An integrative approach to species delineation incorporating different species concepts: a case study of Limnadopsis (Branchiopoda: Spinicaudata)

MARTIN SCHWENTNER ${ }^{1 *}$, BRIAN V. TIMMS ${ }^{2,3}$ and STEFAN RICHTER ${ }^{1}$
${ }^{1}$ Universität Rostock, Allgemeine und Spezielle Zoologie, Universitätsplatz 2, 18055 Rostock, Germany
${ }^{2}$ Australian Museum, 6-9 College Street, Sydney, NSW 2000, Australia
${ }^{3}$ Australian Wetland and Rivers Centre, University of New South Wales, Sydney, NSW 2052, Australia

Received 16 December 2010; revised 31 May 2011; accepted for publication 31 May 2011

Abstract

The unambiguous delineation and identification of species remain central problems in systematic and taxonomic studies. Species delineation depends on the data utilized and the species concept applied. In recent years, morphology-based species delineation has been complemented by DNA sequence data, leading to an integrative taxonomy. Such integrative approaches, however, are hampered by the partial incongruence of the various data types with certain species concepts. In this study, we delineated Australian Limnadopsis species employing one mitochondrial (cytochrome c oxidase subunit I, COI) and one nuclear (elongation factor $1 \alpha, \mathrm{EF} 1 \alpha$) marker and a morphological character apparently part of the specific mate recognition complex, and therefore potentially indicative of reproductive isolation. By integrating the data over various species concepts (e.g. the 'biological', 'Hennigian', 'recognition', 'phylogenetic' and 'evolutionary' species concepts), the delineation of most species becomes straightforward and unambiguous. Conflicts are particularly interesting as they reveal different aspects of speciation considering the various species concepts. Our study emphasizes the benefits of a truly integrative approach to taxonomy. By combining molecular data with morphological characters indicative of reproductive isolation, it is possible to delineate species integrating not only different data types, but also different underlying species concepts. Overall, 11 Limnadopsis species could be delineated, including all eight currently recognized species, and three so far undescribed species. Most species were congruently delineated under all species concepts. A strict application of the evolutionary species concept, however, would have further split L. parvispinus into two species on the basis of the COI data. In addition, Limnadopsis tatei is consistently split into two sympatrically occurring species under all applied species concepts. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104, 575-599.

ADDITIONAL KEYWORDS: Australia - clasper - DNA barcoding - integrative taxonomy - specific mate recognition system.

INTRODUCTION

Traditionally, the delineation of species, as well as their taxonomy, has been based predominantly on morphological characters. The strength of this approach is evident, considering the vast number of over 1.7 million described species to date (The World Conservation Union, 2010). However, it has become obvious that morphological characters alone often fail to delineate all species actually present within taxo-

[^0]nomic groups. In particular, closely related species are often morphologically too alike to be unambiguously delineated. Species delineation is further impaired if the morphological characters studied are variable within the species, and character combinations overlap between species. In these cases, a clear distinction between intra- and interspecific variation of characters is hardly possible. Therefore, the advent of molecular data seemingly promised a revolution in taxonomy: species identification and delineation based purely on DNA sequence data without the need to refer to any morphological character, an approach that has been named 'DNA taxonomy' (Tautz et al.,

2002, 2003). The so-called 'DNA barcoding' introduced by Hebert et al. (2003a) differs from the previous approach in so far as it focuses on the assignment of unidentified individuals to known species, and proposes a threshold value of 3% genetic distance [for the most commonly used barcode gene: cytochrome c oxidase subunit I (COI)] to delineate species (Hebert et al., 2003a). This threshold facilitates the detection of unknown or cryptic species (Hebert et al., 2003a, 2004) based on the assumption that a 'barcoding gap' separates lower intraspecific from higher interspecific genetic distances, but this general use of a universal fixed threshold value to separate species has been questioned (Meyer \& Paulay, 2005; Wiemers \& Fiedler, 2007). A fixed threshold value does not accommodate high intraspecific genetic distances for old species or low interspecific genetic distances for recent speciation events (Meier et al., 2006). In addition, Meier et al. (2006) showed that, in a set of three sequences, two pairwise distances can be below the 3% threshold, whereas the third pairwise distance can be above the threshold, rendering species delineation based on a fixed threshold ambiguous.

