THE AUTOMORPHISM GROUP OF A SELF-DUAL [72,36,16] CODE DOES NOT CONTAIN S_3, A_4 OR D_8

Martino Borello and Francesca Dalla Volta
Dipartimento di Matematica e Applicazioni
Università degli Studi di Milano Bicocca
20125 Milan, Italy

Gabriele Nebe
Lehrstuhl D für Mathematik
RWTH Aachen University
52056 Aachen, Germany

(Communicated by Wolfgang Willems)

Abstract. A computer calculation with Magma shows that there is no extremal self-dual binary code C of length 72 whose automorphism group contains the symmetric group of degree 3, the alternating group of degree 4 or the dihedral group of order 8. Combining this with the known results in the literature one obtains that $\text{Aut}(C)$ has order at most 5 or is isomorphic to the elementary abelian group of order 8.

1. Introduction

Let $C = C^\perp \leq F_2^n$ be a binary self-dual code of length n. Then the weight $wt(c) := |\{i \mid c_i = 1\}|$ of every $c \in C$ is even. When in particular $wt(C) := \{wt(c) \mid c \in C\} \subseteq 4\mathbb{Z}$, the code is called doubly-even. Using invariant theory, one may show [10] that the minimum weight $d(C) := \min\{wt(C \setminus \{0\})\}$ of a doubly-even self-dual code is at most $4 + 4\left\lfloor \frac{n}{24} \right\rfloor$. Self-dual codes achieving this bound are called extremal. Extremal self-dual codes of length a multiple of 24 are particularly interesting for various reasons: for example they are always doubly-even [12] and all their codewords of a given nontrivial weight support 5-designs [2]. There are unique extremal self-dual codes of length 24 (the extended binary Golay code G_{24}) and 48 (the extended quadratic residue code QR_{48}) and both have a fairly big automorphism group (namely $\text{Aut}(G_{24}) \cong M_{24}$ and $\text{Aut}(QR_{48}) \cong \text{PSL}_2(47)$). The existence of an extremal code of length 72 is a long-standing open problem [13]. A series of papers investigates the automorphism group of a putative extremal self-dual code of length 72 excluding most of the subgroups of S_{72}. The most recent result is contained in [3] where the first author excluded the existence of automorphisms of order 6.

In this paper we prove that neither S_3 nor A_4 nor D_8 is contained in the automorphism group of such a code.

2010 Mathematics Subject Classification: Primary: 94B05, 20B25.
Key words and phrases: Extremal self-dual code, Automorphism group.

M. Borello and F. Dalla Volta are members of INdAM-GNSAGA, Italy. F. Dalla Volta and G. Nebe were partially supported by MIUR-Italy via PRIN “Group theory and applications”.

503 ©2013 AIMS
The method to exclude S_3 (which is isomorphic to the dihedral group of order 6) is similar to that used for the dihedral group of order 10 in [8] and based on the classification of additive trace-Hermitian self-dual codes in \mathbb{F}_2^{12} obtained in [7].

For the alternating group A_4 of degree 4 and the dihedral group D_8 of order 8, we use their structure as a semidirect product of an elementary abelian group of order 4 and a group of order 3 and 2 respectively. By [11] we know that the fixed code of any element of order 2 is isomorphic to a self-dual binary code D of length 36 with minimum distance 8. These codes have been classified in [1]; up to equivalence there are 41 such codes D. For all possible lifts $\tilde{D} \leq \mathbb{F}_2^{12}$ that respect the given actions we compute the codes $\mathcal{E} := \tilde{D}^{A_4}$ and $\mathcal{E} := \tilde{D}^{D_8}$ respectively. We have respectively only three and four such codes \mathcal{E} with minimum distance ≥ 16. Running through all doubly-even A_4-invariant self-dual overcodes of \mathcal{E} we see that no such code is extremal. Since the group D_8 contains a cyclic group of order 4, say C_4, we use the fact [11] that \mathcal{C} is a free $\mathbb{F}_2 C_4$-module. Checking all doubly-even self-dual overcodes of \mathcal{E} which are free $\mathbb{F}_2 C_4$-modules we see that, also in this case, none is extremal.

