Regular Homomorphisms and Regular Maps

ALEKSANDER MALNIČ, ROMAN NEDELA AND MARTIN ŠKOVIERA

Regular homomorphisms of oriented maps essentially arise from a factorization by a subgroup of automorphisms. This kind of map homomorphism is studied in detail, and generalized to the case when the induced homomorphism of the underlying graphs is not valency preserving. Reconstruction is treated by means of voltage assignments on angles, a natural extension of the common assignments on darts. Lifting and projecting groups of automorphisms along regular homomorphisms is studied in some detail. Finally, the split-extension structure of lifted groups is analysed.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Regular coverings (well known from the basic topology course) have their natural analogue in the theory of maps on surfaces—the concept of a regular homomorphism of maps. It is surprising that, in spite of their vital importance in construction of highly symmetrical maps [3, 9, 16, 19], no systematic treatment of regular homomorphisms has been undertaken so far.

As with regular coverings we have several equivalent possibilities to define a regular homomorphism: either in terms of the action of the fibre transformation group, in terms of factorization by a group of automorphisms, or in terms of certain subgroups in the monodromy group of the covering map. For the purpose of this paper, the first approach seems to be the most convenient.

We study regular homomorphism from several aspects. Our main concern, however, is the problem of lifting and projecting map automorphisms [2, 3, 9, 13, 14, 18]. This problem has to be solved in virtually every particular case when a new regular map is constructed from an old one. In this context, it is interesting to note that a homomorphism defined on a regular map is necessarily regular. This result does not have any direct topological counterpart.

In order to be able to provide a convenient combinatorial description of all regular homomorphisms we need an extension of the classical theory of voltage graphs [8] to voltage assignments on angles of a map. This approach proves to be quite versatile both to treat the lifting problem as well as to analyse the structure of lifted groups. As the lifted group is an extension of the fibre transformation group with no essential restrictions, it may be difficult to examine its structure in general. We show that the case when the extension splits can be well understood. In particular, we characterize those homomorphisms \(\tilde{M} \to M \) between regular maps for which \(\text{Aut} \tilde{M} \) is a split extension of the fibre transformation group by \(\text{Aut} M \).

2. PRELIMINARIES

Topologically, an oriented map is a finite connected graph (possibly with semiedges) cellularly embedded into an orientable surface with a prescribed global orientation. A map homomorphism is an orientation preserving branched covering of the supporting surfaces with possible branching points at face-centres, vertices, and free ends of semiedges of the embedded graph. A map automorphism is an orientation preserving self-homeomorphism of the surface leaving the embedding invariant.

For technical reasons, however, it is more convenient to deal with maps within a combinatorial framework. Formally, an oriented map, or briefly a map, is a triple \(M = (D; R, L) \) where \(D \) is a nonempty finite set of darts, \(R \) and \(L \) are two permutations on \(D \) such that
$L^2 = 1$, and the group Mon $M = \langle R, L \rangle$, the monodromy group of M, acts transitively on D. The underlying graph is obtained by taking the orbits of R and L as the set of vertices and the set of edges, respectively, with incidence arising from their nonempty intersection. The permutation L is also called the arc-reversing involution and R is the rotation which cyclically permutes the incident edges around vertices in their natural order determined by the chosen global orientation of the supporting surface. Words over the alphabet $[R, R^{-1}, L]$ correspond to walks in the graph, and the assumption that the monodromy group is transitive is nothing but the requirement that the graph be connected.

Let $M = (D; R, L)$ and $M' = (D'; R', L')$ be maps. A map homomorphism $\varphi : M \rightarrow M'$ is a function $\varphi : D \rightarrow D'$ such that $\varphi R = R'\varphi$ and $\varphi L = L'\varphi$. The latter implies that φ induces a group epimorphism $\varphi_* : \text{Mon} M \rightarrow \text{Mon} M'$ defined by $R \mapsto R'$ and $L \mapsto L'$. The notion of a map automorphism is self-explanatory. The transitivity of Mon M implies that every map automorphism is fully determined by the image of a single dart, and so the map automorphism group Aut M acts semiregularly on D. We call a map M regular whenever Aut M acts transitively, and hence regularly, on the set of darts of M. Thus, regular maps are those which enjoy the highest possible degree of symmetry.

It is well known that Aut M is equal to the centralizer of Mon M in the symmetric group Sym D, and abstractly isomorphic to $N((\text{Mon} M)_x)/\langle \text{Mon} M \rangle_x$, where $(\text{Mon} M)_x$ denotes the stabilizer of a dart x of M.

We call two map homomorphisms $\varphi : M \rightarrow N$ and $\varphi' : M' \rightarrow N'$ equivalent if there exist isomorphisms $\kappa : M \rightarrow M'$ and $\lambda : N \rightarrow N'$ such that the diagram

$$
\begin{array}{ccc}
M & \xrightarrow{\kappa} & M' \\
\downarrow \varphi & & \downarrow \varphi' \\
N & \xrightarrow{\lambda} & N'
\end{array}
$$

commutes.

For a full account of combinatorial representation of maps and their symmetries we refer the reader to Jones and Singerman [12].

3. Regular Homomorphisms of Maps

Let $\varphi : M \rightarrow M'$ be a homomorphism of maps where $M = (D; R, L)$ and $M' = (D'; R', L')$. Define the fibre transformation group FT(φ) of φ to be the group of all automorphisms τ of M for which the diagram

$$
\begin{array}{ccc}
M & \xrightarrow{\tau} & M \\
\downarrow \varphi & & \downarrow \varphi' \\
M' & \xrightarrow{\text{id}} & M'
\end{array}
$$

commutes. We will say that $\varphi : M \rightarrow M'$ is a regular homomorphism if FT(φ) acts transitively (and hence regularly) on each fibre. Thus a map homomorphism is regular if and only if the size of the fibre transformation group equals the number of sheets of the covering. Due to the transitivity of the action of the monodromy group of M, it is sufficient to check whether FT(φ) is transitive on a single fibre.