To overcome these problems, several authors have argued for an 'integrative taxonomy', combining molecular, morphological and any other available data to delineate and identify species (Dayrat, 2005; Will, Mishler \& Wheeler, 2005; Padial \& de la Riva, 2010). Several studies have already applied such integrative approaches (Ballard, Chernoff \& James, 2002; Wiens \& Penkrot, 2002; Laamanen, Petersen \& Meier, 2003; Page, Choy \& Hughes, 2005; Sanders, Malhotra \& Thrope, 2006; Roe \& Sperling, 2007; Alström et al., 2008; Tan et al., 2010), but the integration of the various data is not straightforward. The different types of data may lead to conflicting conclusions regarding the delineation of species.

An integrative approach relies on the consistent application of species concepts to all the available data (Agapow et al., 2004; Tan et al., 2008). The classification of a group of individuals or populations to one or several species requires the explicit use of a species concept. As all data types used in integrative approaches differ in their relevance for the various species concepts, species boundaries may differ for each data type (Padial \& de la Riva, 2010) and species concept (Laamanen et al., 2003; Tan et al., 2008). Such differences do not impede species delineation; instead, they enable biologists to take different lines of argumentation into account, leading to well-founded conclusions regarding the delineation of the studied species.

In our study, we apply six different species concepts to delineate species: the biological species concept (BSC) (Mayr, 1942, 2000), the Hennigian species concept (HSC) (Meier \& Willmann, 2000), the recognition species concept (RSC) (Paterson, 1993b), the
evolutionary species concept (ESC) (Wiley \& Mayden, 2000), the phylogenetic species concept (PSC) sensu Mishler \& Theriot (2000) and the PSC sensu Wheeler \& Platnick (2000).

The most popular species concept among biologists is still the BSC, emphasizing reproductive isolation as the defining element. The BSC requires that the species occur in sympatry or at least parapatry to test the presence of reproductive isolation mechanisms in nature, which is not the case in allopatric populations (or only artificially in captivity). Similarly, the HSC is based on reproductive isolation between contemporary populations, but adds the historical aspect to the BSC, demanding the extinction of the stem species during each speciation event (Meier \& Willmann, 2000). The RSC also belongs to this group of species concepts, because it requires a 'common fertilization system' for each species, which enables the recognition of mates of the same species (Paterson, 1993b).

Probably, the most commonly (and most intuitively) applied species concept in molecular systematics and phylogeography is the ESC, originally introduced by Wiley (1981). Wiley \& Mayden (2000) define species as 'an entity composed of organisms which maintains its identity from other such entities through time and over space, and which has its own independent evolutionary fate and historical tendencies'. Although the definition appears vague, distinct genetic lineages deduced from phylogenetic analyses may be assumed to have an 'independent evolutionary fate' and their own 'historical tendencies'. A certain genetic distance from other lineages might implicitly be the crucial point when such lineages are considered as species.

This comes very close to the PSC sensu Mishler \& Theriot (2000), who defined species as 'the smallest monophyletic groups worthy of formal recognition . . . In both cases, species are recognized on the basis of the results of phylogenetic analyses (only monophyletic lineages can be considered as having an independent evolutionary fate) and some kind of genetic (or morphological) distance to other lineages. The exact extent of the latter ('worthy of formal recognition'), however, remains uncertain.

The PSC sensu Wheeler \& Platnick (2000) differs remarkably from the other species concepts, because it does not require apomorphies or a phylogenetic analysis to characterize species. It defines species 'as the smallest aggregation of (sexual) populations or (asexual) lineages diagnosable by a unique combination of character states'. For molecular markers, a 'unique combination of character states' can already be assumed based on the alignment of the sequences before any phylogenetic analyses, and might be given by a certain genetic distance between sequences.

