Martin Wooster

Martin Wooster
King's College London | KCL

About

224
Publications
56,912
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,394
Citations
Citations since 2017
39 Research Items
5738 Citations
201720182019202020212022202302004006008001,000
201720182019202020212022202302004006008001,000
201720182019202020212022202302004006008001,000
201720182019202020212022202302004006008001,000

Publications

Publications (224)
Article
Background Fine particulate matter (PM2.5) produced by landscape fires is thought to be more toxic than that from non-fire sources. However, the effects of “fire-sourced” PM2.5 on acute respiratory infection (ARI) are unknown. Methods We combined Demographic and Health Survey (DHS) data from 48 countries with gridded global estimates of PM2.5 conc...
Article
Full-text available
Biomass burning (BB) emits large quantities of greenhouse gases (GHG) and aerosols that impact the climate and adversely affect human health. Although much research has focused on quantifying BB emissions on regional to global scales, field measurements of BB emission factors (EFs) are sparse, clustered and indicate high spatio-temporal variability...
Article
Full-text available
Wildfire research is working toward near real-time tactical wildfire mapping through the application of computer vision techniques to airborne thermal infrared (IR) imagery. One issue hindering automation is the potential for waterbodies to be marked as areas of combustion due to their relative warmth in nighttime thermal imagery. Segmentation and...
Article
Full-text available
We describe a new satellite data validation facility located in a savannah biome at the International Livestock Research Institute (ILRI) Kapiti Research Station (Kenya). The facility is focused on satellite land surface temperature (LST) and is equipped with multiple ground-viewing infrared radiometers across four sites. The in-situ LST observatio...
Chapter
Full-text available
O período entre 2018 e 2022 mostrou-nos que o problema dos incêndios à escala global não está a diminuir, antes pelo contrário. Parece que as consequências das alterações climáticas já estão a afectar a ocorrência de incêndios florestais em várias partes do Mundo, de uma forma que só esperaríamos que acontecesse vários anos mais tarde. Em muitos pa...
Article
Full-text available
The 2019/20 Black Summer bushfire disaster in southeast Australia was unprecedented: the extensive area of forest burnt, the radiative power of the fires, and the extraordinary number of fires that developed into extreme pyroconvective events were all unmatched in the historical record. Australia’s hottest and driest year on record, 2019, was chara...
Article
Landscape fire is a widespread, somewhat unpredictable phenomena that plays an important part in Earth's biogeochemical cycling. In many biomes worldwide fire also provides multiple ecological benefits, but in certain circumstances can also pose a risk to life and infrastructure, lead to net increases in atmospheric greenhouse gas concentrations, a...
Article
Full-text available
Satellite-derived land surface temperature (LST) data are most commonly observed in the longwave infrared (LWIR) spectral region. However, such data suffer frequent gaps in coverage caused by cloud cover. Filling these 'cloud gaps' usually relies on statistical reconstructions using proximal clear sky LST pixels, whilst this is often a poor surroga...
Article
Full-text available
Background The prevalence of landscape fires has increased, particularly in low-income and middle-income countries (LMICs). We aimed to assess the impact of exposure to landscape fire smoke (LFS) on the health of children. Methods We conducted a sibling-matched case-control study and selected 552 155 children (aged <18 years) from Demographic and...
Article
Full-text available
Mastery of fire is intimately linked to advances in human civilization, culture and technology [...].
Article
The Sentinel-3 satellites each carry the dual-Earth view Sea and Land Surface Temperature Radiometer (SLSTR). SLSTR data from the ‘near nadir’ scan are used to produce a set of global, daily active fire (AF) products similar to those produced from MODIS data. The Sentinel-3 AF products are generated in both Near Real Time (NRT) and Non Time Critica...
Article
Full-text available
Geostationary imaging sensors offer unique high temporal resolution capabilities with which to characterise the fast-changing dynamics of landscape fires. The new R-Series of Geostationary Operational Environmental Satellite (GOES-R) are the most advanced geostationary weather satellites currently operating, and each carry the new Advanced Baseline...
Article
Full-text available
Extreme fires in the peatlands of South East (SE) Asia are arguably the world's greatest biomass burning events, resulting in some of the worst ambient air pollution ever recorded (PM 10 > 3000 µg·m −3). The worst of these fires coincide with El Niño related droughts, and include huge areas of smouldering combustion that can persist for months. How...
Article
Full-text available
1. A major component of biomass burning smoke is fine particulate matter (PM2.5), which has been shown to generate impacts on insect population dynamics and development. However, little is known about its effect on insect flight behaviour, even though this will influence insect dispersal and distribution, and potentially migration and ecosystem ser...
Article
The Sea and Land Surface Temperature Radiometer (SLSTR) now operates concurrently onboard the European Sentinel-3A and 3B satellites. Its observations are expected ultimately to become the main global source of active fire (AF) detections and fire radiative power (FRP) retrievals for the mid-morning and evening low earth orbit timeslots – data curr...
Article
Full-text available