There is a convenient method of constructing regular homomorphisms from M, namely factorization by a group of automorphisms of M. Take a subgroup $G \leq \text{Aut} M$ and let \bar{D} be the set of orbits of G on D. Denoting by $[x]$ the orbit of $x \in D$ under the action of G,
define the quotient map $M \rightarrow \bar{M}$ with dart-set \bar{D} by setting $\bar{R}(\{x\}) = \{R(x)\}$ and $\bar{L}(\{x\}) = \{L(x)\}$. The action of \bar{R} and \bar{L} is correctly defined. Indeed, if $[x] = [y]$, then $\gamma(x) = y$ for some $\gamma \in G$. It follows that $R(y) = R\gamma(x) = \gamma R(x) = \gamma(R(x))$, whence $\bar{R}(\{y\}) = \{R(y)\} = \{R\gamma(R(x))\} = \{R(x)\} = \{R([x])\}$. Similarly, $\bar{L}(\{y\}) = \{L([x])\}$. Since \bar{L} is clearly an involution and the group (\bar{R}, \bar{L}) acts transitively on \bar{D}, we have that \bar{M} is a map. It is easy to see that the natural projection $\pi = \pi_{G}: M \rightarrow \bar{M}$, $x \mapsto [x]$, is a map homomorphism. In fact, π is a regular homomorphism. To see this, it is sufficient to realize that the fibre over any dart $[x]$ of \bar{M} is the set $\{\gamma(x)\}$, as defined in Section 3.1, and that $\text{FT}(\pi_{G}) = G$.

We now show that every regular map homomorphism arises by factorization.

Theorem 3.1. A map homomorphism $\varphi : M \rightarrow M'$ is regular if and only if it is equivalent to the natural projection $\pi : M \rightarrow M/\text{FT}(\varphi)$.

Proof. First assume that φ is equivalent to the natural projection $\pi : M \rightarrow M/\text{FT}(\varphi)$. Since π is regular, and a homomorphism equivalent to a regular homomorphism is again regular, so is φ.

For the converse, assume that $\varphi : M \rightarrow M'$ is regular. We want to show that then φ is equivalent to the natural projection $\pi : M \rightarrow M/\text{FT}(\varphi)$. To do this it is sufficient to find an automorphism κ of M and isomorphism $\lambda : M' \rightarrow M/\text{FT}(\varphi)$ such that $\pi \kappa = \lambda \varphi$. Set $\kappa = \text{id}$ and define λ by $\varphi(x) \mapsto [x]$. As φ is regular, the mapping λ is a bijection. We prove that λ is a map homomorphism.

Let $M = (D, R, L), M = (D', R', L')$ and $\bar{M} = M/\text{FT}(\varphi) = (\bar{D}, \bar{R}, \bar{L})$. For $y = \varphi(x)$ we have $\lambda R'(y) = \lambda \varphi R(x) = \varphi R(x) = \{R(x)\} = \bar{R}[x] = \bar{R}\varphi(x) = \bar{R}\lambda(y)$. Thus, $\lambda R' = \bar{R}\lambda$. Similarly, $\lambda L' = \bar{L}\lambda$. It follows that λ is a homomorphism, and hence an isomorphism. It is immediate that $\pi = \lambda \varphi$, proving that φ is equivalent to π.

There is an alternative characterization of regular homomorphisms, somewhat similar to the usual definition of a regular map in topology. A map homomorphism $\varphi : M \rightarrow M'$ is regular if and only if $(\text{Mon } M)_{\varphi} \subseteq \varphi^{-1}((\text{Mon } M')(\varphi(x)))$ (cf. [13]).

Theorem 3.2. Let $\varphi : M \rightarrow M$ be a map homomorphism where \bar{M} is regular. Then φ is a regular homomorphism. In particular, any homomorphism between regular maps is regular.

Proof. Let \bar{x} and \bar{y} be two darts in the same fibre of φ. We have to show that there exists an element in $\text{FT}(\varphi)$ which sends \bar{x} to \bar{y}. Because \bar{M} is regular, we certainly have $\bar{y} = \bar{\tau}(\bar{x})$ for some $\tau \in \text{Aut } M$. All we need is to prove that $\bar{\tau}$ belongs to $\text{FT}(\varphi)$.

Let \bar{z} be an arbitrary dart of \bar{M}. Then $\bar{z} = w(\bar{R}, \bar{L})(\bar{x})$ for some element $w(\bar{R}, \bar{L})$ of $\text{Mon } \bar{M}$. Set $w(\bar{R}, \bar{L}) = \varphi w(\bar{R}, \bar{L})$. Since $\bar{\tau}$ commutes with both \bar{R} and \bar{L}, while $\varphi\bar{R} = \bar{R}\varphi$ and $\varphi\bar{L} = L\varphi$, we have $\varphi\bar{\tau}(\bar{z}) = \varphi w(\bar{R}(\bar{x})) = \varphi w(\bar{R}, \bar{L})(\bar{x}) = \varphi w(\bar{R}, \bar{L})(\bar{\tau}(\bar{x})) = \varphi w(\bar{R}, \bar{L})(\bar{\tau}(\bar{\tau}(\bar{z}))) = w(\bar{R}, \bar{L})w(\bar{\tau}(\bar{x})) = \varphi w(\bar{R}, \bar{L})(\bar{\tau}(\bar{\tau}(\bar{z}))) = \varphi(\bar{z})$. Thus, $\bar{\tau}$ belongs to $\text{FT}(\varphi)$, as required.

4. Lifting and Projecting Automorphisms

Let $\tau : \bar{M} \rightarrow M$ be a map homomorphism, and let $\bar{\tau} \in \text{Aut } \bar{M}$ and $\tau \in \text{Aut } M$. We say that τ lifts to $\bar{\tau}$, or that $\bar{\tau}$ projects to τ, whenever the following diagram

\[
\begin{array}{ccc}
\bar{M} & \rightarrow & \bar{M} \\
\downarrow{\bar{\tau}} & & \downarrow{\tau} \\
M & \rightarrow & M
\end{array}
\]

is commutative.
Observe that the composition of a lift \(\tilde{\tau} \) of \(\tau \in \text{Aut} M \) with any fibre transformation is again a lift of \(\tau \); conversely, any two lifts of \(\tau \) ‘differ’ by a fibre transformation. Thus if \(A \) is a group of map automorphisms of \(M \) which lift, then the collection \(\tilde{A} \) of all of these lifts constitutes a group which is isomorphic to an extension of \(\text{FT}(\phi) \) by \(A \).

The problem of lifting and projecting automorphisms naturally occurs in the study of highly symmetric maps as well as in a broader context of graphs [5, 7, 13, 14, 20]. In particular, the next theorem lies in the background of many constructions of new regular maps from old ones [2, 3, 9, 11, 16, 18]. A concrete environment in which this theorem can be applied will be developed in Section 6.

Theorem 4.1. Let \(\varphi : \tilde{M} \rightarrow M \) be a regular homomorphism such that \(\text{Aut} M \) lifts. If \(M \) is a regular map, so is \(\tilde{M} \).