Attempts have been made to define a species concept which encompasses the differing aspects of
the various species concepts, e.g. Mayden's (1999) hierarchy of species concepts and the 'unified concept of species' introduced by de Queiroz (2005), which both accept the ESC as the primary concept. The defining elements of the other concepts (reproductive isolation, monophyly, diagnosability) are seen as properties allowing the delineation of lineages, which are then regarded as species (Naomi, 2011). Under these concepts, lineages could be considered to be separate species even if they fuse again into a single species after secondary contact (de Queiroz, 2005). In our view, this approach neglects important ontological differences which are integral parts of the particular species concepts, e.g. whether or not complete reproductive isolation is the defining element of species. However, even if such a unifying species concept is applied, the different lines of evidence still need to be weighed against each other to decide whether certain lineages should be considered or not as separate species. Ultimately, the species delineation under such a unifying species concept would depend on the preferred criteria, and would thus be identical to the delineation based on the individual species concepts.

In this study, we apply an integrative approach for species delineation on the Australian endemic clam shrimp taxon Limnadopsis (Spinicaudata: Limnadiidae). Currently, eight Limnadopsis species are recognized (Richter \& Timms, 2005, Timms, 2009), which all inhabit temporary water bodies in Australia. Recent molecular studies have confirmed the monophyly of Limnadopsis (Schwentner et al., 2009; Weeks et al., 2009) and have indicated the presence of further species (Weeks et al., 2009). In Spinicaudata, morphology-based taxonomy has been hampered by the extensive intraspecific plasticity of most morphological characters (e.g. Marinček \& Petrov, 1998). Therefore, it is important to focus on morphological characters which are likely to exhibit distinct differences among different species. Such species-specific differences are generally expected for male genitalia and other male structures which take active parts in copulation (Eberhard, 1985). The male genitalia of spinicaudatans are not very differentiated; they are mere openings which are pressed against the female genital openings during insemination (Dumont \& Negrea, 2002), but male spinicaudatans have an important secondary sexual character: the first two pairs of thoracopods are modified into claspers. The male uses these claspers to hold on to the female's carapace during mating. In several other taxa, similar secondary sexual characters are supposed to be important elements of the specific mate recognition systems (SMRS; Paterson, 1993a). A well-known example from another branchiopod taxon is the second antenna of the males of anostracan species. The complex ornamentation of these antennae fits to
the amplexial groove of the females in a type of lock-and-key fashion (Rogers, 2002). Furthermore, males in Ostracoda also feature clasping structures which are assumed to facilitate mate recognition, but here the mechanisms are not yet well understood (Martens, 2000). Although the clasper-carapace interaction in spinicaudatans has not been studied in detail, there are some indications that mate recognition is at least partially dependent on this interaction. Males of Eulimnadia texana seem unable to discriminate between males and receptive and unreceptive hermaphrodites (females are lacking in this species) prior to physical contact (Knoll, 1995; Medland, Zucker \& Weeks, 2000). However, once males clasp a carapace, they are able to make this differentiation and hold on to receptive hermaphrodites much longer than to others (Weeks \& Benvenuto, 2008). During this process, males of E. texana (Weeks \& Benvenuto, 2008) and Limnadopsis parvispinus (M. Schwentner, per. observ.) move their claspers along the female's (or hermaphrodite's) carapace, clasping to various parts of the carapace. The tip of the movable finger is always in direct contact with the inside of the female's carapace, and is thus the ideal position for any species-specific structure. Here, all Limnadopsis species exhibit 'scales' (probably derived setae; Timms, 2009), whereas all other Limnadiidae have a sucker-like projection at the tip of the movable finger (e.g. Olesen, Martin \& Roessler, 1996). The shape of these scales at the tip of the movable finger serves as the morphological character in this study. As we assume a role in the mate recognition process, individuals with distinct differences in this character can be directly interpreted as belonging to different species on the basis of the RSC (which is defined by the recognition process), as well as the BSC and the HSC (if individuals cannot recognize each other as mates, reproductive isolation is established). How the mating partners recognize each other is speculative. It may be merely by mechanical stimuli caused by the physical contact. Such stimuli have been reported from other arthropods (e.g. sepsid flies; Eberhard, 2001) and the respective structures need to differ in small details only (Eberhard, 1993).