The present state of research is summarized in the following theorem.

Theorem 1. The automorphism group of a self-dual $[72, 36, 16]$ code is either cyclic of order 1, 2, 3, 4, 5 or elementary abelian of order 4 or 8.

All results are obtained using extensive computations in Magma [4].

2. The symmetric group of degree 3

2.1. Preliminaries. Let \mathcal{C} be a binary self-dual code and let g be an automorphism of \mathcal{C} of odd prime order p. Define $\mathcal{C}(g) := \{c \in \mathcal{C} \mid c^g = c\}$ and $\mathcal{E}(g)$ the set of all the codewords that have even weight on the cycles of g. From a module theoretical point of view, \mathcal{C} is a $\mathbb{F}_2(g)$-module and $\mathcal{C}(g) = \mathcal{C} \cdot (1 + g + \ldots + g^{p-1})$ and $\mathcal{E}(g) = \mathcal{C} \cdot (g + \ldots + g^{p-1})$.

In [9] Huffman notes (it is a special case of Maschke’s theorem) that

$$\mathcal{C} = \mathcal{C}(g) \oplus \mathcal{E}(g).$$

In particular it is easy to prove that the dimension of $\mathcal{E}(g)$ is $\frac{(p-1)e}{2}$ where e is the number of cycles of g. In the usual manner we can identify vectors of length p with polynomials in $Q := \mathbb{F}_2[x]/(x^p - 1)$; that is (v_1, v_2, \ldots, v_p) corresponds to $v_1 + v_2 x + \ldots + v_p x^{p-1}$. The weight of a polynomial is the number of nonzero coefficients. Let $\mathcal{P} \subset Q$ be the set of all even weight polynomials. If $1 + x + \ldots + x^{p-1}$ is irreducible in $\mathbb{F}_2(x)$ then \mathcal{P} is a field with identity $x + x^2 + \ldots + x^{p-1}$ [9]. There is a natural map that we will describe only in our particular case in the next section, from $\mathcal{E}(g)$ to \mathcal{P}^e. Let us observe here only the fact that, if $p = 3$, then $1 + x + x^2$ is irreducible in $\mathbb{F}_2[x]$ and \mathcal{P} is isomorphic to \mathbb{F}_4, the field with four elements. The identification is the following:

<table>
<thead>
<tr>
<th>0</th>
<th>000</th>
<th>ω</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>011</td>
<td>$\overline{\omega}$</td>
<td>101</td>
</tr>
</tbody>
</table>

2.2. The computations for S_3. Let \mathcal{C} be an extremal self-dual code of length 72 and suppose that $G \leq \text{Aut}(\mathcal{C})$ with $G \cong S_3$. Let σ denote an element of order 2 and g an element of order 3 in G. By [5] and [6], σ and g have no fixed points. So, in particular, σ has 36 2-cycles and g has 24 3-cycles. Let us suppose, w.l.o.g. that $\sigma = (1, 4)(2, 6)(3, 5) \ldots (67, 70)(68, 72)(69, 71)$

Advances in Mathematics of Communications

Volume 7, No. 4 (2013), 503–510
and
\[g = (1, 2, 3)(4, 5, 6) \ldots (67, 68, 69)(70, 71, 72). \]

As we have seen in Section 2.1,
\[C = \mathcal{C}(g) \oplus \mathcal{E}(g) \]
where \(\mathcal{E}(g) \) is the subcode of \(C \) of all the codewords with an even weight on the cycles of \(g \), of dimension 24. We can consider a map
\[f : \mathcal{E}(g) \rightarrow \mathbb{F}_4^{24} \]
extending the identification \(\mathcal{P} \cong \mathbb{F}_4 \), stated in Section 2.1, to each cycle of \(g \).