Proof. It is sufficient to realize that \(\text{Aut} M \) and \(\text{FT}(\varphi) \) are transitive on the respective maps: the lift of \(\text{Aut} M \) will be transitive as well. \(\square \)

It is well known that, in the reverse direction, factorization of a regular map by a normal subgroup of its automorphisms results in a regular map. This is easy to prove directly from the definitions, but alternatively the same fact can be derived from the subsequent results of this section. The first two of them reveal an interesting fact that the regularity of either the base or the covering map alone implies that the whole map automorphism group lifts or, respectively, projects. The third one characterizes regular homomorphisms whose fibre transformation group is normal in the automorphism group of the covering map.

Theorem 4.2. If \(\varphi : \tilde{M} \rightarrow M \) is a map homomorphism with \(\tilde{M} \) regular, then \(\text{Aut} M \) lifts.

Proof. Consider an arbitrary automorphism \(\tau \in \text{Aut} M \). Choose a base dart \(x \) in \(M \), and let \(\tilde{x} \) and \(\tilde{y} \) be arbitrarily chosen darts in \(\tilde{M} \) over \(x \) and \(\tau(x) \), respectively. Since the map \(\tilde{M} \) is regular, there exists (a unique) automorphism \(\tilde{\tau} \in \text{Aut} \tilde{M} \) sending \(\tilde{x} \) to \(\tilde{y} \). We claim that \(\tilde{\tau} \) is a lift of \(\tau \).

Indeed, let \(\tilde{z} \) be an arbitrary dart of \(\tilde{M} \), and let \(z \) be its projection. Let \(w(\tilde{R}, \tilde{L}) \) be an element of \(\text{Mon} \tilde{M} \) taking \(\tilde{x} \) to \(\tilde{z} \). Because \(\tilde{\tau} \tilde{R} = \tilde{R} \tilde{\tau}, \tilde{\tau} \tilde{L} = \tilde{L} \tilde{\tau}, \tau \tilde{R} = \tilde{R} \tau, \tau \tilde{L} = \tilde{L} \tau \) and \(\varphi \tilde{R} = R \varphi, \varphi \tilde{L} = L \varphi, \) we have \(\varphi \tilde{x}(\tilde{z}) = \varphi \tau \tilde{w}(\tilde{R}, \tilde{L})(\tilde{x}) = \varphi w(\tilde{R}, \tilde{L})\tilde{x}(\tilde{y}) = \varphi w(\tilde{R}, \tilde{L})(\tilde{y}) = w(R, L)\varphi(\tilde{y}) = w(R, L)\varphi(x) = \tau w(R, L)(x) = \tau(z) = \tau(\varphi(\tilde{z})). \)

We conclude that \(\varphi \tilde{\tau} = \tau \varphi \), as required. \(\square \)

Theorem 4.3. If \(\varphi : \tilde{M} \rightarrow M \) is a map homomorphism with \(M \) regular, then \(\text{Aut} \tilde{M} \) projects.

Proof. Consider an arbitrary automorphism \(\tilde{\tau} \in \text{Aut} \tilde{M} \). Choose a base dart \(\tilde{x} \) in \(\tilde{M} \), and let \(x \) and \(y \) be the projections of \(\tilde{x} \) and \(\tilde{\tau}(\tilde{x}) \), respectively. Since the map \(M \) is regular, there exists (a unique) automorphism \(\tau \in \text{Aut} M \) sending \(x \) to \(y \). We claim that \(\tau \) is the projection of \(\tilde{\tau} \). The fact that \(\varphi \tilde{\tau} = \tau \varphi \) is established in the same way as in Theorem 4.2.

Corollary 4.4. If \(\varphi : \tilde{M} \rightarrow M \) is a homomorphism of regular maps, then \(\text{Aut} \tilde{M} \) projects onto the full automorphism group \(\text{Aut} M \) (and \(\text{Aut} M \) lifts to the full automorphism group \(\text{Aut} \tilde{M} \)). In particular, \(\text{Aut} \tilde{M} \) is isomorphic to an extension of \(\text{FT}(\varphi) \) by \(\text{Aut} M \). \(\square \)

In general, neither the lifted group nor the projected group has to coincide with the full automorphism group of the respective map. We present two examples which also illustrate Theorems 4.2 and 4.3.
Example 4.5. Let \tilde{M} be the regular embedding of the complete graph K_4 into the 2-sphere S^2. It is well known that $\text{Aut} \tilde{M}$ is isomorphic to the alternating group A_4. Let $G \leq \text{Aut} \tilde{M}$ be the stabilizer of an arbitrary vertex of K_4, and set $M = \tilde{M}/G$. Then M is isomorphic to an embedding in S^2 of K_2 with an added loop. Now $\text{Aut} M$ is trivial and lifts to the fibre transformation group $G \cong \mathbb{Z}_3$, which is not the whole group $\text{Aut} \tilde{M} \cong A_4$.

Example 4.6. Let M and \tilde{M} be the quadrilateral embeddings of the Cartesian product of cycles $C_3 \times C_3$ and $C_3 \times C_6$ in the torus, respectively. There is an obvious regular homomorphism $\tilde{M} \to M$ with the fibre transformation group isomorphic to \mathbb{Z}_2. The group $\text{Aut} \tilde{M}$ projects by Theorem 4.3. In contrast, the automorphism of M which rotates one of the faces by $\pi/2$ does not lift.

As we have seen, factorization by a subgroup of the map automorphism group is a regular homomorphism and, moreover, every regular homomorphism arises in this way. We now examine the case when the factorization is done by a normal subgroup. The result we obtain is a variation on a theorem of Macbeath [15] which holds for regular covering projections between topological spaces.

Theorem 4.7. Let $\varphi : \tilde{M} \to M$ be a regular homomorphism. Then $\text{Aut} \tilde{M}$ projects if and only if $G = \text{FT}(\varphi)$ is normal in $\text{Aut} \tilde{M}$.

