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Abstract
Since the discovery in 1964 of the Epstein–Barr virus (EBV) in African Burkitt lymphoma, this virus has been
associated with a remarkably diverse range of cancer types. Because EBV persists in the B cells of the asymptomatic
host, it can easily be envisaged how it contributes to the development of B-cell lymphomas. However, EBV is
also found in other cancers, including T-cell/natural killer cell lymphomas and several epithelial malignancies.
Explaining the aetiological role of EBV is challenging, partly because the virus probably contributes differently to
each tumour and partly because the available disease models cannot adequately recapitulate the subtle variations in
the virus–host balance that exist between the different EBV-associated cancers. A further challenge is to identify
the co-factors involved; because most persistently infected individuals will never develop an EBV-associated cancer,
the virus cannot be working alone. This article will review what is known about the contribution of EBV to
lymphoma development.
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Introduction

EBV was discovered in the ‘African’ (also known as
‘endemic’/high incidence) form of Burkitt lymphoma
(BL), and its oncogenic credentials were confirmed
when it was shown to transform resting B cells
in vitro [1]. However, EBV was also shown to asymp-
tomatically infect most of the world’s adult population,
EBV having evolved to survive in B cells for the
life of infected individuals [2]. These observations
pointed to the requirement for additional factors in BL
pathogenesis. George Klein’s laboratory showed the
consistent presence in BL of one of three chromosome
translocations, all of which deregulate c-myc expres-
sion [3–5]. Because MYC translocation is also found
in EBV-negative BL and is required to sustain the high
rate of proliferation characteristic of BL, it is consid-
ered the major transforming event [6], whereas EBV
probably provides survival signals necessary to override
c-myc-induced apoptosis [7–9]. A further pathogenic
factor in endemic BL is Plasmodium falciparum infec-
tion [10–13]. Unravelling the complex relationships
between EBV, deregulated c-myc, and P. falciparum
has revealed important insights into BL pathogenesis.

EBV is also associated with the development of other
lymphomas, including classical Hodgkin lymphoma

(cHL), diffuse large B-cell lymphoma (DLBCL), and
natural killer (NK)/T-cell lymphoma. Although we
know less about how EBV contributes to these other
malignancies, the virus clearly expresses different
forms of latency in these tumours. As we will see later,
variations in latent gene expression between differ-
ent tumours have been used to provide a conceptual
framework around which different roles for EBV in
lymphomagenesis have begun to emerge. To begin to
understand how EBV might contribute to lymphoma
development, we will first consider the biology of EBV
infection.

EBV infection in the asymptomatic host

EBV is transmitted by oral transfer; infectious virus
is shed intermittently at low levels in oropharyngeal
secretions. EBV shedding can also be detected in cervi-
cal secretions [14]. Primary infection is usually asymp-
tomatic or causes infectious mononucleosis (IM) [15].
In primary infection, EBV infects B lymphocytes of
the oropharyngeal mucosa, possibly after an initial tran-
sient burst of replication in the oropharyngeal epithe-
lium. EBV resides mainly in the long-lived memory B
cells of infected individuals. How the virus gets there can
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Figure 1. Two models of the EBV life cycle in the B-cell system. In the ‘germinal centre’ model, EBV infection of naïve B cells leads to
a latency III programme which drives cell proliferation, leading to the expansion of the infected cell pool. The EBV-infected B cells then
enter a germinal centre reaction and switch to a latency II programme which provides the signals for survival in the GC and differentiation
to memory B cells. EBV-infected memory B cells down-regulate latent gene expression (latency 0) to avoid immune recognition. When
EBV-infected cells divide, they switch on EBNA1 expression, required for the segregation of viral episomes to daughter cells during cell
division; this additional form of latency is known as latency I. The ‘direct infection’ model proposes that EBV directly infects memory B cells.

be explained by two, not necessarily mutually exclusive,
models [16,17] (Figure 1).

The ‘germinal centre’ model of virus persistence

This model proposes that EBV-infected memory B cells
are generated by the process of normal B-cell differ-
entiation involving germinal centres (GCs) [18]. GCs
are lymphoid structures where antigen-exposed B cells
undergo proliferation, class switch recombination, and
somatic hypermutation (SHM) in their immunoglobulin
genes – processes critical for antigen selection, affin-
ity maturation, and choice of immunoglobulin class
[19,20]. T-cell help through the CD40 receptor and anti-
gen activation of the B-cell receptor (BCR) positively
select antigen-specific B cells and drive their emergence
from the GCs as either memory B cells or plasma cells
[20].

