
Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright  2001

ALTRUISM, THE PRISONER’S DILEMMA, AND
THE COMPONENTS OF SELECTION

JEFFREY A. FLETCHER and MARTIN ZWICK

Systems Science Ph.D. Program, Portland State University
Portland, OR, USA 97207-0751 (jeff@pdx.edu)

Abstract

The n-player prisoner’s dilemma (PD) is a useful
model of multilevel selection for altruistic traits. It
highlights the non zero-sum interactions necessary
for the evolution of altruism as well as the tension
between individual and group-level selection. The
parameters of the n-player PD can be directly related
to the Price equation as well as to a useful alternative
selection decomposition. Finally, the n-player PD
emphasizes the expected equilibrium condition of
mutual defection in the absence of higher levels of
organization and selection.
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1 Introduction

The mechanisms by which altruistic1 behavior
may evolve in biological systems has been vigorously
debated over the last several decades. Alternative
explanations include reciprocal altruism where the
self-interest of individuals is served by the exchange
of cooperation with others [2, 14], inclusive fitness
where the self-interest of genes is served by
benefiting copies of themselves in other organisms
(usually relatives) [8], and multilevel selection (often
called group selection) where the self-interest of
groups may favor those with more altruistic members
[13, 15]. Although these explanations have aspects
that are mathematically equivalent [6, 13, 15], they
clearly differ in their view of the level at which self-
interest can select for self-sacrifice.

The purpose of our research is to demonstrate the
usefulness of game theory, especially the n-player
prisoner’s dilemma (PD), as a framework for

                                                
1 Here we use the term altruistic to describe any
behavior that gives benefit to others at a relative cost
to the provider of the benefit. Psychological or moral
aspects of altruism are not investigated nor implied
by our use of this term. In our model cooperation is
equivalent to altruism because the cooperate strategy
always involves self-sacrifice.

understanding the evolution of altruistic behaviors.
Although computer simulations of the PD including
n-player versions have been used to study reciprocal
altruism [e.g. 2, see 3 for summary], surprisingly, as
far as we know, the n-player PD has not been used
explicitly to model multilevel selection. Previously
we have shown that an n-player PD with minimal
group structure can provide a very simple model of
multilevel selection favoring altruism [4, 5]. This
model highlights the non zero-sum outcomes needed
for selection of altruistic traits as well as the tension
between selection within groups (which favors selfish
individuals) and selection between groups (which can
favor altruistic individuals). Here we briefly review
this earlier work and then extend it through use of the
Price covariance equation [6, 10] which decomposes
selection into within- and between-group
components. We relate the parameters of our n-player
PD to these components, and a similar but alternative
selection decomposition.

2 N-Player Prisoner’s Dilemma

The n-player PD offers a straightforward way of
thinking about the tension between individual and
group levels of selection. In real-world biological and
social systems the effects of cooperation or defection
are often distributed diffusely to other members of a
group, i.e., they do not necessarily arise via pair-wise
interactions. The n-player PD applies to both
problems of conserving a common resource and to
problems of equitable contributions towards a
common good [7]. An n-player PD involving
exploitation of common resources is also known as a
“tragedy of the commons” [9], whereas a PD
involving contributions is commonly known as “the
free-rider problem.”

When there is a common and finite resource, each
individual benefits by using more than its share of
that resource, but when all players apply this
individual rationality it leads to a deficient (non-
Pareto optimal) and hence collectively irrational
outcome. For example, each country that fishes
international waters can increase its utility by taking
more of this common resource, but as more and more
countries overfish, the common stock is depleted
beyond the point where it can quickly replenish and
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so in subsequent years all have less. This leads to
decreased utility both for countries that overfish
(defectors) and those that don’t (cooperators).

Tax evasion is a social example of the “free-rider
problem.” Biological examples include alarm calling
[11] and female-biased sex ratios [1]. In alarm calling
the contribution is made towards or withheld from a
common group security. Alarm calling is altruistic
assuming that this behavior lowers the caller’s
individual fitness as compared to living among alarm
callers, but not exhibiting calling behavior oneself.
Animals with female-biased sex ratios allow high
group growth rates, but individuals that have more
even (or male-biased) ratios are free-riders in that
they benefit by the high growth rate provided by
other group members while increasing their
individual fitness by having more progeny of the
rarer sex.