Proof. If $\text{Aut} \tilde{M}$ projects, then it is an extension of $\text{FT}(\varphi)$ by a subgroup $\text{Aut} M$. So $\text{FT}(\varphi)$ is normal in $\text{Aut} \tilde{M}$. For the converse, let $\text{FT}(\varphi)$ be normal in $\text{Aut} \tilde{M}$, and let $\tilde{\tau} \in \text{Aut} \tilde{M}$ be any automorphism. If $\varphi(\tilde{\tau}) = \varphi(\tilde{\tau'})$, then $\tilde{\tau} = \psi(\tilde{\tau})$ for some $\psi \in \text{FT}(\varphi)$. Since $\text{FT}(\varphi)$ is normal in $\text{Aut} \tilde{M}$, there exists an element $\psi' \in \text{FT}(\varphi)$ such that $\tilde{\tau}(\tilde{\psi}(\tilde{\tau})) = \psi'\tilde{\tau}(\tilde{\tau})$. Hence $\psi'\tilde{\tau}(\tilde{\psi}(\tilde{\tau})) = \psi'\tilde{\tau}(\tilde{\tau})$. Thus, $\psi'\tilde{\tau}$ is fibre preserving, that is to say, $\tilde{\tau}$ projects. \(\Box\)

5. Reconstruction of Regular Homomorphisms by Voltages

Concrete constructions of maps require a practical method of description of coverings of a given base map. Such a method is provided by voltage assignments. Usually, voltages are assigned to darts. However, in order to encompass all regular homomorphisms (including those which are not valency preserving), we need to employ voltage assignments on angles.

Let $M = (D; R, L)$ be an oriented map. An (oriented) angle of M is an ordered pair $a = (x, y) = \overrightarrow{xy}$, where x and y are darts of M such that $y \in \{R(x), R^{-1}(x), L(x)\}$. We always view the angles $(x, R(x))$ and $(x, R^{-1}(x))$ as distinct. The darts x and y are called the initial and the terminal dart of a, respectively. The angle $a^{-1} = (y, x)$ is the inverse of $a = (x, y)$. We denote by $A(M)$ the set of all angles of M; obviously, $|A(M)| = 3|D|$.

An angle-walk (or briefly a walk) is a sequence $W = a_1 a_2 \ldots a_n$ of angles of M such that the terminal dart of a_i coincides with the initial dart of a_{i+1}, for each index $i = 1, 2, \ldots, n-1$. The initial dart of a_1 and the terminal dart of a_n are called the initial and the terminal dart of W, respectively. The term closed angle-walk has the obvious meaning. The empty walk is considered to be closed. If $W = a_1 a_2 \ldots a_n$ is a walk originating at x and terminating at y, then $W^{-1} = a_n^{-1} a_{n-1}^{-1} \ldots a_1^{-1}$ is a walk originating at y and terminating at x, called the inverse of W.

For a dart x of M we denote by $\Pi(M, x)$ the set of all closed walks based at x. Adopting, without loss of generality, an additional assumption that consecutive angles in a walk are not mutually inverse, the set $\Pi^2 = \Pi(M, x)$ can be endowed with a group structure, called the fundamental group at x, with the empty walk as the identity.
Let M be a map and let G be a finite group. A **voltage assignment** on M valued in G is a function $\alpha : A(M) \to G$ such that for any angle a one has $\alpha(a^{-1}) = \alpha(a)^{-1}$. The group G is called the **voltage group**. Note that the voltage $\alpha(xLx)$ is necessarily an involution.

A voltage assignment can be extended to walks in the obvious way. Let $W = a_1a_2 \ldots a_n$ be an angle-walk on M. The **voltage of** W is defined to be the product $\alpha(W) = \alpha(a_1)\alpha(a_2) \ldots \alpha(a_n)$. The mapping $\Pi^x \to G$, $W \mapsto \alpha(W)$ is obviously a group homomorphism; in particular, $\alpha(W^{-1}) = \alpha(W)^{-1}$. The image $G^x = \{\alpha(W); \ W \in \Pi^x\}$ is called the **local voltage group** at x.

Given a voltage assignment α on $M = (D; R, L)$ valued in G, set $D^\alpha = D \times G$, and define the permutations R^α and L^α of D^α by

$$R^\alpha(x, h) = (R(x), h \alpha(xLx)),$$

$$L^\alpha(x, h) = (L(x), h \alpha(xLx)).$$

If the group $\langle R^\alpha, L^\alpha \rangle$ is transitive, then $M^\alpha = (D^\alpha; R^\alpha, L^\alpha)$ is the **derived map** determined by M and α. The criterion for the group $\langle R^\alpha, L^\alpha \rangle$ to be transitive is that $G^x = G$, and is, basically, well known (the argument valid for voltage assignments on graphs [8] goes through without any difficulty; see also [1]). In what follows we always assume this property to be satisfied.

It is easy to see that the **natural projection** $\pi_\alpha : M^\alpha \to M$ erasing the second coordinate is a map homomorphism. Observe, however, that for each element $a \in G$ the mapping $\tau_a : (x, g) \mapsto (x, ag)$ is an automorphism of M^α and the group $\tilde{G} = \{\tau_a; a \in G\}$, which we call the **copy of** G in $\Aut M^\alpha$, is isomorphic to G. Moreover, the projection $\pi_{\tilde{G}} : M^\alpha \to M^\alpha/\tilde{G}$ is clearly equivalent to π_α. Therefore, π_α is a regular map homomorphism with fibre transformation group isomorphic to G. We show that the converse holds as well.

Theorem 5.1. Let $\psi : \tilde{M} \to M = \tilde{M}/G$ be a regular map homomorphism. Then there exists a voltage assignment α on M valued in G such that the natural projection $\pi_\alpha : M^\alpha \to M$ is equivalent to ψ.

Proof. Let $\tilde{M} = (\tilde{D}; \tilde{R}, \tilde{L})$, $M = (D; R, L)$, and let $D = \{X_1, X_2, \ldots, X_n\}$. Then each X_i is equal to some $\{x\}$, where $x \in D(M)$. In every dart X_i of M choose a fixed representative $x_i \in X_i$. If $y \in X_i$ is arbitrary, then there exists an automorphism $\sigma_y \in G$ such that $\sigma_y(x_i) = y$. This automorphism, uniquely determined for $\Aut M$ (and hence G), acts freely on $D(M)$. It follows that $X_i = \{\sigma_y(x_i); \ y \in X_i\} = \{\sigma(x_i); \sigma \in G\}$. Thus we can denote the dart $\sigma(x_i)$ by (X_i, σ) and thereby identify $D(M)$ with $D(M) \times G$.