We provide major updates to the ‘top down’ Fire Radiative Energy Emissions (FREM) approach to biomass burning emissions calculations, bypassing the estimation of fuel consumption that is a major source of uncertainty in widely used ‘bottom up’ approaches. The FREM approach links satellite observations of fire radiative power (FRP) to emission rates...
Article
Full-text available
The past decade has seen episodes of increasingly severe air pollution across much of the highly populated Indo-Gangetic Plain (IGP), particularly during the post-monsoon season when crop residue burning (CRB) is most prevalent. Recent studies have suggested that a major, possibly dominant contributor to this air quality decline is that northwest (...
Article
Full-text available
Open burning of agricultural crop residues is widespread across eastern China, and during certain post-harvest periods this activity is believed to significantly influence air quality. However, the exact contribution of crop residue burning to major air quality exceedances and air quality episodes has proven difficult to quantify. Whilst highly suc...
Article
Full-text available
In 2019 the Canadian Space Agency initiated development of a dedicated wildfire monitoring satellite (WildFireSat) mission. The intent of this mission is to support operational wildfire management, smoke and air quality forecasting, and wildfire carbon emissions reporting. In order to deliver the mission objectives, it was necessary to identify the...
Article
Full-text available
The fire radiative power (FRP) of active fires (AFs) is routinely assessed with spaceborne sensors. MODIS is commonly used, and its 1 km nadir pixel size provides a minimum per-pixel FRP detection limit of ~5–8 MW, leading to undercounting of AF pixels with FRPs of less than around 10 MW. Since most biomes show increasing AF pixel frequencies with...
Preprint
Full-text available
Abstract. Open burning of agricultural crop residues is widespread across eastern China, and during certain post-harvest periods this activity is believed to significantly influence air quality. However, the exact contribution of crop residue burning to major air quality exceedances and air quality episodes has proven difficult to quantify. Whilst...
Article
Full-text available
The SWIR-radiance FRP method is applied to the Along Track Scanning Radiometer series of sensors, and the follow-on Sea and Land Surface Temperature Radiometer (SLSTR) sensor to provide both the longest and the most recent assessment of global gas flaring activity to date. Our inventory covers more than two decades, and demonstrates that total flar...
Article
Full-text available
Vegetation indices, such as the Normalised Difference Vegetation Index (NDVI), are common metrics used for measuring traits of interest in crop phenotyping. However, traditional measurements of these indices are often influenced by multiple confounding factors such as canopy cover and reflectance of underlying soil, visible in canopy gaps. Digital...
Article
Full-text available
Volcanic activity involves processes that can change over short periods of time, which are sometimes closely related to the eruptive mode or the timing of its transitions. Eruptions bring high-temperature magma or gas to the surface; thermal observations of these eruptions can be used to determine the timeline of eruptive sequences or eruptive proc...
Article
Full-text available
The Global Fire Emissions Database (GFED)-currently by far the most widely used global fire emissions inventory-is primarily driven by the 500 m MODIS MCD64A1 burned area (BA) product. This product is unable to detect many smaller fires, and the new v4.1s of GFED addresses this deficiency by using a 'small fire boost' (SFB) methodology that estimat...
Article
Full-text available
Understanding wildfire rate of spread (RoS) is often a key objective of many fire behavior modelling and measurement exercises. Using instrumented moderate scale laboratory burns we provide an assessment of eight different methods of flame front RoS determination, including visible imagery (VIS) analysis techniques, use of thermocouple arrays, and...
Article
Full-text available
Deforestation and draining of the peatlands in equatorial SE Asia has greatly increased their flammability, and in September–October 2015 a strong El Niño-related drought led to further drying and to widespread burning across parts of Indonesia, primarily on Kalimantan and Sumatra. These fires resulted in some of the worst sustained outdoor air pol...
Article
Regional to global-scale biomass burning emissions inventories are primarily based on satellite-derived burned area or fire radiative power (FRP), and most rely on conversions to fuel consumption prior to the emissions estimation stage. This is generally considered the step introducing greatest uncertainty, and some apparently discrete inventories...
Article
Full-text available
The radiative power (MW) output of a gas flare is a useful metric from which the rate of methane combustion and carbon dioxide emission can be inferred for inventorying purposes and regular global surveys based on such assessments are now being used to keep track of global gas flare reduction efforts. Several multispectral remote sensing techniques...
Article
Tropical rainforests, naturally resistant to fire when intact, are increasingly vulnerable to burning due to ongoing forest perturbation and, possibly, climatic changes. Industrial-scale forest degradation and conversion are increasing fire occurrence, and interactions with climate anomalies such as El Niño induced droughts can magnify the extent a...
Article
Airborne Light Detection and Ranging (LiDAR) is a survey tool with many applications in forestry and forest research. It can capture the 3D structure of vegetation and topography quickly and accurately over thousands of hectares of forest. However, very few studies have assessed how accurately LiDAR can measure surface topography under forest canop...
Article