Again by [9], \(\mathcal{E}(g)' := f(\mathcal{E}(g)) \) is an Hermitian self-dual code over \(\mathbb{F}_4 \) (that is \(\mathcal{E}(g)' = \{ \epsilon \in \mathbb{F}_4^{24} \mid \sum_{i=0}^{24} \epsilon_i \overline{\gamma_i} = 0 \text{ for all } \gamma \in \mathcal{E}(g)' \} \), where \(\overline{\alpha} = \alpha^2 \) is the conjugate of \(\alpha \) in \(\mathbb{F}_4 \). Clearly the minimum distance of \(\mathcal{E}(g)' \) is \(\geq 8 \). So \(\mathcal{E}(g)' \) is a \([24, 12, \geq 8]_4\) Hermitian self-dual code.

The action of \(\sigma \) on \(\mathcal{C} \subset \mathbb{F}_2^{24} \) induces an action on \(\mathcal{E}(g)' \subset \mathbb{F}_4^{24} \), namely
\[(\epsilon_1, \epsilon_2, \ldots, \epsilon_{24})' = (\epsilon_2, \epsilon_1, \ldots, \epsilon_{23}, \epsilon_{24}). \]
Note that this action is only \(\mathbb{F}_2 \)-linear. In particular, the subcode fixed by \(\sigma \), say \(\mathcal{E}(g)'(\sigma) \), is
\[\mathcal{E}(g)'(\sigma) = \{(\epsilon_1, \epsilon_1, \ldots, \epsilon_{12}, \overline{\epsilon_{12}}) \in \mathcal{E}(g)' \}. \]

Proposition 1. (cf. [8, Cor. 5.6]) The code
\[\mathcal{X} := \pi(\mathcal{E}(g)'(\sigma)) := \{(\epsilon_1, \ldots, \epsilon_{12}) \in \mathbb{F}_4^{12} \mid (\epsilon_1, \overline{\epsilon_1}, \ldots, \epsilon_{12}, \overline{\epsilon_{12}}) \in \mathcal{E}(g)' \} \]
is an additive trace-Hermitian self-dual \([12, 2^{12}, \geq 4]_4\) code such that
\[\mathcal{E}(g)' := \phi(\mathcal{X}) := \{(\epsilon_1, \overline{\epsilon_1}, \ldots, \epsilon_{12}, \overline{\epsilon_{12}}) \mid (\epsilon_1, \ldots, \epsilon_{12}) \in \mathcal{X} \} \mathbb{F}_4. \]

Proof. For \(\gamma, \epsilon \in \mathcal{X} \) the inner product of their preimages in \(\mathcal{E}(g)'(\sigma) \) is
\[\sum_{i=1}^{12} (\epsilon_i \overline{\gamma_i} + \overline{\epsilon_i} \gamma_i) \]
which is 0 since \(\mathcal{E}(g)'(\sigma) \) is self-orthogonal. Therefore \(\mathcal{X} \) is trace-Hermitian self-orthogonal. Thus
\[\dim_{\mathbb{F}_2}(\mathcal{X}) = \dim_{\mathbb{F}_2}(\mathcal{E}(g)'(\sigma)) = \frac{1}{2} \dim_{\mathbb{F}_2}(\mathcal{E}(g)') \]
since \(\mathcal{E}(g)' \) is a projective \(\mathbb{F}_2(\sigma) \)-module, and so \(\mathcal{X} \) is self-dual. Since \(\dim_{\mathbb{F}_2}(\mathcal{X}) = 12 = \dim_{\mathbb{F}_2}(\mathcal{E}(g)') \), the \(\mathbb{F}_4 \)-linear code \(\mathcal{E}(g)' \subset \mathbb{F}_4^{24} \) is obtained from \(\mathcal{X} \) as stated. \(\square \)

All additive trace-Hermitian self-dual codes in \(\mathbb{F}_4^{12} \) are classified in [7]. There are 195,520 such codes that have minimum distance \(\geq 4 \) up to monomial equivalence.