Now, let $R(X_i) = X_j$. The definition of R implies that for each $x \in X_i$ there exists a unique dart $y \in X_j$ such that $\tilde{R}(x) = y$. Let $x = (X_j, \sigma)$ and $y = (X_j, \tau)$. Then $x = \sigma(x_i)$ and $y = \tau(x_j)$, whence

$$\tilde{R}(X_i, \sigma) = \tilde{R}(x) = y = (X_j, \tau) = (R(X_i), \tau) = (R(X_i), \sigma(\sigma^{-1} \tau)).$$

We show that the automorphism $\sigma^{-1} \tau$ only depends on the angle X_iX_j and not on the choice of $x \in X_i$. To see this, pick up an element $a \in X_i$ and let $b = \tilde{R}(a) \in X_j$. Assume that $a = \eta(x_i)$ and $b = \theta(x_j)$. Since $\theta(x_j) = b = \tilde{R}(a) = \tilde{R}\eta(x_i) = \eta \tilde{R}(x_i)$, we have

$$\eta^{-1} \theta(x_j) = \tilde{R}(x_i).$$

Similarly, $\tau(x_j) = y = \tilde{R}(x) = \tilde{R}\sigma(x_i) = \sigma \tilde{R}(x_i)$, and hence

$$\sigma^{-1} \tau(x_j) = \tilde{R}(x_i).$$
Combining (2) and (3) we obtain \(\eta^{-1} \theta(x_j) = \sigma^{-1} \tau(x_j) \). Realizing that \(G \) acts freely on \(\hat{D} \), we deduce that \(\eta^{-1} \theta = \sigma^{-1} \tau \). In other words, the automorphism \(\sigma^{-1} \tau \) in (1) is independent of the choice of \(x \in X_j \) and depends only on the angle \(X_i X_j \). This conclusion enables us to define the voltage on the angle \(X_i X_j \) to be

\[
\alpha(X_i X_j) = \sigma^{-1} \tau.
\] (4)

A similar computation can be done for angles of the form \(X_i L X_i \) by replacing \(R \) with \(L \). Thus,

\[
\alpha(X_i L X_i) = \sigma^{-1} \tau.
\] (5)

Now we can rewrite (1) using (4) as

\[
\tilde{R}(X_i, \sigma) = (R(X_i, \sigma \alpha((X_i R X_i))), \tau).
\]

and similarly we get

\[
\tilde{L}(X_i, \sigma) = (L(X_i, \sigma \alpha((X_i L X_i))), \tau).
\]

But this shows that \(\tilde{R} = R^\sigma \) and \(\tilde{L} = L^\sigma \), and Theorem 5.1 follows.

Note that a given regular map homomorphism can be reconstructed by different voltage assignments (all valued in isomorphic groups). We call such voltage assignments equivalent.

6. INVARIANCE OF VOLTAGE ASSIGNMENTS

Following [3, 5, 9, 14, 16] we study conditions, expressed in terms of voltage assignments, which guarantee that a given map automorphism group lifts along a regular homomorphism. As we shall see, the lift exists if and only if the distribution of voltages is well behaved with respect to the action of the automorphism group.

To be more precise, let \(A \) be a group of automorphisms of a map \(M \). We say that a voltage assignment \(\alpha \) in a group \(G \) is locally \(A \)-invariant at a dart \(x \) if, for every \(\tau \in A \) and for every walk \(W \in \Pi^x \), we have

\[
\alpha(W) = 1 \Rightarrow \alpha(\tau W) = 1.
\] (6)

Due to the standard connectivity argument we can speak of local \(A \)-invariance without specifying the dart, as local \(A \)-invariance at some dart implies the same at all darts. A voltage assignment is locally \(\tau \)-invariant for an individual automorphism \(\tau \) of \(M \) if it is locally invariant with respect to the group \(\langle \tau \rangle \) generated by \(\tau \). Also, to simplify the terminology we speak just of local invariance whenever \(A = \text{Aut} M \).

Assume that the voltage assignment \(\alpha \) on \(M \) is locally \(A \)-invariant. Since with each \(\tau \in A \) its inverse \(\tau^{-1} \) must also satisfy condition (6), local \(A \)-invariance is equivalent to the requirement that for each \(\tau \in A \) there exists an induced isomorphism \(\tau^\# : G^\tau : G \rightarrow G^\tau \) of local voltage groups such that the following diagram

\[
\begin{array}{ccc}
\Pi^x & \xrightarrow{\tau^x} & \Pi^x \\
\alpha \downarrow & & \alpha \\
G^x & \xrightarrow{\tau^x} & G^x
\end{array}
\]

is commutative; in other words, \(\tau^\#(\alpha(W)) = \alpha(\tau W) \) where \(W \in \Pi^x \).

Theorem 6.1. Let \(\varphi : \hat{M} \rightarrow M \) be a regular homomorphism of maps and let \(A \leq \text{Aut} M \). Then the following statements hold.
(a) If \(A \) lifts along \(\varphi \), then each voltage assignment \(\alpha \) associated with \(\varphi \) is locally \(A \)-invariant.

(b) If there is a voltage assignment \(\alpha \) associated with \(\varphi \) which is locally \(A \)-invariant, then \(A \) lifts to \(\tilde{M} \).

PROOF. (a) Let \(\alpha \) be a voltage assignment on \(M \) reconstructing \(\varphi \). By Theorems 3.1 and 5.1, we can take the voltage group to be \(G = FT(\varphi) \) and replace \(M \) by \(M^a \) and \(\varphi \) by \(\pi_a \).

Let \(W = a_1a_2 \ldots a_n \) be a closed walk in \(M \) based at \(u \) with \(\alpha(W) = 1 \). For any angle \(\alpha = \tilde{x}y \) of \(M \) and for an arbitrary element \(g \in G = FT(\varphi) \) denote by \((a, g)\) the angle in \(M^a \) with initial dart \((x, g)\) and terminal dart \((y, g \alpha(a))\). Then for every \(g \in G \), the walk

\[
W_g = (a_1, g)(a_2, g \alpha(a_1)) \ldots (a_n, g \alpha(a_1) \alpha(a_2) \ldots \alpha(a_{n-1}))
\]

is a lift of \(W \) originating at \((u, g)\). Since \(W \) is closed, the terminal dart of \(W_g \) is

\[
(u, g \alpha(a_1) \alpha(a_2) \ldots \alpha(a_{n-1}) \alpha(a_n)) = (u, g \alpha(W)) = (u, g).
\]