A simple payoff scheme for an n-player PD is
illustrated by Fig. 1. The horizontal axis specifies the
fraction of individuals cooperating for the common
good. The vertical axis gives the average utility or
fitness to each individual. For convenience, we
assume a linear relationship between utility and
fraction of cooperators. The upper line denotes the
utility for a defector (D) while the lower line is the
utility for a cooperator (C). The defectors’ line
dominates the cooperators’ line, i.e., selfish
individual behavior always has a higher utility than
altruistic behavior no matter what the fraction of
altruists.

Fig. 1. Utility lines for defectors and cooperators as a
function of the fraction of cooperators (p) for a
simple n-player PD. The dashed line indicates the
average utility.

The deficient outcome of the PD here inheres in
the fact that the utility to defectors when there is a
minimum number of cooperators is lower than the
utility to cooperators when there is a maximum

number of cooperators, i.e. the average utility line has
a positive slope. So even though for a given state of
the system an individual benefits more by defection
than cooperation, still cooperators in a group of
cooperators get more benefit than defectors in a
group of defectors.

The “tragedy” (and what makes this a PD) is that
whatever the current state of the system, individual
rationality or individual selection favors defection
which tends to drive the system progressively
towards a (boundary) equilibrium state less beneficial
to all. This state is a non-Pareto optimal and irrational
collective outcome. To summarize algebraically:
UD(p) > UC(p) (for all p) causes p to decrease, but
UC(1.0) > UD(0.0). The co-parallel lines used here are
the simplest of many cooperator and defector utility
curves that can satisfy these PD conditions.

It may be tempting to think of cooperation as
selfish rather than altruistic because a group of all
cooperators gets more utility per individual than a
group of all defectors, but this is incorrect and misses
the crux of the PD. In the 2-player PD, the players
would be better off if they both cooperate rather than
both defect, but defecting is still the rational
individual strategy for each player because the
prisoners have no way to coordinate their actions and
enforce any agreement to cooperate. Cooperating is
disadvantageous no matter what the other player
does. So in the absence of guarantees of cooperation
by other players, cooperating is truly altruistic—it
lowers one’s individual utility (fitness) while raising
the benefit to others. The same situation holds in the
n-player game. Given the absence of binding
agreements between players, each player is better off
to defect, but benefits others by not doing so in that
the system is kept at a state with a higher fraction of
cooperators. Of course, this is the dynamic for a
single set of players, or for a multi-group system
viewed at the intra-group level. As we shall see, at
the higher level of organization, i.e. that of the total
population which includes two or more groups,
cooperators can thrive, at least for a while, despite
their inferior individual fitness.

3 The Model

In the simplest form of the model there are two
groups with no migration between them. These
groups initially are the same size and vary only in p,
the fraction of cooperators and defectors. There are
no other strategies besides always-cooperate and
always-defect. We follow the fraction of cooperators
in each group and across the whole population. In
each group, the n-player PD (Fig. 1) is described by
utility functions for cooperation and defection, UC
and UD, which are dependent on the fraction of
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cooperators in each group. Each line is of the form
mp + b where slope m is the same for both lines.
Therefore there are two parameters to this n-player
PD: the slope and bD – bC, the difference in the
intercept for the defectors’ and cooperators’ utility
lines. For simplicity we set bC = 0 so the difference is
bD which we simply call b (≥ 0 in our simulations).
The condition for a PD is thus m > b. In all runs
reported in this paper this condition is satisfied.

We will show that the weighted average utility
line, U(pi) = pi(m – b) + b, in Fig. 1 (which depends
on both slope and intercept difference) determines the
between-group selection force, while the increase in
the number of defectors within each group is
proportional to b. At the group level a higher fraction
of cooperators confers an advantage. At the
individual level defectors have an advantage over
cooperators.