In the GC model, initial infection of naïve B cells
drives proliferation and expansion of the EBV-infected
B-cell pool, a process thought to be analogous to
that observed when B cells are transformed by EBV
in vitro. EBV-transformed cells express the virus latency
III or growth programme characterized by expression
of nuclear antigens (EBNAs 1, 2, 3A, 3B, 3C, and
- LP), latent membrane proteins (LMPs 1, 2A, and
2B), two groups of viral miRNA, and the non-coding
Epstein–Barr-encoded RNA (EBER) [21,22]. A propor-
tion of EBV-transformed B cells enter the GC (Figure 1)
and express the latency II or default programme in
which EBNA1, LMP1, and LMP2, but not the other
EBNAs, are expressed [18,23–27]. LMP1 and LMP2
are functional homologues of CD40 and BCR signalling,

respectively, and probably provide the signals neces-
sary for the survival of EBV-infected B cells in the GC
and their subsequent exit from the GC as memory cells
[28–35].

EBV-infected memory B cells down-regulate latent
gene expression (referred to as latency 0) to avoid
recognition by EBV-specific immune cells. When the
EBV-infected cells divide as part of normal memory
B-cell homeostasis, they switch on the EBNA1 pro-
tein that is required for the segregation of viral epi-
somes to daughter cells during cell division. This form
of latency resembles that observed in most cases of
EBV-positive BL and is known as latency I [36]. Activa-
tion of EBV-infected memory B cells can lead to their
differentiation to plasma cells, a process that switches
on the EBV lytic cycle and leads to virion release [37].

The ‘direct infection’ model

The rare EBER-expressing cells isolated from the GCs
of patients with IM have been shown to carry somati-
cally mutated immunoglobulin genes without evidence
of intraclonal diversity [38]. In other words, these cells
are apparently not undergoing SHM which might be
expected if they were participating in the GC reac-
tion. Furthermore, LMP1 protein was found only in
EBV-infected cells outside, but not within GCs [39].
Two interpretations were suggested to explain these
data: (1) GC B cells are directly infected by EBV but
subsequently switch off SHM while continuing to pro-
liferate; (2) EBV directly infects memory B cells and
drives them to proliferate; the resulting clones enter the
GC without taking part in the GC reaction [38].
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EBV has also been detected, albeit at lower lev-
els, in a second distinct memory population, known as
‘non-switched’ memory B cells [40]. Unlike the gener-
ation of conventional memory B cells described above,
non-switched memory B cells are apparently not depen-
dent on GC activity, as evidenced by their presence
in certain GC-null immunodeficiency states, such as
X-linked lymphoproliferative disease [41,42]. Thus, in
some scenarios, EBV may be able to impose a memory
genotype without the requirement for a GC reaction.

Most rare EBER-positive cells detected in an other-
wise EBV-negative GC might not be participating in
the GC reaction, but this does not mean that GC reac-
tions involving EBV-infected B cells do not occur. It
may be that this is such an infrequent event as to be
mostly undetectable in tissue sections [38]. We and oth-
ers have reported instances of reactive lymphadenopa-
thy with expansions of EBV-positive cells within one
or more GC [43–48] (Figure 2). This phenomenon is
more commonly observed in patients with an underly-
ing immunodeficiency, such as HIV infection, or in adult
late-onset EBV-associated B-cell lymphoproliferations
associated with an age-related decline in EBV-specific
immunity [48]. These expansions may represent the rare
detection of EBV-infected B cells undergoing a GC
reaction, although whether LMP1 is involved remains
unclear since we and others have failed to detect LMP1
protein in these expanded EBV-positive GCs [43]. The
more frequent detection of these lesions during HIV
infection and in other immunodeficiency states might
implicate the immune response in controlling the prolif-
eration of EBV-positive GC B cells. Alternatively, in the
context of HIV infection, it could reflect hyperstimula-
tion of EBV-positive GC B cells (see later). Expansions
of EBV-positive GC B cells have been found in associ-
ation with EBV-positive cHL, so it cannot be ruled out
that they also represent an early stage in the evolution of
cHL [43,46,47].