Tropical methane sources are an important part of the global methane budget and include natural wetlands, rice agriculture, biomass burning, ruminants, fossil fuels, and waste. δ13CCH4 can provide strong constraints on methane source apportionment. For example, tropical wetlands in this study give δ13CCH4 values between −61.5 ± 2.9‰ and −53.0 ± 0.4...
Article
Full-text available
We demonstrate a new active fire (AF) detection and characterisation approach for use with the VIIRS spaceborne sensor. This includes for the first-time joint exploitation of both 375 m I-Band and 750 m M-Band data to provide both AF detections and FRP (fire radiative power) retrievals over the full range of fire and FRP magnitudes. We demonstrate...
Article
Full-text available
Byram's fire intensity (IB,tot; kWm⁻¹) is one the most important and widely accepted metrics for quantifying wildfire behaviour. Calculation of IB,tot requires measurement of fuel consumption, heat of combustion and rate of spread; existing methods for obtaining these measurements are either inexact or at times impossible to obtain in the field. Th...
Article
Full-text available
Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could be misleading and reduce the effectiveness of natu...
Article
Full-text available
Characterising the highly variable temporal dynamics of landscape-scale fire activity is best achieved using geostationary satellites, and the Himawari-8 Advanced Himawari Imager (AHI) now provides views of Asian and Australian fires at an unprecedented 10min temporal resolution and 2km nadir thermal channel spatial resolution. We here develop the...
Article
Full-text available
There is a growing need to increase global crop yields, whilst minimising use of resources such as land, fertilisers and water. Agricultural researchers use ground-based observations to identify, select and develop crops with favourable genotypes and phenotypes; however, the ability to collect rapid, high quality and high volume phenotypic data in...
Article
We provide the first assessment of tropical peatland depth of burn (DoB) using structure from motion (SfM) photogrammetry, applied to imagery collected using a low-cost, low-altitude unmanned aerial vehicle (UAV) system operated over a 5.2 ha tropical peatland in Jambi Province on Sumatra, Indonesia. Tropical peat soils are the result of thousands...
Article
Full-text available
The 2015–2016 strong El Niño event has had a dramatic impact on the amount of Indonesian biomass burning, with the El Niño-driven drought further desiccating the already-drier-than-normal landscapes that are the result of decades of peatland draining, widespread deforestation, anthropogenically driven forest degradation and previous large fire even...
Article
Full-text available
Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire...
Article
Full-text available
Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegeta...
Article
Full-text available
In September and October 2015 widespread forest and peatland fires burned over large parts of maritime southeast Asia, most notably Indonesia, releasing large amounts of terrestrially-stored carbon into the atmosphere, primarily in the form of CO2, CO and CH4. With a mean emission rate of 11.3 Tg CO2 per day during Sept-Oct 2015, emissions from the...
Article
Full-text available
Wildfires in the United Kingdom (UK) pose a threat to people, infrastructure and the natural environment. During periods of particularly fire-prone weather, wildfires can occur simultaneously across large areas, placing considerable stress upon the resources of fire and rescue services. Fire danger rating systems (FDRSs) attempt to anticipate perio...
Article
Full-text available
The 2015–2016 strong El Niño event has had a dramatic impact on the amount of Indonesian biomass burning, with the El Niño driven drought further desiccating the already drier than normal landscapes that are the result of decades of peatland draining, widespread deforestation, anthropogenically-driven forest degradation, and previous large fire eve...
Article
Full-text available
Landscape fires produce smoke containing a very wide variety of chemical species, both gases and aerosols. For larger, more intense fires that produce the greatest amounts of emissions per unit time, the smoke tends initially to be transported vertically or semi-vertically close by the source region, driven by the intense heat and convective energy...
Article
Full-text available
Fires associated with land use and land cover changes release into the atmosphere large amounts of aerosols and trace gases. Although there are several inventories of biomass burning emissions covering Brazil, there are still considerable uncertainties and differences among these. While most fire emissions inventories still utilize the parameters o...
Article
Full-text available
Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire...
Article
Full-text available
Characterizing changes in landscape fire activity at better than hourly temporal resolution is achievable using thermal observations of actively burning fires made from geostationary Earth Observation (EO) satellites. Over the last decade or more, a series of research and/or operational "active fire" products have been developed from geostationary...
Article
Full-text available
Wildfires in the United Kingdom (UK) can pose a threat to people, infrastructure and the natural environment (e.g. to the carbon in peat soils), and their simultaneous occurrence within and across UK regions can periodically place considerable stress upon the resources of Fire and Rescue Services. "Fire danger" rating systems (FDRS) attempt to anti...
Article
Full-text available
Characterising the dynamics of landscape-scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Rad...
Article
Full-text available
Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimates are often substantial. This...
Article
Full-text available
Characterising the dynamics of landscape scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Rad...