In this model, at each timestep the number of
cooperators within each group is increased by the
number of individuals utilizing this strategy times its
utility payoff per individual, and similarly for the
number of defectors:

Ci' = Ci[1 + UC(pi)]

Di' = Di[1 + UD(pi)]

where Ci and Di are the number of cooperators and
defectors respectively in group i, and where primed
terms represent values after selection. To aid in
comparisons among runs, the population of each
group is proportionally scaled back (preserving the
ratio of cooperators and defectors) so that the total
population size matches the original total. Scaling
does not do anything substantive. For convenience
we define C = C1 + C2, D = D1 + D2, and Ni = Ci + Di.

Because the utility for defectors is always higher
than that for cooperators, in the long run defectors
will dominate both in each group and across the
whole population. Yet while the fraction of
cooperators decreases within each group, the overall
fraction of cooperators in the whole population can
increase. This seemingly anomalous possibility is
known as Simpson’s paradox [12] and is key to
understanding the multilevel selection viewpoint of
the evolution of altruism [13]. The effect is transient
without mechanisms for reestablishing variation
between groups. These mechanisms and their effects
on altruism maintenance are explored thoroughly in
[1]. An increase in the fraction of cooperators, p, also
depends upon initial conditions. Specifically, given
that in our model initially N1 = N2 = C = D, the
condition for p to increase overall despite decreasing
in each group is:

m / b   >  Ni
2  / (Ci – Di)2

where i = 1 or 2 (see Appendix A in 4). This equation
also implies that m must be greater than b, and thus
the PD is a necessary (but not sufficient) condition
for the total fraction of cooperators to increase.

4 Experiments and Results

We have explored how combinations of our two
parameters affect the magnitude and longevity of the
Simpson’s paradox effect [4, 5]. Fig. 2 shows a
typical run with two groups where Simpson’s
paradox is evident. Here m = 0.01 and b = 0.003 and
the initial conditions are 90 defectors and 10
cooperators in group 1 and 90 cooperators and 10
defectors in group 2. Note that the inequality above is
satisfied, namely 0.01 / 0.003  >  1002  / (90 – 10)2,
and therefore we predict the resulting initial increase
in overall cooperators.

Fig. 2. Fraction of cooperators (p)  in group 1, group
2, and total for m = 0.01 and b = 0.003.

Although the fraction of cooperators is decreasing
in each group monotonically, the total fraction of
cooperators is increasing until timestep 328. The
overall increase in fraction of cooperators, despite the
decrease within each group, is due to group 2
(cooperator dominated) expanding, while group 1
(defector dominated) is shrinking. After timestep 328
the continued decrease of cooperators in group 2
causes the overall fraction of cooperators finally also
to decrease. By timestep 4,000 (not shown) the
overall fraction of cooperators, p, is essentially zero
(< 0.01%). Relatively small modifications to our
model can reestablish group variance in cooperator
fraction and therefore maintain cooperators
indefinitely. For instance, randomly reforming groups
periodically with appropriate slope and intercept
values allows cooperators to evolve to p = 1.0
fixation in our model. The size and number of groups
as well as the frequency of group reformation affect
this result.
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5 Price Components of Selection

Price introduced a covariance equation [6, 10]
which allows one to partition the change in overall
cooperator fraction, ∆p = p' – p, into two
components.

∆p = Cov(si, pi) / E(si) + E(si ∆pi) / E(si)

      = ∆pb + ∆pw

where si is a measure of group fitness, namely the
growth rate of each group, Ni'/Ni. The Price equation
components can be written as (Appendix A):

∆pb = p* –  p

∆pw = p'  –  p*

where:

p* = Σ(pi Ni' ) / N'

This leads to the following interpretation. In the
between-group term, p* plays the role of an idealized
p'. This idealization predicts a new p by applying the
original pi values to the after-selection group sizes,
ignoring pi changes within groups. In the
corresponding within-group term, the real p' is used,
but instead of starting from p, we start with p*. The
within component thus corrects for the changes of pi
within groups ignored by the idealization. Fig. 3
shows the same data used in Fig. 2 for overall p
expressed as a change from t = 0 along with the two
components of selection given by the Price equation.