EBV-associated B-cell lymphomas

EBV-positive B-cell lymphomas might be thought of
as rare accidents of EBV’s colonization of B cells.
Most display evidence of SHM and so may have arisen
from cells that have been through a GC reaction [13]
(Figure 3). Alternatively, EBV might itself induce
SHM (discussed later). The pattern of virus latency
observed in B-cell lymphomas might be taken as evi-
dence of the stage of B-cell differentiation from which
the tumour is derived. For example, the malignant
Hodgkin/Reed–Sternberg (HRS) cells of cHL express
a latency II pattern [49–51] and on this basis might be
considered to originate from an EBV-infected GC B cell
possibly en route to memory [52]. On the other hand,
although EBV-positive BL cells have a morphology
and gene expression profile similar to EBV-infected
GC B cells, they express a latency programme resem-
bling memory B cells [53,54]. An additional feature

Figure 2. Expansion of EBV-positive cells in a non-malignant ger-
minal centre. An example of the rare occurrence in germinal centres
of expansions of EBV-positive cells, shown here by in situ hybridiza-
tion. This condition is more common in patients who are immuno-
suppressed or in patients with a pre-existing lymphoma and could
represent an exaggerated form of natural persistent infection.

common to EBV-associated B-cell tumours is the
potential involvement of chronic immune stimuli in
their pathogenesis. Although this is exemplified by
the existence of rare EBV-positive tumours, such
as pyrothorax- and chronic osteomyelitis-associated
lymphomas, arising at sites of long-term persistent
inflammation, a body of evidence suggests that immune
stimuli are also involved in the development of the more
common EBV-associated tumours, such as BL [55,56].

Burkitt lymphoma

BL occurs not only in its endemic form, but also at a
lower incidence throughout the world (known as
‘sporadic’ BL), and in an HIV-associated form.
Almost all endemic BL is EBV-positive, with lower
(∼10–15%) and intermediate (∼40%) rates in sporadic
and HIV-associated forms, respectively [6,57]. All
forms harbour a reciprocal chromosome translocation
affecting the MYC gene on chromosome 8 and one of
the immunoglobulin heavy or κ and λ light chain loci
on chromosome 14, 2 or 22, respectively, bringing the
MYC oncogene under the transcriptional control of
an immunoglobulin locus [58]. The resulting overex-
pression of c-myc drives the high proliferation of BL
cells [59].

Breakpoints in the immunoglobulin genes in endemic
BL mainly occur in the VDJ or VJ regions, whereas
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Figure 3. The derivation of the major EBV-positive B-cell lymphomas. EBV-positive B-cell lymphomas are believed to derive from cells that
have the characteristics of different subsets of GC B cells. BL phenotypically resembles the proliferating centroblasts of the germinal centre,
but most cases have a virus latency profile similar to memory cells. All cases carry c-myc aberrations, mostly translocations. Some cases
of cHL have destructive BCR mutations, and all EBV-positive cases display a latency II programme. Most EBV-positive DLBCLs are of the
activated B-cell (ABC) type and display a latency III programme similar to that observed following the transformation of B cells in vitro.
However, the precise stage of B-cell differentiation from which each of these tumours derives is unknown.

those found in sporadic cases are commonly found in
the switch region (reviewed in ref 6). This suggests that
the breakpoints in endemic cases occur earlier during
B-cell differentiation (ie in the bone marrow) than in
sporadic tumours (ie in the GC, where class switch-
ing occurs). However, other evidence suggests that the
VDJ/VJ breakpoints arise as a consequence of the aber-
rant activity of activation-induced deaminase (AID), the
enzyme responsible for SHM in normal GC B cells,
suggesting that the breakpoints in endemic cases might
also occur in the GC [60]. Furthermore, AID could con-
tribute to BL pathogenesis by inducing ‘off-target’ muta-
tions in genes such as MYC, BCL6, and FAS (CD95)
[6,61–64]. EBV infection and LMP1 expression can
induce AID expression and activate SHM, potentially
leading to the generation of pathogenic mutations in
BL, although this effect is apparently counteracted by
latency III infection and in particular EBNA2 expression

[31,65–67]. The frequency of SHM is also higher in
EBV-positive than in EBV-negative memory cells and
in endemic and AIDS-BL than in sporadic BL [68,69].
However, one must recall the evidence presented ear-
lier that EBER-positive cells in the GCs of IM patients
are not undergoing SHM and so it is not clear if EBV
induces AID expression and SHM in vivo [38].

