Martina G VijverLeiden University | LEI
Martina G Vijver
About
387
Publications
90,242
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
15,789
Citations
Introduction
Publications
Publications (387)
Assessing the safety and sustainability of novel technologies while they are still in the early research and development stages is the most effective way to avoid undesired outcomes. However, the journey from idea to market is highly uncertain and involves intensive trial and error as technology developers attempt to optimize material choices and p...
The microbiome provides an active barrier to the external environment and aids in the metabolism of the host. Nanomaterials are known to interact with this microbiome host plane. Given the recent advances in techniques to study the microbiome, there has been a vast increase in studies trying to find causality in host response via the microbiome in...
Proper risk assessment of the many new nanoforms (NFs) that are currently being developed and marketed is hindered by constraints in time and resources for testing their fate and (eco) toxicity profile. This problem has also been encountered in conventional chemical risk assessments, where the definition of related chemical groups can facilitate ri...
Nanoplastics can cause severe malformations in chicken embryos. To improve our understanding of the toxicity of nanoplastics to embryos, we have studied their biodistribution in living chicken embryos. We injected the embryos in the vitelline vein at stages 18–19. We injected polystyrene nanoparticles (PS-NPs) tagged with europium- or fluorescence....
To date, research on the toxicity and potential environmental impacts of nanomaterials has predominantly focused on relatively simple and single-component materials, whilst more complex nanomaterials are currently entering commercial stages. The current study aimed to assess the long-term and size-dependent (60 and 500 nm) toxicity of a novel core-...
The aim of this study is twofold: i) to determine innovative yet sensitive endpoints for sulfoxaflor and ii) to develop best practices for innovative teaching in ecotoxicology. To this end, a group of 52 MSc students participated in an environmental hackathon, during which they did creative toxicity testing on 5 freshwater invertebrate species: Dap...
A suspension of copper oxide nanoparticles (CuO NPs) is a mixture of dissolved and particulate Cu, the relative proportions of which highly depend on the water chemistry. However, the relationship between different proportions of particulate and dissolved Cu and the overall toxicity of CuO NPs is still unknown. This study investigated the response...
III–V/silicon tandem solar cells offer a promising avenue for high-efficiency, high-stability photovoltaics with low environmental risk.
Advanced materials comprising multiple metal alloys have made their way into the market. Trimetal-based nanomaterials (TNMs) are an example of advanced materials which have gained significant traction and are now employed in a wide array of products. It is essential to raise the question if the toxicity of advanced nanomaterials like TNMs differs f...
Since the soil quality Tool for Risk Identification, Assessment and Display (TRIAD) approach introduced the "three lines of evidence" accounting for chemical, toxicological and ecological stressors to explain adverse effects in biota, the assessment of contaminant risks in the environment has significantly evolved. The concept of chemical speciatio...
This chapter discusses how food systems are related to environmental pollution. It highlights that pollution from food production is often diffuse, which makes both prevention and removal difficult. It starts with a brief historical background on public perceptions of environmental pollution and relates this to a shift in environmental awareness am...
Only recently there has been a strong focus on the impacts of microplastics on terrestrial crop plants. This study aims to examine and compare the effects of microplastics on two monocotyledonous (barley, Hordeum vulgare and wheat, Triticum aestivum), and two dicotyledonous (carrot, Daucus carota and lettuce, Lactuca sativa) plant species through t...
Novel nanomaterial-based pesticide formulations are increasingly perceived as promising aids in the transition to more efficient agricultural production systems. The current understanding of potential unintended (eco)toxicological impacts of nano-formulated pesticides is scarce, in particular with regard to (non-target) aquatic organisms and ecosys...
Research on theoretical prediction methods for the mixture toxicity of engineered nanoparticles (ENPs) faces significant challenges. The application of in silico methods based on machine learning is emerging as an effective strategy to address the toxicity prediction of chemical mixtures. Herein, we combined toxicity data generated in our lab with...
Nanomaterials are widespread in the human environment as pollutants, and are being actively developed for use in human medicine. We have investigated how the size and dose of polystyrene nanoparticles affects malformations in chicken embryos, and have characterized the mechanisms by which they interfere with normal development. We find that nanopla...
Herein, we investigated to which extent metallic nanoparticles (MNPs) affect the trophic transfer of other coexisting MNPs from lettuce to terrestrial snails and the associated tissue-specific distribution using toxicokinetic (TK) modeling and single-particle inductively coupled plasma mass spectrometry. During a period of 22 days, snails were fed...
The wide production and use of metallic nanomaterials (MNMs) leads to increased emissions into the aquatic environments and induces high potential risks. Experimentally evaluating the (eco)toxicity of MNMs is time-consuming and expensive due to the multiple environmental factors, the complexity of material properties, and the species diversity. Mac...
Over the last years there has been significant research on the presence and effects of plastics in terrestrial systems. Here we summarize current research findings on the effects of nano- and microplastics (NMPs) on terrestrial plants, with the aim to determine patterns of response and sensitive endpoints. We conducted a systematic review (based on...