Remark 1. If \(X \) and \(Y \) are monomial equivalent, via a \(12 \times 12 \) monomial matrix \(M := (m_{i,j}) \), then \(\phi(X) \) and \(\phi(Y) \) are monomial equivalent too, via the \(24 \times 24 \) monomial matrix \(M' := (m'_{i,j}) \), where \(m'_{2i-1,2j-1} = m_{i,j} \) and \(m'_{2i,2j} = \overline{m_{i,j}} \), for all \(i, j \in \{1, \ldots, 12\} \).

An exhaustive search with Magma (of about 7 minutes CPU on an Intel(R) Xeon(R) CPU X5460 @ 3.16GHz) shows that the minimum distance of \(\phi(X) \) is \(\leq 6 \), for each of the 195,520 additive trace-Hermitian self-dual \([12, 2^{12}, \geq 4]_4\) codes. But \(\mathcal{E}(g)' \) should have minimum distance \(\geq 8 \), a contradiction. So we proved the following.
Theorem 2. The automorphism group of a self-dual $[72,36,16]$ code does not contain a subgroup isomorphic to S_3.

3. THE ALTERNATING GROUP OF DEGREE 4 AND THE DIHEDRAL GROUP OF ORDER 8

3.1. The action of the Klein four group. For the alternating group A_4 of degree 4 and the dihedral group D_8 of order 8 we use their structure

$$A_4 \cong \mathcal{V}_4 : C_3 \cong (C_2 \times C_2) : C_3 = \langle g, h : \langle \sigma \rangle \rangle,$$

$$D_8 \cong \mathcal{V}_4 : C_2 \cong (C_2 \times C_2) : C_2 = \langle g, h : \langle \sigma \rangle \rangle$$

as a semidirect product.

Let H be some extremal $[72,36,16]$ code such that $H \leq \text{Aut}(C)$ where $H \cong A_4$ or $H \cong D_8$. Then by [5] and [6] all non trivial elements in H act without fixed points and we may replace C by some equivalent code so that

$$g = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)\ldots(71,72),$$

$$h = (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)\ldots(70,72),$$

$$\sigma = (1,5,9)(2,7,12)(3,8,10)(4,6,11)\ldots(64,66,71) \quad \text{(for A_4)},$$

$$\sigma = (1,5)(2,8)(3,7)(4,6)\ldots(68,70) \quad \text{(for D_8)}.$$

Let

$\mathcal{G} := C_{S_{72}}(H) := \{ t \in S_{72} \mid tg = gt, th = ht, t\sigma = \sigma t \}$

denote the centralizer of this subgroup H in S_{72}. Then \mathcal{G} acts on the set of extremal H-invariant self-dual codes and we aim to find a system of orbit representatives for this action.

Definition 1. Let

$$\pi_1 : \{ v \in \mathbb{F}_2^{72} \mid v^9 = v \} \to \mathbb{F}_2^{36},$$

$$(v_1, v_2, v_3, \ldots, v_{36}) \mapsto (v_1, v_2, \ldots, v_{36})$$

denote the bijection between the fixed space of g and \mathbb{F}_2^{36} and

$$\pi_2 : \{ v \in \mathbb{F}_2^{72} \mid v^9 = v \text{ and } v^h = v \} \to \mathbb{F}_2^{18},$$

$$(v_1, v_2, v_3, \ldots, v_{18}) \mapsto (v_1, v_2, \ldots, v_{18})$$

denote the bijection between the fixed space of $\langle g, h \rangle \triangleleft A_4$ and \mathbb{F}_2^{18}. Then h acts on the image of \mathbb{F}_2^{18} as

$$(1,2)(3,4)\ldots(35,36).$$

Let

$$\pi_3 : \{ v \in \mathbb{F}_2^{36} \mid v^{\pi_1(h)} = v \} \to \mathbb{F}_2^{18},$$

$$(v_1, v_2, v_3, \ldots, v_{18}) \mapsto (v_1, v_2, \ldots, v_{18}),$$

so that $\pi_2 = \pi_3 \circ \pi_1$.