Thus \(W_g \), too, is a closed walk in \(M^a \). Now, let \(\tau \in A \) and let \(\tau(W) = b_1b_2 \ldots b_n \), where \(b_i = \tau(a_i) \) for \(i = 1, 2, \ldots, n \). If \(\tilde{\tau} \in \text{Aut} M^a \) is an arbitrary lift of \(\tau \), then \(\pi_a \tilde{\tau} = \tau \pi_a \) implying that \(\tau(W) = \tau \pi_a(W_g) = \pi_a \tilde{\tau}(W_g) \). It follows that \(\tilde{\tau}(W_g) \) is a lift of the walk \(\tau(W) \). Our preceding consideration about lifts of \(W \) implies that there exists an element \(g' \in G \) such that

\[
\tilde{\tau}(W_g) = (b_1, g')(b_2, g' \alpha(b_1)) \ldots (b_n, g' \alpha(b_1) \alpha(b_2) \ldots \alpha(b_{n-1})).
\]

Since \(\tilde{\tau} \) is an automorphism of \(M^a \) and \(W_g \) is a closed walk in \(M^a \), so is \(\tilde{\tau}(W_g) \). Therefore, its terminal dart is \((b_1, g' \alpha(b_1) \alpha(b_2) \ldots \alpha(b_{n-1}) \alpha(b_n)) = (b_1, g') \), and so \(\alpha(b_1) \alpha(b_2) \ldots \alpha(b_n) = 1 \). But then \(\alpha(\sigma(W)) = 1 \), proving (a).

(b) Throughout the proof, let \(M = (D; R, L) \). Let \(u \in D(M) \) be a fixed base dart, and let \(\alpha \) be a locally \(A \)-invariant voltage assignment reconstructing \(\varphi \). Of course, it is sufficient to deal with \(M^a \) instead of \(M \). Clearly, for every element \(g \in G = FT(\varphi) \) and for an arbitrary dart \(x \) of \(M \) there exists an angle walk \(W \) from \(u \) to \(x \) such that \(\sigma(W) = g \). Now, for every automorphism \(\tau \in A \) and for every element \(h \in G \) we can define a mapping

\[
\tau_h(x, \alpha(W)) = (\tau(x), h \alpha(\tau(W)), \quad (7)
\]

where \(W \) is an arbitrary \(u-x \) walk with \(\alpha(W) = g \). We show that Eqn (7) correctly defines an automorphism of the derived map \(M^a \).

If \(W_1 \) and \(W_2 \) are two \(u-x \) walks with \(\alpha(W_1) = g = \alpha(W_2) \), then \(W_1 W_2^{-1} \) is a closed walk based at \(u \) with voltage equal to 1. As the voltage assignment \(\alpha \) is locally \(A \)-invariant, we obtain

\[
1 = \alpha(\tau(W_1 W_2^{-1})) = \alpha(\tau(W_1)) \alpha(\tau(W_2)^{-1}) = \alpha(\tau(W_1)) \alpha(\sigma(W_2))^{-1} = \alpha(\tau(W_1)) \alpha(\tau(W_2))^{-1}.
\]

Hence, \(\alpha(\tau(W_1)) = \alpha(\tau(W_2)) \), which means that \(\tau_h \) is correctly defined.

Next, we have to prove that \(\tau_h \) is a map automorphism, that is, it commutes with both \(R^a \) and \(L^a \). This is verified by the following computations, wherein \(x \in D, W \) is a \(u-x \) walk and \(W' = Wa(x) \) is a \(u-R(x) \) walk obtained from \(W \) by appending the angle \(a(x) = \tilde{x}R(x) \) at the end of \(W \):

\[
\tau_h R^a(x, \alpha(W)) = \tau_h(R(x), \alpha(Wa(x))) = \tau_h(R(x), \alpha(W'))
\]

\[
= (\tau R(x), h \alpha(\tau(W'))) = (\tau R(x), h \alpha(\tau(W) \tau(x) \tau R(x)))
\]

\[
= (\tau R(x), h \alpha(\tau W) \alpha(\tau(x) \tau R(x))) = (\tau R(x), h \alpha(\tau W) \alpha(\tau(x)))
\]

\[
= R^a(\tau(x), h \alpha(\tau W)) = R^a \tau_h(x, \alpha(W)).
\]
By similar calculations we get \(t_{h} L^{a}(x, \alpha(W)) = L^{a} t_{h}(x, \alpha(W)) \), and Theorem 6.1 is proved.

Note that for two automorphisms \(\tau_{h} \) and \(\omega_{k} \) of \(M^{a} \) we have \(\tau_{h} = \omega_{k} \) if and only \(\tau = \omega \) and \(h = k \).

Corollary 6.2. Let \(M \) and \(\tilde{M} \) be regular maps. Then:

(a) if \(\alpha \) is a locally invariant voltage assignment on \(M \), then the derived map \(M^{a} \) is regular;

(b) if \(\varphi : M \to M \) is a map homomorphism, then there exists a locally invariant voltage assignment \(\alpha \) on \(M \) such that the natural projection \(M^{a} \to M \) is equivalent to \(\varphi \).

Proof. Part (a) follows from Theorem 4.1 while part (b) follows from Theorem 4.2. \(\square \)

Note that part (a) of Corollary 6.2 is a generalization of Gvozdjak and Širáň [9, Theorem 3], and part (b) is the converse to (a). Note further that there is a one-to-one correspondence between equivalence classes of homomorphisms of regular maps and equivalence classes of locally invariant voltage spaces.

7. **Split Extensions**

Let \(\varphi : \tilde{M} \to M \) be a map homomorphism, and let \(A \) be a group of automorphisms of \(M \) which lifts along \(\varphi \) to \(A \). In general, the extension \(FT(\varphi) \to \tilde{A} \to A \) is difficult to analyse. Our aim is to derive conditions in terms of voltage assignments under which this extension splits. This question was also addressed in [5, 9, 14, 20].

To this end we first extend the notion of local \(A \)-invariance of an associated voltage assignment as follows. Following [14], let \(\Omega \subseteq D(M) \) be a nonempty subset of darts of \(M \) which is invariant under the action of \(A \), that is, \(A(\Omega) = \Omega \). Denote by \(\Pi^{\Omega} \) the set of all angle walks in \(M \) having both enddarts in \(\Omega \). An associated voltage assignment in a group \(G \) is said to be \((A, \Omega)\)-invariant if the condition

\[
\alpha(W) = 1 \Rightarrow \alpha(\tau W) = 1
\]

is satisfied for every \(\tau \in A \) and every walk \(W \in \Pi^{\Omega} \).

Theorem 7.1. Let \(M \) be a map and let \(\Omega \) be a set of darts of \(M \) invariant under the action of a group \(A \leq \text{Aut } M \) on \(D(M) \).