These two components can also be written in a
way that highlights their relationship to the n-player
PD utility lines (see appendix B).

∆pb = ΣCi(1 + U(pi)) / ΣNi(1 + U(pi)) –  p

∆pw = ΣCi(UC(pi) – U(pi)) / ΣNi(1 + U(pi))

where U(pi) is the average utility line and UC(pi) is
the cooperators’ utility line in Fig. 1:

U(pi) = pi (m – b) + b

UC(pi) = pi m

Note that the numerator in the p* term in ∆pb
which gives a predicted change in cooperator number
thus depends on the average utility line from the n-
player PD. If a control is run in our simulation where
both cooperators and defectors are given the average

utility, the resulting change in p during this run
matches the Price ∆pb decomposition exactly. In the
numerator of the within term, which again gives a
predicted change in cooperator number, UC(pi) –
U(pi) simplifies to pb – b and the m term drops out.
So the change in cooperator number predicted by the
within term depends only on the intercept difference
or the relative advantage defectors have over
cooperators within each group. For this correction
term the corresponding control is not possible
because we are not making an idealization of the
change from the real p as we are in the between term.

Fig. 3. Price decomposition of between- and within-
group changes in cooperator fraction (∆p) for m =
0.01 and b = 0.003.

6 Alternative Decomposition

As we have noted, the Price decomposition makes
an idealization about how p changes in the between
term and then corrects for the difference between p'
and this idealization in the within term. In this way
the Price decomposition is between-based. An
alternative decomposition is also possible that is
within-based. That is, one can make a p' idealization
in the within term and then correct for the difference
from the true p' using the between term. In this case
the idealization for the within term is to assume the
fraction of cooperators in each group changes, but
that the relative size (fitness) of groups does not. The
degree to which group sizes do actually change is
then handled as a correction in the between term. We
will use p# to denote this alternative idealization:

p# = Σ(pi' Ni) / N

where the alternative components of selection are:

∆pw = p#  –  p

Price Decomposition of ∆p
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∆pb = p'  –  p#

Fig. 4 shows the within- and between-group
components for this alternate decomposition. Notice
that this gives quite different results than the Price
decomposition shown in Fig. 3. In the Price
decomposition the between-group selection force on
∆p rises to 0.4 which given that the starting point is p
= 0.5 matches the initial p2 = 0.9, the fraction of
cooperators in the cooperator dominated group. Since
the total ∆p goes to – 0.5 (p goes to zero) the within-
group correction term goes to – 0.9. This result says
that the equilibrium state is a balance between a
strong between-group force (even after group 1 has
disappeared) and a strong within-group force (even
after all cooperators have disappeared). In contrast,
this alternative decomposition of Fig. 4 more
intuitively says that the between-group selection
force rises as group 2 initially increases over group 1,
but that this force goes to zero as the first group
disappears. The alternative within-group component
steadily decreases to – 0.5 to balance the initial p of
0.5 as p goes to zero.

Fig. 4. Alternative decomposition of between- and
within-group components of change in cooperator
fraction (∆p) for a run with m = 0.01 and b = 0.003.

The alternative decomposition is not inherently
better or worse than the Price decomposition. Which
is more appropriate will depend on the situation
being studied. In the runs illustrated here where the
within-group selection force eventually dominates,
the alternative within-based decomposition may
provide more insight. In situations where the
between-group selection force dominates, the Price
between-based decomposition may be more useful.

Finally note that the within term of the alternative
decomposition has the idealized p' and actual p and
this allows us to run a control in our model where
cooperators are given a utility of (UC (pi) – U(pi)) / (1
+ U(pi)) and defectors are given a utility of (UD –
U(pi)) / (1 + U(pi)). The resulting actual ∆p for this

control run exactly matches the ∆pw given by the
alternative decomposition.

