mechanical coupling and time fractional derivatives. We prove the existence and uniqueness of the weak solution. Numerical results illustrate the effect of the fractional derivative and the influence of the fractional parameter.
Article
We present and analyze new multi-species phase-field mathematical models of tumor growth and ECM invasion. The local and nonlocal mathematical models describe the evolution of volume fractions of tumor cells, viable cells (proliferative and hypoxic cells), necrotic cells, and the evolution of matrix-degenerative enzyme (MDE) and extracellular matri...
Article
A mathematical analysis of local and nonlocal phase-field models of tumor growth is presented that includes time-dependent Darcy–Forchheimer–Brinkman models of convective velocity fields and models of long-range cell interactions. A complete existence analysis is provided. In addition, a parameter-sensitivity analysis is described that quantifies t...
Preprint
Full-text available
We present and analyze new multi-species phase-field mathematical models of tumor growth and ECM invasion. The local and nonlocal mathematical models describe the evolution of volume fractions of tumor cells, viable cells (proliferative and hypoxic cells), necrotic cells, and the evolution of MDE and ECM, together with chemotaxis, haptotaxis, apopt...
Preprint
Full-text available
A mathematical analysis of local and nonlocal phase-field models of tumor growth is presented that includes time-dependent Darcy-Forchheimer-Brinkman models of convective velocity fields and models of long-range cell interactions. A complete existence analysis is provided. In addition, a parameter-sensitivity analysis is described that quantifies t...
Article
We study the Blackstock equation which models the propagation of nonlinear sound waves through dissipative fluids. Global well-posedness of the model with homogeneous Dirichlet boundary conditions is shown for small initial data. To this end, we employ a fixed-point technique coupled with well-posedness results for a linearized model and appropriat...
Preprint
Full-text available
We study the Blackstock equation which models the propagation of nonlinear sound waves through dissipative fluids. Global well-posedness of the model with homogeneous Dirichlet boundary conditions is shown for small initial data. To this end, we employ a fixed-point technique coupled with well-posedness results for a linearized model and appropriat...

Network

Cited By

Projects

Project (1)