In the following, we test the delineation of Limnadopsis species following an integrative taxonomy approach that integrates different types of data (one mitochondrial and one nuclear genetic marker and a morphological character) as well as various species concepts.

MATERIAL AND METHODS

COLLECTION AND IDENTIFICATION OF SPECIMENS

Most of the specimens were collected during several field trips between 1998 and 2011 by the authors (see

Table 1 for collection details). Adult specimens were collected with hand nets and fixed directly in 100% ethanol or in RNAlater (Qiagen). Some individuals were fixed in formalin and stored in 70% ethanol; these specimens were not available for DNA sequencing. In addition, sediment was collected from the surface of a few dry pools to later hatch and rear specimens in the laboratory. About 100 g of sediment were incubated in the laboratory with distilled water in a 2 -L glass aquarium with constant aeration, $27^{\circ} \mathrm{C}$ and a 16-h:8-h light: dark cycle. Juveniles were fed with an algae suspension (Hobby-Liquizell®) and fixed as young adults in 100% ethanol. If hatching failed, resting eggs were collected from the sediment using a stereomicroscope (Olympus SZ51) and identified on the basis of Pabst \& Richter (2004) and Timms (2009). Adult specimens were identified on the basis of the descriptions and key included in Timms (2009).

DNA EXTRACTION, AMPLIFICATION AND SEQUENCING

It was attempted to sequence all studied specimens for the barcoding region (Hebert et al., 2003a) of the COI gene. Based on the genetic lineages revealed by the resulting dataset, a few specimens of each lineage were chosen to further sequence a partial sequence of elongation factor $1 \alpha(E F 1 \alpha)$. Tissue samples were taken from the muscle connecting the carapace halves. Genomic DNA was extracted with either the DNeasy Blood and Tissue Kit (Qiagen), following the directions of the manufacturer, or a modified HotSHOT protocol (Montero-Pau, Gómez \& Muñoz, 2008), with a final volume of $60 \mu \mathrm{~L}$. The resting eggs were crushed directly in HotSHOT lysis buffer and the final volume was reduced to $40 \mu \mathrm{~L}$ to increase the DNA concentration.

The COI and EF1 α double-stranded sequence fragments were polymerase chain reaction (PCR) amplified with a TGradient Thermocycler (Biometra). The PCR comprised $15 \mu \mathrm{~L}$ Taq PCR Master Mix [Qiagen; contains Taq polymerase, $1.5 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ and $200 \mu \mathrm{M}$ of each deoxynucleoside triphosphate (dNTP)], $3 \mu \mathrm{~L}$ of each primer $(10 \mu \mathrm{M})$ and $3-4.5 \mu \mathrm{~L}$ template DNA, and was topped up to a total volume of $30 \mu \mathrm{~L}$ with purified water. All primers are listed in Table 2. To successfully amplify the barcoding region of the COI gene, several primer combinations were required, always combining one LCO and one HCO primer. The primer combinations LCO1490/HCO709 and LCO2/outout were the most successful. The PCR programme for the COI fragment consisted of an initial denaturation step of 1 min at $94^{\circ} \mathrm{C}$, followed by 38 amplification cycles ($94{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 46^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 70^{\circ} \mathrm{C}$ for 1 min) and a final elongation step of 5 min at $70^{\circ} \mathrm{C}$. The 38 amplification cycles for the EF1 α fragment consisted of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 51^{\circ} \mathrm{C}$ for 30 s and $72^{\circ} \mathrm{C}$ for 1 min .

Amplification success was determined using electrophoresis on 1.5% agarose/TAE gel containing 0.01% ethidium bromide. PCR product purification was performed either by using magnetic beads (Agencourt AMPure, Beckman Coulter) or by cutting out visible bands following the directions of the QIAquick Gel Extraction Kit (Qiagen). Final elution was carried out in $30 \mu \mathrm{~L}$ or $25 \mu \mathrm{~L}$, respectively.