7 Conclusions

The n-player PD is a useful model for studying
multilevel selection. It highlights the tension between
individual selfishness and the common good that has
long been recognized in both biological and social
systems. The dominant model of multilevel selection,
the Price covariance equation decomposition of
selection forces, can be directly related to the
parameters and utility lines of a simple n-player PD.
In addition, a similar but alternative decomposition
may add additional insight for multilevel selection
dynamics.

Here we have purposefully only mentioned, but
not discussed in detail how mechanisms for
reestablishing group variance can preserve the group-
level selection force which can counteract individual
selection to increase and maintain altruistic behavior.
However if between-group selection disappears
mutual defection (selfish behavior) dominates. This is
the essence of the “dilemma” or “tragedy” and is the
expected result in the absence of a higher level of
organization and selection pressure.

Therefore when cooperation is observed in nature
it is not enough to recognize that cooperation
ultimately must provide an individual advantage.
This in itself does not imply that cooperation is a
result of individual selection. If defectors can get
more fitness than cooperators while living among
cooperators, then even though both defectors and
cooperators may be worse off when defection
prevails, mutual defection will still become the
equilibrium state. Thinking about the evolution of
altruistic behavior in terms of the n-player PD in
multiple groups may help reveal when higher levels
of selection are operating.
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Appendix A

Here we show that the Price equation between-
and within-group selection components can be
expressed in the form ∆pb = p* -  p and ∆pw = p'  -  p*

where p* = Σ(pi, Ni' ) / N'.

The between-group component is:
∆pb  =  Cov(si, pi) / E(si)

Using the definition of covariance, we get:
E(si pi) / E(si)  -  (E(si) E(pi)) / E(si)

In the first term denominator we substitute the
definition of s and replace the numerator expectation
by its summation definition. In the second term the
E(si) terms cancel.

(1/N) Σ(Ni si pi) / (N'/N)  -  p

The N terms cancel and si is replaced by its
definition.

Σ(Ni (Ni'/ Ni) pi) / N'  -  p

The Ni terms cancel to give:
∆pb  =  Σ(Ni' pi) / N'  -  p  =  p* -  p

The within-group component is:
∆pw = E(si ∆pi) / E(si)

Expanding the ∆pi term, writing the expectations as
summations, and using the definition of E(si) gives:

1/N  Σ(Ni si pi' ) / (N'/N)  -  1/N  Σ(Ni si pi) / (N'/N)

Again canceling N terms and substituting for si gives:
Σ(Ni' pi' ) / N'  - Σ(Ni' pi) / N'

Ni' pi' = Ci' and C'/N' = p' which gives:
∆pw  =  p'  -  Σ(Ni' pi) / N'   =  p' - p*

Appendix B

Here we show the Price equation between- and
within-group selection components expressed in
terms of the n-player PD utility lines. First it is useful
to show that Ni' = Ni (1 + U(pi)).

Ni'  =  Ci'  + Di'
      =  Ci (1 + UC(pi)) + Di (1 + UD (pi))
      =  Ci + Di + (Ci UC(pi) + Di UD (pi))
      =  (Ci + Di ) + (Ci + Di ) U(pi))
      =  Ni (1 + U(pi))

Now from Appendix A, the between-group
component of the Price equation can be written as:
∆pb  =  Σ(Ni si pi) / N'   -   p

Ni pi = Ci, and using the definition of si and of Ni'
gives:
∆pb  =  ΣCi(1 + U(pi)) / ΣNi(1 + U(pi)) -  p

For the within term we start with the following from
appendix A:
∆pw  =  Σ(Ni si pi' ) / N'  -  Σ(Ni si pi) / N'

The second term and denominators can be rewritten
as above and given that Ni si = Ni'  and Ni' pi' = Ci we
get:
Σ[Ci'  - Ci (1 + U(pi))] / ΣNi(1 + U(pi))

From the definition of Ci' we get:
Σ[Ci (1 + UC (pi)) - Ci  (1 + U(pi))] / ΣNi(1 + U(pi))

which reduces to:
∆pw = ΣCi(UC(pi) - U(pi)) / ΣNi(1 + U(pi))
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