The overexpression of c-myc not only drives cell
proliferation but also induces apoptosis, so the BL
progenitor must acquire a second independent event
to overcome this [70]. The first evidence that EBV
contributes to this anti-apoptotic function came from
the demonstration that BL-derived cell lines that have
lost viral episomes in culture are more sensitive to
apoptosis than their EBV-positive counterparts [71]. In
latency I, characteristic of most BLs, the viral promoter,
Qp, drives expression of only EBNA1 [53]. Although
important for virus episome maintenance and virus
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promoter regulation, EBNA1 can also mediate some of
the anti-apoptotic effects of EBV in BL cells [72]. The
restricted pattern of virus latency observed in BL is
important in maintaining the BL phenotype since forced
expression of the latency III programme in BL cells was
shown to antagonize c-myc-driven oncogenesis [73,74].

Variant forms of BL have been described in
which Qp is silenced and Wp drives expression
of EBNA1, EBNA-3A, EBNA-3B, EBNA-3C, and
EBNA-LP [7,75,76]. However, the full latency III pro-
gramme is suppressed through deletion of the EBNA2
gene. Wp-using BLs are less sensitive to apoptosis than
conventional BLs, an effect that has been attributed to
the down-regulation of the pro-apoptotic molecule Bim
by EBNA3A and EBNA3C, and to the overexpression
of the viral bcl-2 homologue BHRF1 [77,78].

The very high incidence of EBV-positive BL in areas
of holoendemic P. falciparum malaria can be explained
by several mechanisms. First, there is some evidence
of loss of T-cell control to EBV latent and lytic anti-
gens in individuals chronically exposed to P. falciparum
infections. This is supported by recent evidence showing
that malaria can induce functional exhaustion of T cells
(reviewed in ref 79). Second, malarial antigens can cause
an intense polyclonal B-cell activation and induce the
EBV lytic cycle, both of which could lead to the expan-
sion of the EBV-infected B-cell pool, in turn increasing
the chances of one or more of these cells accidentally
acquiring MYC translocation [13,80]. For further details
of these mechanisms the reader is referred to several
excellent reviews [81,82].

Classical Hodgkin lymphoma

EBV is present in a subset of cHLs, being detectable
more frequently in the mixed cellularity form in males,
Asians, and Hispanics than in whites or blacks; and in
the UK, in South Asian children than in non-South Asian
children [83,84]. In developed countries, the proportion
of EBV-positive cases is lower in young adults but
higher in children, especially in those under 10 years
of age. EBV-positive disease is also more frequent in
elderly patients, an effect that is attributed to a decline
in EBV-specific immunity with advancing age [85,86].

HRS cells display evidence of SHM, but lack a
functional BCR [87]. In about a quarter of cases,
loss of BCR function is caused by mutations that
destroy the coding capacity of originally functional
immunoglobulin genes (so called ‘crippling’ mutations)
[88]. Thus, HRS cells are derived from GC B cells
which have failed to undergo the apoptosis that would
be the normal fate of GC B cells lacking a functional
BCR. Two pieces of evidence support a role for EBV
in providing this anti-apoptotic function. First, crip-
pling mutations in immunoglobulin genes are almost
exclusively found in EBV-positive cases [89]. Second,
EBV can efficiently immortalize BCR-negative GC B
cells in vitro, an effect that is dependent on BCR-like

signalling provided by LMP2A [90–92]. LMP1 may
also contribute to the survival of HRS cell precursors
by constitutively activating several of the pathways,
including NF-κB, JAK/STAT, and phosphatidylinositol
3-kinase/AKT, known to be aberrantly activated in HRS
cells [93–95]. However, EBV latent gene expression in
GC B cells might not only contribute to anti-apoptotic
properties but also interfere with the normal GC B-cell
differentiation programme [29,34,96,97].