Remark 2. The centraliser $C_{S_{72}}(g) \cong C_2 \wr S_{36}$ of g acts on the set of fixed points of g. Using the isomorphism π_1 we obtain a group epimorphism which we again denote by π_1

$$\pi_1 : C_{S_{72}}(g) \to S_{36}$$

with kernel C_{36}^9. Similarly we obtain the epimorphism

$$\pi_3 : C_{S_{36}}(\pi_1(h)) \to S_{18}.$$

The normalizer $N_{S_{72}}(\langle g, h \rangle)$ acts on the set of $\langle g, h \rangle$-orbits which defines a homomorphism

$$\pi_2 : N_{S_{72}}(\langle g, h \rangle) \to S_{18}.$$
Let us consider the fixed code $C(g)$ which is isomorphic to $\pi_1(C(g)) = \{(c_1, c_2, \ldots, c_{36}) \mid (c_1, c_1, c_2, c_2, \ldots, c_{36}, c_{36}) \in C\}$. By [11], the code $\pi_1(C(g))$ is some self-dual code of length 36 and minimum distance 8. These codes have been classified in [1]; up to equivalence (under the action of the full symmetric group S_{36}) there are 41 such codes. Let Y_1, \ldots, Y_{41} be a system of representatives of these extremal self-dual codes of length 36.

Remark 3. $C(g) \in \mathcal{D}$ where

$$\mathcal{D} := \left\{ D \leq \mathbb{F}_2^{36} \left| D = D^\perp, d(D) = 8, \pi_1(h) \in \text{Aut}(D) \right. \right. \left. \text{and } \pi_2(\sigma) \in \text{Aut}(\pi_3(D(\pi_1(h)))) \right\}.$$

For $1 \leq k \leq 41$ let $\mathcal{D}_k := \{ D \in \mathcal{D} \mid D \cong Y_k \}.$ Let $\mathcal{G}_{36} := \{ \tau \in C_{S_{36}}(\pi_1(h)) \mid \pi_3(\tau)\pi_2(\sigma) = \pi_2(\sigma)\pi_3(\tau) \}.$

Remark 4. For $\mathcal{H} \cong A_4$ the group \mathcal{G}_{36} is isomorphic to $C_2 \leq C_3 \leq S_6$. It contains $\pi_1(\mathcal{G}) \cong A_4 \leq S_6$ of index 64. For $\mathcal{H} \cong D_8$ we get $\mathcal{G}_{36} = \pi_1(\mathcal{G}) \cong C_2 \leq C_2 \leq S_6$.

Lemma 1. A set of representatives of the \mathcal{G}_{36} orbits on \mathcal{D}_k can be computed by performing the following computations:

- Let h_1, \ldots, h_s represent the conjugacy classes of fixed point free elements of order 2 in $\text{Aut}(Y_k)$.
- Compute elements $\tau_1, \ldots, \tau_s \in S_{36}$ such that $\tau_i^{-1}h_1\tau_i = \pi_1(h)$ and put $D_i := Y_k^{\tau_i}$ so that $\pi_1(h) \in \text{Aut}(D_i)$.
- For all D_i let $\sigma_1, \ldots, \sigma_{t_i}$ a set of representatives of the action by conjugation by the subgroup $\pi_3(C_{\text{Aut}(D_i)}(\pi_1(h)))$ on fixed point free elements of order 3 (for $\mathcal{H} \cong A_4$) respectively 2 (for $\mathcal{H} \cong D_8$) in $\text{Aut}(\pi_3(D_i(\pi_1(h))))$.
- Compute elements $\rho_1, \ldots, \rho_{t_i} \in S_{18}$ such that $\rho_j^{-1}\sigma_j\rho_j = \pi_3(\sigma)$, lift ρ_j naturally to a permutation $\tilde{\rho}_j \in S_{36}$ commuting with $\pi_1(h)$ (defined by $\tilde{\rho}_j(2a - 1) = 2\rho_j(a) - 1$, $\tilde{\rho}_j(2a) = 2\rho_j(a)$) and put $D_{i,j} := (D_i)^{\tilde{\rho}_j} = Y_k^{\tau_i^{\tilde{\rho}_j}}$ so that $\pi_3(\sigma) \in \text{Aut}(\pi_2(D_{i,j}(\pi_1(h))))$.