The purified PCR products were sequenced with the same primers as used in the amplification. The COI fragments were sequenced unidirectionally with the respective LCO primer (the sequencing reaction was repeated with the respective HCO primer if the resulting sequence contained ambiguous bases), whereas the EF1 α fragments were sequenced bidirectionally. Most sequencing was performed with the DCTS Quick Start Kit (Beckman Coulter) on an automated sequencer (CEQTM 800 from Beckman Coulter) following the manufacturer's instructions. Some samples were sequenced by the Qiagen Sequencing Service (Qiagen, Germany). Sequencing errors were eliminated using the program Sequencher 4.1.4 (Gene Codes Corporation). The final sequences were submitted to GenBank (accession numbers HQ717722-HQ717795 and JF966697-JF966728; Table 1; Benson et al., 2008).

Alignment, GEnEtic distances and PHYLOGENETIC ANALYSES

The alignments of all corrected sequences were performed for each gene fragment separately using ClustalW (Thompson, Higgins \& Gibson, 1994), as implemented in the program BioEdit 7.0.9.0 (Hall, 1999). The alignments were checked for pseudogenes or numts (nuclear mitochondrial pseudogenes) following the directions of Song et al. (2008). As pseudogenes are not functional, they are expected to accumulate indels in the nucleic acid sequence and stop codons in the amino acid sequence over time, which implies that recent pseudogenes may not be detected with this procedure. The sequences of COI and EF1 α were transcribed into the corresponding amino acid sequences with the program MEGA4 (Tamura et al., 2007), using the implemented genetic codes 'Invertebrate Mitochondrial' for COI and 'Standard' for EF1 α. The numbers of variable and parsimony informative sites were determined with MEGA4.

Two different approaches for the phylogenetic analysis were used: Maximum Parsimony analysis and Bayesian analysis. As a result of the large number of sequences, identical COI sequences were excluded from the analyses to minimize the calculation times. Specimens with sequences identical to those included in the analyses are shown in Figure 1. Limnadia sp. A (P.84142) was chosen as outgroup.
Table 1. List of all specimens used in this study with their respective GenBank accession numbers and detailed collection locations

