Advanced input shaping filter 3D virtual laboratory

Martin Čech, Martin Goubej, Jan Reitinger

June 21, 2013
Virtual laboratories
3-platforms idea
Input shaping filters
Mathematical model of control system
The laboratory development cycle
Final laboratory
Conclusion
Virtual laboratories

Advantages

- Low cost maintenance
- High efficiency in training
- Making mass of experiments simultaneously
- Often more demonstrative than real experiment

Commonly used approaches

Matlab engine + GUI in LabView
- Internet connection is needed
- Non-monolithic application

Models in Easy Java Simulations
- Described only by equations
- Not compatible with Matlab/Simulink

Drawback

- The build-in algorithm cannot be usually directly used for controlling real plant or machine
 - In our lab solved with 3-platforms idea
3-platforms idea

- Simulation and development platform
- Real-time platform
- Java applet platform

The control schemes are fully compatible with block algorithms, inputs, outputs and parameters.
Input shaping filter

Process model

\[P(s) = \frac{\omega_n^2}{s^2 + 2\xi \omega_n + \omega_n^2}; \quad \xi < 1, \quad \omega_d = \omega_n \sqrt{1 - \xi^2}, \]

- \(\omega_n \) – natural frequency
- \(\xi \) – damping coefficient
- \(\omega_d \) – damped frequency

Weighted sum of time delays
Main advantages of IS filters

- Finite impulse response
- Guaranteed stability
- Monotone step response
- Completely parameterized by ω_n and ξ

Main types of IS filters

- ZV (Zero Vibration)
- ZVD (Zero Vibration Derivative)
- ZVDD
- UEI (Extra Insensitive)
- UTHEI
Mathematical model of controlled system

- x_1, y_1 – cart coordinates
- x_1, y_1, z_1 – load coordinates
- α – viscous friction
- m – mass of the pendulum
- l – length of the pendulum
- g – gravitational acceleration
- λ – Lagrange multiplier

Differential equations

\[
\ddot{x}_2 = \frac{-\alpha \dot{x}_2 + 2\lambda x_2}{m} - \ddot{x}_1, \\
\ddot{y}_2 = \frac{-\alpha \dot{y}_2 + 2\lambda y_2}{m} - \ddot{y}_1, \\
\ddot{z}_2 = \frac{-\alpha \dot{z}_2 + 2\lambda z_2}{m} - g, \\
\lambda = \frac{-m(\dot{x}_2^2 + \dot{y}_2^2 + \dot{z}_2^2 - \ddot{x}_1 x_2 - \ddot{y}_1 y_2 - g z_2 - i^2 - \ddot{l}^2) + \alpha(x_2 \ddot{x}_2 + y_2 \ddot{y}_2 + z_2 \ddot{z}_2)}{2(x_2^2 + y_2^2 + z_2^2)}.
\]
The laboratory development cycle

- Mathematical model deriving
- Control scheme designing
 - Export mdl → java
- 3D model creating
 - CAD with VRML output
- Construction of labs GUI
Figure: 1 – SP with the filtration, 2 – motion control, 3 – pendulum model
The final laboratory

Figure: 1 – control, 2 – interactive scheme, 3 – 3D model, 4 – trends
Conclusion

- Proposed a novel approach for creating virtual labs
- Presented vibration damping with the input shaping filter
- Assembled virtual lab for presenting advanced input shaping filter
- All shaping filter features may be evaluated on 3D gantry crane model
Acknowledgement

This work was supported by the Technology Agency of the Czech Republic – project No. TA02010152 and by the European Regional Development Fund (ERDF), project NTIS New Technologies for Information Society, European Centre of Excellence, CZ.1.05/1.1.00/02.0090. The support is gratefully acknowledged.

Available

This laboratory can be tested at www.contlab.eu.

Thank you for attention.