Then $\{D_{i,j} \mid 1 \leq i \leq s, 1 \leq j \leq t_i\}$ represent the \mathcal{G}_{36}-orbits on \mathcal{D}_k.

Proof. Clearly these codes lie in \mathcal{D}_k.

Now assume that there is some $\tau \in \mathcal{G}_{36}$ such that $Y_k^{\tau \tilde{\rho}_j \tau} = D_i^{\tilde{\rho}_j} = D_{i,j} = Y_k^{\tau_i^{\tilde{\rho}_j}}$. Then

$$\epsilon := \tau_i^{\tilde{\rho}_j} \tau \tilde{\rho}^{-1}_j \tau_i^{-1} \in \text{Aut}(Y_k)$$

satisfies $\epsilon h_i \epsilon^{-1} = h_{i'}$, so h_i and $h_{i'}$ are conjugate in $\text{Aut}(Y_k)$, which implies $i = i'$ (and so $\tau_i = \tau_i$). Now,

$$Y_k^{\tau_i^{\tilde{\rho}_j} \tau} = D_i^{\tilde{\rho}_j} = Y_k^{\tau_i^{\tilde{\rho}_j}}.$$

Then

$$\epsilon' := \tilde{\rho}_j \tau \tilde{\rho}_j^{-1} \in \text{Aut}(D_i)$$

commutes with $\pi_1(h)$. We compute that $\pi_3(\epsilon')\sigma_j \pi_3(\epsilon'^{-1}) = \sigma_j$ and hence $j = j'$.

Advances in Mathematics of Communications: Volume 7, No. 4 (2013), 503–510
Now let \(D \in D_k \) and choose some \(\xi \in S_{36} \) such that \(D^\xi = Y_k \). Then \(\pi_1(h)^\xi \) is conjugate to some of the chosen representatives \(h_i \in \text{Aut}(Y_k) \) \((i = 1, \ldots, s) \) and we may multiply \(\xi \) by some automorphism of \(Y_k \) so that \(\pi_1(h)^\xi = h_i = \pi_1(h)^{\tau_i} \). So \(\xi \tau_i \in C_{S_{36}}(\pi_1(h)) \) and \(D^{\xi \tau_i} = Y_k^{\tau_i} = D_i \). Since \(\varpi \sigma \in \text{Aut}(\pi_3(D(\pi_1(h)))) \) we get
\[
\varpi(3(\pi_3(\pi_1(h)))) \in \text{Aut}(\pi_3(D(\pi_1(h))))
\]
and so there is some automorphism \(\alpha \in \mathcal{P}_3(C_{\text{Aut}}(D_3)(\pi_1(h))) \) and some \(j \in \{1, \ldots, t_i\} \) such that \((\pi_3(\pi_1(\xi \tau_i)))^\alpha = \sigma_j \). Then
\[
D^{\xi \tau_i \tilde{\alpha} \tilde{\rho}_j} = D_{i,j}
\]
where \(\xi \tau_i \tilde{\alpha} \tilde{\rho}_j \in G_{36} \).

3.2. The computations for \(\mathcal{A}_4 \). We now deal with the case \(\mathcal{H} \cong \mathcal{A}_4 \).

Remark 5. With Magma we use the algorithm given in Lemma 1 to compute that there are exactly 25, 299 \(G_{36} \)-orbits on \(D \), represented by, say, \(X_1, \ldots, X_{25,299} \).