Dissolution of nanoparticles (NPs) determines the fate and subsequently the actual exposure of the NPs to organisms. Whether and to what extent NPs dissolve or remain in their particulate form...
Battery energy storage systems (BESS) are expected to fulfill a crucial role in the renewable energy systems of the future. Within current regulatory frameworks, assessing the sustainability as well as the social risks for BESS should be considered. In this research we conducted a social life cycle assessment (S‐LCA) of two BESS: the vanadium redox...
Material constraints may slow the pace of energy transition if the materials intensity of renewable energy technologies remains the same. Innovations in solar photovoltaics (PV) can contribute to achieving lower material demands. In this research, the actor-centered institutionalism framework, transitions literature and the science-policy interface...
Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gatheri...
Chemicals emitted to the environment affect ecosystem health from local to global scale, and reducing chemical impacts has become an important element of European and global sustainability efforts. The present work advances ecotoxicity characterization of chemicals in life cycle impact assessment by proposing recommendations resulting from internat...
The rapid development of nanomaterials (NMs) and the emergence of new multicomponent NMs will inevitably lead to simultaneous exposure of organisms to multiple engineered nanoparticles (ENPs) at varying exposure levels. Understanding the joint impacts of multiple ENPs and predicting the toxicity of mixtures of ENPs are therefore evidently of import...
New synthetic chemicals and materials are rising rapidly and are already widespread as novel entities in our daily lives. Although knowledge of their disruptive and long-lasting effects on the Earth system is accumulating, unknowns remain. This Voices asks: what risks do novel entities pose, and what are the emerging concerns?
The Safe by Design (SbD) concept aims to ensure the production, use and disposal of materials and products safely. While there is a growing interest in the potential of SbD to support policy commitments, such as the EU Green Deal and the Circular Economy Action Plan in Europe, methodological approaches and practical guidelines on SbD are, however,...
The goal of the current study was to quantify the trophic transfer of copper nanoparticles (CuNPs) in a food chain consisting of the microalga Pseudokirchneriella subcapitata as the representative of primary producer, the grazer Daphnia magna, and the omnivorous mysid Limnomysis benedeni. To quantify the size and number concentration of CuNPs in th...
Soil extra-cellular enzymes are the main driving force for microbial and biochemical processes, which makes them sensitive indicators for soil health and quality. Returning large amounts of sludge or its biochar to farmland may introduce exogenous substances into soil and have a significant impact on soil enzymatic activity. This study aimed to eva...
Multigenerational toxicity tests provide more sensitive measures of population-level effects than conventional single-generation tests. Particularly for stressors which exhibit slow uptake rates (e.g. nanomaterials), multigenerational tests may also provide a more realistic representation of natural exposure scenarios. To date, the inherently high...
Engineered nanomaterials (ENMs) are ubiquitous nowadays, finding their application in different fields of technology and various consumer products. Virtually any chemical can be manipulated at the nano-scale to display unique characteristics which makes them appealing over larger sized materials. As the production and development of ENMs have incre...
Ingested nanomaterials are exposed to many metabolites that are produced, modified, or regulated by members of the enteric microbiota. The adsorption of these metabolites potentially affects the identity, fate, and biodistribution of nanomaterials passing the gastrointestinal tract. Here, we explore these interactions using in silico methods, focus...
To assess the safety of engineered nanomaterials (ENMs) and to evaluate and improve ENMs' targeting ability for medical application, it is necessary to analyze the fate of these materials in biological media. This protocol presents a workflow that allows researchers to determine, characterize and quantify metal-bearing ENMs (M-ENMs) in biological t...
Many host-microbiota interactions depend on the recognition of microbial constituents by toll-like receptors of the host. The impacts of these interactions on host health can shape the hosts response to environmental pollutants such as nanomaterials. Here, we assess the role of toll-like receptor 2 (TLR2) signaling in the protective effects of colo...
Recently, the delivery of pesticides through novel controlled-release (nano-)formulations has been proposed intending to reduce (incidental) pesticide translocation to non-target sites. Concerns have however been raised with regards to the potentially enhanced toxicity of controlled-release (nano-)formulations to non-target organisms and ecosystems...
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease-19 (COVID-19) pandemic spread across the world and remains difficult to control. Environmental pollution and habitat conditions do facilitate SARS-CoV-2 transmission as well as increase the risk of exposure to SARS-CoV-2. The coexistence of microplastics...
Safe-and-sustainable-by-design (SSbD) is a concept that takes a systems approach by integrating safety, sustainability, and functionality throughout a product’s the life cycle. This paper proposes a framework based on a prospective life cycle assessment for early safety and sustainability assessment. The framework’s purpose is to identify environme...
Screening and prioritization of chemicals is essential to ensure that available evaluation capacity is invested in those substances that are of highest concern. We, therefore, recently developed structural similarity models that evaluate the structural similarity of substances with unknown properties to known Substances of Very High Concern (SVHC),...
The European Green Deal outlines ambitions to build a more sustainable, climate neutral, and circular economy by 2050. To achieve this, the European Commission has published the Chemicals Strategy for Sustainability: Towards a Toxic‐Free Environment, which provides targets for innovation to better protect human and environmental health, including c...