EBV-positive post-transplant lymphoproliferative
disease

In healthy asymptomatic carriers, EBV-induced trans-
formation is suppressed by an EBV-specific immune
response mainly targeting EBNA3 proteins. Impairment
of this response can lead to the uncontrolled expan-
sion of EBV-transformed B cells, best exemplified by
the EBV-positive B-cell tumours that arise soon after
solid organ or haematopoietic stem cell transplantation,
when patients are heavily immunosuppressed (reviewed
in refs 98 and 99). These EBV-driven tumours are mem-
bers of a heterogeneous group of conditions, collectively
known as post-transplant lymphoproliferative disorders
(PTLDs). There is evidence of SHM in most of these
tumours, indicating their GC or post-GC B-cell origin
[100]. They often regress following the withdrawal of
immune suppression and respond very well to adoptive
T-cell therapy [101,102] (and reviewed in ref 98). Other
forms of PTLD, not all of which are EBV-positive, arise
several years or more after solid organ transplantation in
patients on low-level immunosuppression for life [103].

Other B-cell lymphomas

EBV is also present in other B-cell lymphomas, includ-
ing those classified as diffuse large B-cell lymphoma
(DLBCL). DLBCL is a heterogeneous group of malig-
nancies that can be subdivided on the basis of differ-
ent gene expression profiles and mutational signatures
into two major subgroups: germinal centre B-cell (GCB)
and activated B-cell (ABC) forms. Most EBV-positive
cases are of ABC type [104–107]. EBV is usually
present in DLBCL only in the setting of immune
impairment. For example, EBV-positive DLBCLs make
up around 30–50% of the late-onset post-transplant
tumours described above and approximately 30% of
AIDS-DLBCLs (many of which are of the so-called
‘immunoblastic’ type) [108,109]. Most EBV-positive
DLBCLs express either a type II or, more frequently,
a type III form of latency. The EBNA3 proteins are
expressed in latency III and may contribute to lymphoma
development. For example, EBNA3A and EBNA3C
are potential oncogenes, which can repress transcrip-
tion of pro-apoptotic and senescence-inducing genes
[77,110,111]. On the other hand, EBNA3B has recently
been reported to have tumour suppressor functions in
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EBV-infected B cells, and its loss of function could be
important for DLBCL [112].

The recognition that EBV-positive DLBCL can also
arise in older patients without a prior history of immune
suppression has led to the designation of a new provi-
sional entity, referred to as ‘EBV-positive diffuse large
B-cell lymphoma of the elderly’ [113,114]. This con-
dition might be due to senescence of the EBV-specific
immune response associated with advancing age
(reviewed in ref 107). EBV-positive DLBCL has
also been described in apparently immunocompetent
younger patients including children [115,116]. An
important area of future research will be to define the
precise nature of the immunological defects present in
patients with EBV-positive DLBCL.

HIV, the immune system, and EBV-associated
lymphomagenesis

The incidence of some EBV-associated lymphomas
is increased during human immunodeficiency virus
(HIV) infection. Analysis of these tumours has pro-
vided unique insights into how EBV, HIV, and the
immune system co-operate in lymphomagenesis. BL
occurs early in HIV infection when circulating CD4+
T-cell numbers are normal or only slightly decreased.
In contrast, the incidence of the ‘immunoblastic’ form
of DLBCL is increased only when circulating CD4+
T-cell numbers fall and the patient is severely immuno-
compromised. In accordance with these observations,
the incidence of AIDS-BL has not dramatically declined
in the era of highly active retroviral therapy, unlike that
of AIDS-DLBCL [117–121].

Thus, immune impairment is the major driver in
some HIV-associated lymphomas (eg immunoblastic
DLBCL), but to a lesser extent, if at all, in others
(eg BL). What additional factors could account for the
initiation of BL during HIV infection? In its earliest
stages, HIV infection is characterized by an expansion
of GC activity and intense polyclonal B-cell activa-
tion [122,123]. This is believed to increase the pool
of EBV-infected B cells carrying accidental c-myc/Ig
translocations. As CD4 counts fall, GC activity declines
and the incidence of BL decreases [124]. Therefore, HIV
could contribute to BL pathogenesis in a manner analo-
gous to that described above for P. falciparum infections
(reviewed in ref 13).

In contrast, the incidence of HL is only 5–15 times
higher among people with HIV and AIDS compared
with the general population [125–127]. Furthermore,
HL is more common in HIV-infected patients with
intermediate levels of immune impairment; this is
reflected in relatively lower rates for severely immuno-
compromised AIDS patients [126]. Two interpretations
have been proposed to explain these findings: first,
at very low CD4+ T-cell counts, the morphological
presentation of HL shifts to an appearance more similar
to non-Hodgkin lymphoma (in which there are fewer

CD4+ T cells in the microenvironment), resulting in a
diagnostic misclassification; or second, CD4+ T cells
have a tumour-promoting function in cHL.