(a) If \(\alpha \) is an \((A, \Omega)\)-invariant voltage assignment on \(M \) taking values in a group \(G \), then \(A \) lifts to \(M^{a} \) as a split extension of \(FT(\pi_{a}) \) isomorphic to \(G \rtimes_{\#} A \), where \(\# : A \to \text{Aut } G \) is defined by \(\tau^{\#}(\alpha(W)) = \alpha(\tau(W)) \), with \(W \) having enddarts in \(\Omega \).

(b) If \(A \leq \text{Aut } M \) lifts along a regular map homomorphism \(\varphi : \tilde{M} \to M \) such that \(FT(\varphi) \to \tilde{A} \to A \) splits, then there exists an \((A, \Omega)\)-invariant voltage assignment on \(M \) such that \(\pi_{a} : M^{a} \to M \) is equivalent to \(\varphi \).

Proof. First of all, \((A, \Omega)\)-invariance implies local \(A \)-invariance. Hence \(A \) lifts, by Theorem 6.1. Furthermore, there exist automorphisms \(\tau_{\alpha}^{\#} \in \text{Aut } G \), \(x \in \Omega \), for each \(\tau \in A \)—see the remarks preceding Theorem 6.1.

We now show that

\[
\tau^{\#}(\alpha(W)) = \alpha(\tau(W)), \quad \text{where} \quad W \in \Pi^{\Omega},
\]

is a well-defined automorphism of \(G \). Let \(W_{1}, W_{2} \in \Pi^{\Omega} \) be two walks having the same voltage. Choose a walk \(C \) with trivial voltage connecting the terminal darts of \(W_{1} \) and \(W_{2} \).
Then \(W_1 C W_2^{-1} \) is a walk belonging to \(\Pi^G \) and has trivial voltage. Therefore, for an arbitrary \(\tau \in A \) we have \(\alpha(\tau(W_1 C W_2^{-1})) = 1 \). Since \(\alpha(\tau(C)) = 1 \) as well, it follows that \(\alpha(\tau(W_1)) = \alpha(\tau(W_2)) \), proving that \(\tau^\# \) is correctly defined. To show that \(\tau^\# \) is a group homomorphism, let \(W_1, W_2 \in \Pi^G \) be two walks carrying arbitrarily chosen elements of \(G \) as voltages. Connect the terminal dart of \(W_1 \) with the initial dart of \(W_2 \) by a walk \(C \) having trivial voltage. As \(\alpha(\tau(C)) = 1 \), we have

\[
\tau^\#(\alpha(W_1)\alpha(W_2)) = \tau^\#(\alpha(W_1 C W_2)) = \alpha(\tau(W_1 C W_2)) = \alpha(\tau(W_1)\alpha(\tau(C))\alpha(W_2)) = \alpha(\tau(W_1))\alpha(\tau(W_2)) = \tau^\#(\alpha(W_1))\tau^\#(\alpha(W_2)).
\]

The fact that \(\tau^\# \) is indeed a bijection is left to the reader. Note that \(\tau^\# \) coincides with all the locally defined automorphisms \(\tau^\#, \) where \(x \in \Omega \).

Next, we show that \(\# : A \to \text{Aut} G \) is a homomorphism. Indeed, for an arbitrary \(W \in \Pi^G \) we have \((\tau \omega)^\#(\alpha(W)) = \alpha((\tau \omega)(W)) = \tau^\#(\alpha(\omega(W))) = \tau^\#(\alpha(W)) \), and the claim follows.

So far we have proved that there exists the semidirect product \(G \ltimes H \). In order to show that there is a natural isomorphism \(G \ltimes H \to A \), let \(\tau_k(x, h) = (\tau(x), g \tau(\tau(W))\tau^\#(h)) \) where \(W \) is a walk with trivial voltage from the dart \(x \) to an arbitrarily chosen base dart \(u \in \Omega \). Note that \(\tau_k \) maps the darts in the same way as the mapping defined by (7). Thus, \(\tau_k \) indeed belongs to \(A \). We leave to the reader to verify the fact that \((g, \tau) \mapsto \tau_k \) is a bijection and that the equality \(\tau_k \circ \tau_k = (\tau \omega)_{h \tau^\#(k)} \) holds. This proves (a).

Now we are going to prove part (b). From Theorem 6.1(b) we already know that there exists a locally \(A \)-invariant voltage assignment \(\alpha \) on \(M \) with values in some group \(G \) such that the natural projection \(\pi_A : M^\# \to M \) is equivalent to \(\varphi \). We consider the lifted group \(\tilde{A} \) as acting on \(M^\# \). We will modify the existing voltage assignment to an equivalent one satisfying the required property as stated in the theorem.

Let \(\tilde{A} \cong A \) be a complement to \(\text{FT}(\varphi) \cong G \) in \(\tilde{A} \). Such a group \(\tilde{A} \) exists by assumption. Observe that each orbit of \(\tilde{A} \) intersects each fibre of darts over darts in \(\Omega \) in at most one dart. For some \(\tilde{\tau} \in \tilde{A} \) intersects a fibre in more than one dart (that is, if \(\tilde{\tau}(x, i) = (x, j) \) for some \(x \in \Omega \), then its projection \(\tau \in A \) fixes the corresponding dart in \(\Omega \). As \(A \) acts freely, \(\tau = \text{id} \). Thus, \(\tilde{\tau} \) belongs to the fibre transformation group. But \(\tilde{A} \) is a complement to \(\text{FT}(\varphi) \), implying that \(\tilde{\tau} = \text{id} \), which is a contradiction.

Now consider an arbitrary orbit \(\Omega_0 \subseteq \Omega \) of \(A \). Choose a base dart \(u_0 \in \Omega_0 \), and choose a dart over \(u_0 \) as a point of reference. Label this dart by \(1 \in G \), and consequently, relabel the darts over \(u_0 \) using the action of \(G \). Now extend this labelling from the base fibre to fibres over \(\Omega_0 \) using the action of \(\tilde{A} \) such that darts in the same orbit receive the same label. This is repeated in every orbit in \(\Omega \). Labellings of fibres over darts not in \(\Omega \) remain unchanged.

Once we have relabelled the darts, we can determine the new voltages on angles of \(M \). (To define the voltage of an angle \(\tilde{\tau} \) of \(M \), pick any angle above \(\tilde{\tau} \); if \((x, g) \) is its initial and \((y, h) \) its terminal dart, then the voltage of \(\tilde{\tau} \) is defined to be \(g^{-1} h \).) By definition, this new voltage assignment is equivalent to the original one.