As \(G \) is the centraliser of \(\mathcal{A}_4 \) in \(S_{72} \) the image \(\pi_1(G) \) commutes with \(\pi_1(h) \) and \(\pi_2(G) \) centralizes \(\pi_2(\sigma) \). In particular the group \(G_{36} \) contains \(\pi_1(G) \) as a subgroup. With Magma we compute that \(|G_{36} : \pi_1(G)| = 64 \). Let \(g_1, \ldots, g_{64} \in G_{36} \) be a left transversal of \(\pi_1(G) \) in \(G_{36} \).

Remark 6. The set \(\{X_i^g \mid 1 \leq i \leq 25, 299, 1 \leq j \leq 64 \} \) contains a set of representatives of the \(\pi_1(G) \)-orbits on \(D \).

Remark 7. For all \(1 \leq i \leq 25, 299, 1 \leq j \leq 64 \) we compute the code
\[
\mathcal{E} := \mathcal{E}(X_i^g, \sigma) := \tilde{D} + \tilde{D}^\sigma + \tilde{D}^{\sigma^2}, \text{ where } \tilde{D} = \pi_1^{-1}(X_i^g).
\]
For three \(X_i \) there are two codes \(\tilde{D}_{i,1} = \pi_1^{-1}(X_i^{g_{j1}}) \) and \(\tilde{D}_{i,2} = \pi_1^{-1}(X_i^{g_{j2}}) \) such that \(\mathcal{E}(X_i^{g_{j1}}, \sigma) \) and \(\mathcal{E}(X_i^{g_{j2}}, \sigma) \) are doubly even and of minimum distance 16. In all three cases, the two codes are equivalent. Let us call the inequivalent codes \(\mathcal{E}_1, \mathcal{E}_2 \) and \(\mathcal{E}_3 \), respectively. They have dimension 26, 26, and 25, respectively, minimum distance 16 and their automorphism groups are
\[
\text{Aut}(\mathcal{E}_1) \cong S_4, \text{Aut}(\mathcal{E}_2) \text{ of order 432, Aut}(\mathcal{E}_3) \cong (\mathcal{A}_4 \times \mathcal{A}_5) : 2.
\]
All three groups contain a unique conjugacy class of subgroups conjugate in \(S_{72} \) to \(\mathcal{A}_4 \) (which is normal for \(\mathcal{E}_1 \) and \(\mathcal{E}_3 \)).

These computations took about 26 hours CPU, using an Intel(R) Xeon(R) CPU X5460 @ 3.16GHz.

Corollary 1. The code \(\mathcal{C}(g) + \mathcal{C}(h) + \mathcal{C}(gh) \) is equivalent under the action of \(G \) to one of the three codes \(\mathcal{E}_1, \mathcal{E}_2 \) or \(\mathcal{E}_3 \).

Let \(\mathcal{E} \) be one of these three codes. The group \(\mathcal{A}_4 \) acts on \(\mathcal{V} := \mathcal{E}^+ / \mathcal{E} \) with kernel \(\langle g, h \rangle \). The space \(\mathcal{V} \) is hence an \(F_2(\sigma) \)-module supporting a \(\sigma \)-invariant form such that \(\mathcal{C} \) is a self-dual submodule of \(\mathcal{V} \). As in Section 2.1 we obtain a canonical decomposition
\[
\mathcal{V} = \mathcal{V}(\sigma) \perp \mathcal{W}
\]
where \(\mathcal{V}(\sigma) \) is the fixed space of \(\sigma \) and \(\sigma \) acts as a primitive third root of unity on \(\mathcal{W} \).

For \(\mathcal{E} = \mathcal{E}_1 \) or \(\mathcal{E} = \mathcal{E}_2 \) we compute that \(\mathcal{V}(\sigma) \cong F_2^d \) and \(\mathcal{W} \cong F_2^s \). For both codes the full preimage of every self-dual submodule of \(\mathcal{V}(\sigma) \) is a code of minimum distance \(< 16 \).
The automorphism group of a self-dual code does not contain a subgroup isomorphic to A_4.