Regulation of plastics has emerged as a significant science-policy challenge, initiated by the increasing societal concerns regarding plastic pollution. A specific focus is now on plastic of sizes smaller than 1000 nm, often referred to as nanoplastics. The need to include nanoplastics in existing regulatory frameworks arises from the increased bio...
The conventional Hill equation model is suitable to fit dose‐response data obtained from performing (eco)toxicity assays. Models based on quasi‐QSARs to estimate the Hill coefficient ( n H ) were developed with the aim of predicting the response of the invertebrate species Daphnia magna to exposure to metal‐based nanomaterials. Descriptors represen...
In recent years, various ecotoxicological test guidelines and (technical) guidance documents have been evaluated and updated with regard to their applicability to nanomaterials (NMs). Several of these have currently reached official regulatory status. Ensuring their harmonized implementation with previously recognized methods for ecotoxicity testin...
Similarity assessment is one of the means of optimally using scarcely available experimental data on the fate and hazards of nanoforms (NFs) for regulatory purposes. For a set of NFs that are shown to be similar it is allowed in a regulatory context to apply the information available on any of the NFs within the group to the whole set of NFs. Obvio...
Plastics in the environment can be degraded to nanoscale plastic debris (NPD) with a size smaller than 1 µm. But it is unknown how the physicochemical properties of NPD influence their interaction with organisms and their toxicokinetics in organisms' bodies. This study uses the knowledge gained from investigating engineered polymeric nanomaterials...
Microplastics in the environment are a serious environmental problem. The absence of standard methods for sampling and sample preparation and techniques for characterization and quantification of microplastics, particularly, in the complex matrices of environmental samples hinder assessing the fate and the risk of these emerging contaminants. In th...
Microplastics in the environment are a serious environmental problem. The absence of standard methods for sampling and sample preparation and techniques for characterization and quantification of microplastics, particularly, in the complex matrices of environmental samples hinder assessing the fate and the risk of these emerging contaminants. In th...
The meaning of the term ‘life cycle’ in relation to chemical, material and product in Safe-by-Design (SbD) studies is discussed. We recommend including explicit definitions and graphical representations of life cycles in future SbD work.
The current debate on hazards associated with sub-micron sized plastics is hampered by a lack of quantitative data on the uptake and biological fate of plastics in organisms. Analytical methods should be developed to identify, characterize, and quantify sub-micron particulate plastic in biota to understand their biological fate in terms of biodistr...
The increasing application of biosolids and agrochemicals containing silver nanoparticles (AgNPs) and titanium dioxide nanoparticles (TiO2NPs) results in their inevitable accumulation in soil, with unknown implications along terrestrial food chains. Here, the trophic transfer of single NPs and a mixture of AgNPs and TiO2NPs from lettuce to snails a...
Assessment of chronic impact of metallic nanoparticles (NPs) in soil ecosystems is a necessity for ensuring safe and sustainable application. NPs affect plants and their associated microbial life, while the plants and their associated microbiota affect the NPs’ fate. Here, we measured the available Ag pool (determined as diethylenetriaminepentaacet...
Significance
Survey data show a large-scale decline in insects. This global decline is often linked to human actions in intensive agricultural areas. To investigate whether this decline has a causal relationship with neonicotinoid insecticides, we performed an outdoor experiment with representative surface water concentrations of the neonicotinoid...
The rapid development of nanotechnology influences the developments within the agro-sector. An example is provided by the production of nanoenabled pesticides with the intention to optimize the efficiency of the pesticides. At the same time, it is important to collect information on the unintended and unwanted adverse effects of emerging nanopestic...
Various modern products have metallic nanoparticles (MNPs) embedded to enhance products performance. Technological advances enable nowadays even multiple hybrid nanoparticles. Consequently, the future co-release of multiple MNPs will inevitably result in the presence of MNP mixtures in the environment. An important question is if the responses of m...
Copper oxide nanoparticles (CuO NPs) are one of the most widely used materials owing to their excellent properties such as thermal and photochemical stability, superconductivity, and high electrochemical activity. Once they enter the environment, Cu²⁺ may be released in water, which alters the behavior and toxicity of CuO NPs. The present study thu...
The Association of nanoparticles (NPs) with algae likely plays a critical role in their transfer in aquatic food chains. Although our understanding of the ecotoxicity and fate of NPs in the environment is increasing, it is still unclear how the physicochemical properties of NPs influence their interaction with algae at cellular levels and how this...
The coronavirus disease-19 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rampant in the world and is a serious threat to global health. The SARS-CoV-2 RNA has been detected in various environmental media, which speeds up the pace of the virus becoming a global biological pollutant. Because many en...
A QSAR model was developed to predict the response (immobilization) of Daphnia magna following exposure to metal and metal oxide nanomaterials.
Nanomaterials (NMs) taken up from the environment carry a complex ecocorona consisting of dissolved organic matter. An ecocorona is assumed to influence the interactions between NMs and endogenous biomolecules and consequently affects the formation of a biological corona (biocorona) and the biological fate of the NMs. This study shows that biomolec...