It remains to prove that the new voltage assignment is \((A, \Omega) \)-invariant. Consider a walk \(W \) with enddarts in \(\Omega \) whose voltage is trivial. Each lift \(\tilde{W} \) of such a walk has enddarts labelled by the same element of \(G \), that is, belonging to the same orbit of \(\tilde{A} \). If \(\tau \in A \), let \(\tilde{\tau} \in \tilde{A} \) be the corresponding element. Now \(\tilde{\tau}(\tilde{W}) \) is a walk over \(\tau(W) \) and has enddarts labelled by the same label. Consequently, the voltage of \(\tau(W) \) is trivial. \(\square \)

An \((\text{Aut} M, D(M)) \)-invariant voltage assignment is called invariant on \(M \) for short. As a corollary we obtain the following characterization of those homomorphisms between regular maps for which the automorphism group of the covering map is a natural split extension of the fibre transformation group.
Regular homomorphisms and regular maps

Corollary 7.2. Let M and \tilde{M} be regular maps. Then:

(a) If α is an invariant voltage assignment on M taking values in a group G, then the derived map M^α is regular. Moreover, the extension $\text{FT}(\phi) \to \text{Aut } M^\alpha \to \text{Aut } M$ splits, and we have $\text{Aut } M^\alpha \cong G \rtimes_\# \text{Aut } M$, where $\# : \text{Aut } M \to \text{Aut } G$ is given by $\tau#(\alpha(W)) = \alpha(\tau(W))$.

(b) If $\phi : M \to M$ is a map homomorphism such that $\text{FT}(\phi) \to \text{Aut } M^\alpha \to \text{Aut } M$ splits, then there exists an invariant voltage assignment on M such that the natural projection $M^\alpha \to M$ is equivalent to ϕ.

Example 7.3. A reader familiar with Cayley maps [4, 6, 10, 17, 19] will recognize Cayley maps as those for which there exists a regular homomorphism onto an embedded monopole (a connected graph with one vertex). Moreover, a Cayley map is balanced if and only if the embedded monopole is a regular map.

Suppose M is a regular balanced Cayley map. Then it can be reconstructed by a voltage assignment valued in the Cayley group. This assignment is necessarily invariant. With the help of Corollary 4.4 and Theorem 7.1 we can deduce that $\text{Aut } M$ is isomorphic to a split extension of the Cayley group by the cyclic group of automorphisms of the embedded monopole, cf. [19].

In contrast to this, a locally invariant voltage assignment on a regularly embedded dipole can give rise to a regular map whose automorphism group does not split.

Example 7.4. Let G_n be the group given by the presentation

$$(x, y; x^{2n} = y^n = 1, \ yx = x^3y^{-1}, \ xy^2 = x^2y).$$

It readily follows from the defining relations that every element of G_n can be uniquely expressed as a word of the form x^iy^j, where $0 \leq i \leq 2n - 1$ and $0 \leq j \leq n - 1$. Thus, G_n has order $2n^2$. Consider the subgroup $C = \langle x^2 \rangle \leq G_n$. Since x^2 belongs to the centre of G_n, it follows that C is normal in G_n. It is easy to see that $C \cong \mathbb{Z}_n$ and that G_n/C is isomorphic to the dihedral group D_n of order $2n$.

The group G_n can also be generated by the elements y and $x^{-1}y$, the latter being an involution. This enables us to construct the map $M_n = (D; R, L)$ with $D = G_n$, $R = y$ and $L = x^{-1}y$ where R and L act on D by the left multiplication. Routine calculations reveal that this map is isomorphic to the well-known regular embedding of the complete bipartite graph $K_{n,n}$ in which each face is bounded by a Hamiltonian cycle. Obviously, $\text{Aut } M_n$ is isomorphic to G_n. In fact, we can identify $\text{Aut } M_n$ with G_n acting on D by the right multiplication. In the same fashion, we can view the subgroup $C \leq G_n$ as a group of automorphisms of M_n and construct the quotient map $M'_n = M_n/C$. It is easy to see that M'_n is isomorphic to the regular embedding of the n-dipole in the 2-sphere, with $\text{Aut } M'_n \cong D_n$.

The covering map M_n can be obtained from M'_n via the voltage assignment α valued in $\mathbb{Z}_n \cong C$ as follows. The angles, oriented consistently with the orientation of S^2, carry the voltage 1 at one of the vertices of M'_n, and the voltage 0 at the other vertex. The voltage assignment α is clearly locally invariant (in fact, every voltage assignment on a regular map which produces a regular covering map must be locally invariant).

If $n \geq 2$ is even, G_n cannot be decomposed into a semidirect product of C by an appropriate subgroup of G_n. Indeed, the semidirect product would actually be a direct product because C belongs to the centre. Thus, G_n would be isomorphic to $D_n \times \mathbb{Z}_n$, which is impossible as G_n contains an element of order $2n$ whereas $D_n \times \mathbb{Z}_n$ does not. We conclude that $M_n, n \geq 2$ even,
is an example of a regular map obtained from another regular map M'_n by means of a locally invariant voltage assignment having the property that the automorphism group of M_n is not isomorphic to a semidirect product of the voltage group by the automorphism group of M'_n.

Both maps M_n and M'_n are reflexible. The same map covering $M_n \rightarrow M'_n$ can be used to show a similar property of the extended automorphism groups (comprising map automorphisms plus reflections) of M_n and M'_n. Details are analogous to those presented previously and therefore left to the reader. To summarize, these examples show that Theorem 5 in [9] is false.

ACKNOWLEDGEMENTS

A Malnič was supported in part by ‘Ministrstvo za znanost in tehnologijo Slovenije’, proj. no. J1-0496-99, and by ‘Rektorjev sklad Univerze v Ljubljani’. R Nedela and M Škoviera were supported in part by VEGA, grant no. 1/6132/99.

REFERENCES

20. A. Venkatesh, Graph coverings and group liftings, manuscript.
Received 24 August 2000 and accepted 30 January 2002

ALEKSANDER MALNIČ
Pedagoška Fakulteta, Univerza v Ljubljani, Kardeljeva pl. 16, 1000 Ljubljana, Slovenia

ROMAN NEDELA
Fakulta Financií, Univerzita Mateja Bela, SK-975 49 Banská Bystrica, Slovakia

AND

MARTIN ŠKOVIERA
Matematicko-fyzikálna Fakulta, Univerzita Komenského, SK-842 15 Bratislava, Slovakia