Species	Specimen number	Clasper	COI	EF1 α	Location
Limnadopsis birchii (Baird, 1860)	P. 84143	X			Australia, QLD, Pan near Cooburra Waterhole, Currawinya Nat. Park, .ii. 1998
Limnadopsis birchii (Baird, 1860)	P. 84144	X			Australia, QLD, Pan near Cooburra Waterhole, Currawinya Nat. Park, .ii. 1998
Limnadopsis birchii (Baird, 1860)	P. 84145	X			Australia, QLD, Pan near Cooburra Waterhole, Currawinya Nat. Park, ii. 1998
Limnadopsis birchii (Baird, 1860)	P. 84146	X			Australia, QLD, Pan near Cooburra Waterhole, Currawinya Nat. Park, .ii. 1998
Limnadopsis birchii (Baird, 1860)	P. 84147		HQ717755		Australia, NSW, Muella Vegetated Pool 4, MS, $29^{\circ} 30^{\prime} 00.7^{\prime \prime}$ S, $144^{\circ} 54^{\prime} 59.6^{\prime \prime} \mathrm{E}$, 31.iii. 2009
Limnadopsis birchii (Baird, 1860)	P. 84148		HQ717756	HQ717725	Australia, QLD, poplar box pool on western boundary fence, RS, $28^{\circ} 56^{\prime} \mathrm{S}$, $144^{\circ} 55.7^{\prime} \mathrm{E}, 10 . v i .2007$
Limnadopsis birchii (Baird, 1860)	P. 84149		HQ717757		Australia, QLD, poplar box pool on western boundary fence, RS, $28^{\circ} 56^{\prime} \mathrm{S}$, $144^{\circ} 55.7^{\prime} \mathrm{E}, 10 . v i .2007$
Limnadopsis birchii (Baird, 1860)	P. 84150		HQ717758		Australia, QLD, poplar box pool on western boundary fence, RS, $28^{\circ} 56^{\prime} \mathrm{S}$, $144^{\circ} 55.7^{\prime} \mathrm{E}, 10$. vi. 2007
Limnadopsis birchii (Baird, 1860)	P. 84151		FJ830343	HQ717726	Australia, QLD, Mid Blue Lake, RS, $28^{\circ} 53^{\prime} \mathrm{S}, 144^{\circ} 57^{\prime} \mathrm{E}$, 09.vi. 2007
Limnadopsis birchii (Baird, 1860)	P. 84152	X	HQ717759	HQ717727	Australia, QLD, vegetated swamp, former beach of Lake Buchanan, $21^{\circ} 32^{\prime} 11.88^{\prime \prime} \mathrm{S}, 145^{\circ} 47^{\prime} 49.08^{\prime \prime} \mathrm{E}$, $26 . \mathrm{ii} .2008$
Limnadopsis birchii (Baird, 1860)	ST5	X			Australia, QLD, Currawinya Nat. Park, pan near Coomburra waterhole, .ii.1998, private coll. SR
Limnadopsis minuta Timms, 2009	P. 84153	X			Australia, NT, Keep River Nat. Park, $15^{\circ} 57^{\prime} \mathrm{S}$, $129^{\circ} 03^{\prime} \mathrm{E}$, 08.ii. 1986
Limnadopsis multilineata Timms, 2009	P. 84154	X			Australia, WA, pool near Kalumbaru, 22.ii. 1995
Limnadopsis occidentalis Timms, 2009	P. 84155	X			Australia, WA, CB56 Carnarvon, $27^{\circ} 31^{\prime} 29^{\prime \prime} \mathrm{S}$, $115^{\circ} 05^{\prime} 14^{\prime \prime} \mathrm{E}, 15 . \mathrm{iii} .1995$
Limnadopsis occidentalis Timms, 2009	P. 84156	X			Australia, WA, Tardun CBC Swamp, $28^{\circ} 43^{\prime} \mathrm{S}, 115^{\circ} 49^{\prime} \mathrm{E}$, 26.vii. 1999
Limnadopsis occidentalis Timms, 2009	P. 84157	X			Australia, WA, Tardun CBC Swamp, $28^{\circ} 43^{\prime} \mathrm{S}, 115^{\circ} 49^{\prime} \mathrm{E}$, 26.vii. 1999
Limnadopsis paradoxa Timms, 2009	P. 84158	X	JF966701		Australia, WA, East Lake Bryde, $33^{\circ} 22^{\prime} \mathrm{S}$, $118^{\circ} 54^{\prime} \mathrm{E}$, 21.iii. 2006

Table 1. Continued

	Specimen number	Clasper	COI	EF1 1

Australia, WA, pool on Plunketts Farm, $33^{\circ} 04^{\prime} 23^{\prime \prime} \mathrm{S}, 121^{\circ} 52^{\prime} 53^{\prime \prime} \mathrm{E}$,
12 iii. 2007
Australia, WA, pool near Truslove Salt Lake, $33^{\circ} 20^{\prime} 50^{\prime \prime} \mathrm{S}, 121^{\circ} 46^{\prime} 5^{\prime \prime} \mathrm{E}$,
Australia, WA, pool near Truslove Salt Lake, $33^{\circ} 20^{\prime} 50^{\prime \prime}$ S, $121^{\circ} 46^{\prime} 5^{\prime \prime}$ E,
Australia, WA, pool near Truslove Salt Lake, $33^{\circ} 20^{\prime} 50^{\prime \prime} \mathrm{S}, 121^{\circ} 46^{\prime} 5^{\prime \prime} \mathrm{E}$, 16.iii. 2007

Australia, WA, Pool on Nolan's Farm, $33^{\circ} 06^{\prime} 23^{\prime \prime} \mathrm{S}, 121^{\circ} 45^{\prime} 50^{\prime \prime} \mathrm{E}$, 12.iii. 2007

Australia, WA, Pool on Nolan's Farm, $33^{\circ} 06^{\prime} 23^{\prime \prime} \mathrm{S}, 121^{\circ} 45^{\prime} 50^{\prime \prime} \mathrm{E}$,
Australia, WA, Pool on Nolan's Farm, $33^{\circ} 06^{\prime} 23^{\prime \prime} \mathrm{S}, 121^{\circ} 45^{\prime} 50^{\prime \prime} \mathrm{E}$,
 12.iii. 2007