EBV and the lymphoma microenvironment

cHL is a particularly good example of the impor-
tance of the tumour microenvironment in lymphoma
development. cHL is rich in CD4+ T cells and other
inflammatory cells, which surround the malignant
cells and support their growth and survival. HRS cells
secrete CCL5 (RANTES), CCL17 (TARC), CCL20, and
CCL22, which can attract helper and regulatory CD4+
T cells [128–131]. CCL5 also attracts eosinophils and
mast cells. The secretion of IL-8 by HRS cells recruits
neutrophils [128]. HRS cells also activate fibroblasts,
which in turn produce eotaxin and CCL5, thus further
contributing to the attraction of eosinophils and T
regulatory cells [132,133]. EBV proteins, particularly
LMP1, contribute to this microenvironment by stim-
ulating the production by HRS cells of many of these
cytokines and chemokines [34,131,134] (reviewed in ref
135). HRS cells also produce immunosuppressive fac-
tors including IL-10, galectin 1, TGFβ, and PD1L, all of
which can potentially inhibit cytotoxic T-cell responses
directed to EBV-infected HRS cells [136–142]. In
turn, the cHL microenvironment provides survival
signals to EBV-positive HRS cells mediated by various
ligand–receptor interactions including CD40–CD40L,
CD30–CD30L, APRIL–BCMA, and NGF–TRKA
[143,144].

Regulation of EBV gene expression and function
by the microenvironment

Also prominent in many cases of cHL is an abun-
dance of collagen [145–148]. Collagen is not only a
structural component but also an important signalling
molecule [149]. Recently, we reported that LMP1 can
induce expression of the collagen receptor, discoidin
domain receptor 1 (DDR1), in B cells [148]. Exposure
of DDR1-expressing B-cell lymphomas to collagen pro-
tected them from apoptosis, suggesting that some of
LMP1’s oncogenic effects may be dependent on alter-
ations to the microenvironment [148].

As well as potentially modifying the functions of indi-
vidual EBV proteins, there is evidence that the microen-
vironment can also modulate the pattern of virus gene
expression. For example, IL-21 and IL-2 together with
CD40 ligation, all present in the GC, can down-regulate
EBNA2 and up-regulate LMP1 expression [150,151],
imposing a type II latency pattern akin to that observed
in cHL. Furthermore, our recent work has identified a
significant role for Notch ligation in the regulation of
LMP1; activated Notch inhibits LMP1 expression from
the conventional LMP1 promoter initiated by EBNA2
during primary B-cell infection [152].
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NK/T-cell lymphomas

EBV is also associated with lymphomas of non-B cells,
including extra-nodal NK/T-cell lymphoma, nasal type
(ENKL) [153]. ENKL is a rare, aggressive tumour
that is most common in Asian and Latin American
populations. The presence of EBV in NK/T tumours
is diagnostic. However, while the mechanism of EBV
is unknown, accidental infection of NK or T cells is
suspected; some tumours have a cytotoxic phenotype,
demonstrated by expression of T-cell intracytoplasmic
antigen-1 and granzyme B, suggesting that they arose
following the infection of CTLs during the killing
of EBV-infected cells [154,155]. NK/T-cell tumour
cells produce cytokines that are responsible for the
symptoms characteristic of these tumours and of related
disorders [chronic active EBV infection (CAEBV) and
fatal haemophagocytic syndrome] [156]. NK/T-cell
lymphomas express a latency II pattern with variable
LMP1expression, which contributes to the excessive
production of pro-inflammatory cytokines mediated by
NF-κB activation [156].

Conclusions

In most tumours that arise in severely immunocompro-
mised individuals, EBV is the main driver of tumour
growth. However, in BL and HL, EBV provides an
anti-apoptotic function that complements c-myc dereg-
ulation or loss of BCR functions, respectively. In BL,
chronic immune stimulation, induced either by HIV or
by P. falciparum, or by both, might increase the pool
of EBV-infected GC B cells with MYC translocation.
In cHL, EBV contributes to the chronic inflammatory
milieu that surrounds and supports the tumour cells.
Emerging evidence suggests that this chronic inflam-
matory microenvironment not only might regulate
virus gene expression but could also promote EBV’s
oncogenic functions.
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