3.3. The computations for D_8. For this section we assume that $\mathcal{H} \cong D_8$. Then $\pi_1(\mathcal{G}) = \mathcal{G}_{36}$ and we may use Lemma 1 to compute a system of representatives of the $\pi_1(\mathcal{G})$-orbits on the set \mathcal{D}.

Remark 8. $\pi_1(\mathcal{G})$ acts on \mathcal{D} with exactly 9,590 orbits represented by, say, $X_1, \ldots, X_{9,590}$. For all $1 \leq i \leq 9,590$ we compute the code

$$\mathcal{E} := E(X_i, \sigma) := \tilde{D} + \tilde{D}\sigma,$$

where $\tilde{D} = \pi_1^{-1}(X_i)$.

For four X_i the code $E(X_i, \sigma)$ is doubly even and of minimum distance 16. Let us call the inequivalent codes $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$ and \mathcal{E}_4, respectively. All have dimension 26 and minimum distance 16.

Corollary 2. The code $\mathcal{C}(g) + \mathcal{C}(h) + \mathcal{C}(gh)$ is equivalent under the action of \mathcal{G} to one of the four codes $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$ or \mathcal{E}_4.

This computation is very fast (it is due mainly to the fact that $\mathcal{G}_{36} = \pi(\mathcal{G})$). It took about 5 minutes CPU on an Intel(R) Xeon(R) CPU X5460 @ 3.16GHz.

As it seems to be quite hard to compute all D_8-invariant self-dual overcodes of \mathcal{E}_i for these four codes \mathcal{E}_i we apply a different strategy which is based on the fact that $h = (g\sigma)^2$ is the square of an element of order 4. So let

$$k := g\sigma = (1,8,3,6)(2,5,4,7) \ldots (66,69,68,71) \in D_8.$$

By [11], \mathcal{C} is a free $\mathbb{F}_2(k)$-module (of rank 9). Since $\langle k \rangle$ is abelian, the module is both left and right; here we use the right notation. The regular module $\mathbb{F}_2(k)$ has a unique irreducible module, 1-dimensional, called the socle, that is $((1+k+k^2+k^3))$. So \mathcal{C}, as
a free $\mathbb{F}_2(k)$-module, has socle $\mathcal{C}(k) = C \cdot (1+k+k^2+k^3)$. This implies that, for every basis b_1, \ldots, b_9 of $\mathcal{C}(k)$, there exist $w_1, \ldots, w_9 \in \mathcal{C}$ such that $w_i \cdot (1+k+k^2+k^3) = b_i$ and

$$\mathcal{C} = w_1 \cdot \mathbb{F}_2(k) \oplus \ldots \oplus w_9 \cdot \mathbb{F}_2(k).$$

To get all the possible overcodes of \mathcal{E}_i, we choose a basis of the socle $\mathcal{E}_i(k)$, say b_1, \ldots, b_9, and look at the sets

$$W_{i,j} = \{ w + \mathcal{E}_i \in \mathcal{E}_i \cap \mathcal{E}_i \mid w \cdot (1+k+k^2+k^3) = b_j \text{ and } d(\mathcal{E}_i + w \cdot \mathbb{F}_2(k)) \geq 16 \}.$$

For every i we have at least one j for which the set $W_{i,j}$ is empty. This computation (of about 4 minutes CPU on the same computer) shows the following.

Theorem 4. The automorphism group of a self-dual $[72,36,16]$ code does not contain a subgroup isomorphic to D_8.

ACKNOWLEDGMENTS

The authors like to express their gratitude to A. Previtali for the fruitful discussions in Milan. They thank Laboratorio di Matematica Industriale e Crittografia of Trento for providing the computational infrastructure including the computer algebra system Magma.

References

Received March 2013; revised July 2013.

E-mail address: m.borello1@campus.unimib.it
E-mail address: francesca.dallavolta@unimib.it
E-mail address: nebe@math.rwth-aachen.de