	$\boxed{6}$ $\stackrel{y}{1}$ 		İ $\underset{\sim}{N}$ 	$$		12 0 5	H H 0 0 I 5	? $\underset{\sim}{N}$ 	$\begin{aligned} & \text { H } \\ & \text { 篤 } \\ & \text { O } \\ & \text { C } \end{aligned}$			
										\star	\propto	\star
$\begin{aligned} & \text { N } \\ & \underset{\sim}{\infty} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\cong}{+} \\ & \stackrel{\infty}{+} \end{aligned}$	$\begin{aligned} & \text { H } \\ & \underset{\text { H }}{+1} \end{aligned}$	$\begin{aligned} & \stackrel{1}{0} \\ & \underset{+}{\infty} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{0}{\underset{+}{+}} \\ & \substack{\infty \\ \hline} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{y}{+} \\ & \stackrel{\infty}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\underset{+}{\infty}} \stackrel{+}{\infty} \end{aligned}$			$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{aligned} & -\infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \text { O } \end{aligned}$

Table 1. Continued

Species	Specimen number	Clasper	COI	EF1 α	Location
Limnadopsis cf. parvispinus Henry, 1924 'Paroo'	P. 80897	X	HQ717752		Australia, NSW, Muella Vegetated Pool 3, MS, $29^{\circ} 30^{\prime} 12.0^{\prime \prime} \mathrm{S}$, $144^{\circ} 55^{\prime} 37.4^{\prime \prime} \mathrm{E}$, 31.iii. 2009
Limnadopsis cf. parvispinus Henry, 1924 'Paroo'	P. 80898	X	HQ717753		Australia, NSW, Muella Vegetated Pool 3, MS, $29^{\circ} 30^{\prime} 12.0^{\prime \prime}$ S, $144^{\circ} 55^{\prime} 37.4^{\prime \prime} \mathrm{E}$, 31.iii. 2009
Limnadopsis cf. parvispinus Henry, 1924 'Paroo'	P. 84183		HQ717764	HQ717731	Australia, QLD, Number 33 Blackbox Swamp, RS, $28^{\circ} 54^{\prime} \mathrm{S}, 144^{\circ} 58^{\prime} \mathrm{E}$, 09.vi. 2007
Limnadopsis cf. parvispinus Henry, 1924 'Paroo'	P. 84184		HQ717765		Australia, QLD, poplar box pool on western boundary fence, RS, $28^{\circ} 56^{\prime} \mathrm{S}$, $144^{\circ} 55.7^{\prime} \mathrm{E}, 10$. vi. 2007
Limnadopsis cf. parvispinus Henry, 1924 'Paroo'	Egg44		HQ717744		Australia, NSW, first pool east of Mossgiel, $33^{\circ} 17^{\prime} 43.2^{\prime \prime} \mathrm{S}, 144^{\circ} 43^{\prime} 08.8^{\prime \prime} \mathrm{E}$, 23.i. 10
Limnadopsis cf. parvispinus Henry, 1924 'Paroo'	Egg46		HQ717745		Australia, NSW, first pool east of Mossgiel, $33^{\circ} 17^{\prime} 43.2^{\prime \prime} \mathrm{S}, 144^{\circ} 43^{\prime} 08.8^{\prime \prime} \mathrm{E}$, 23.i. 10
Limnadopsis cf. parvispinus Henry, 1924 'Paroo'	P. 85022	X	JF966716		Australia, NSW, pool on granite, 11 km north of Berridale, $36^{\circ} 16^{\prime} 23.7^{\prime \prime} \mathrm{S}$, $148^{\circ} 48^{\prime} 13.6^{\prime \prime}$ E, 14.iii. 10
Limnadopsis cf. parvispinus Henry, 1924 'Paroo'	P. 85023		JF966717		Australia, NSW, pool on granite, 11 km north of Berridale, $36^{\circ} 16^{\prime} 23.7^{\prime \prime} \mathrm{S}$, $148^{\circ} 48^{\prime} 13.6^{\prime \prime} \mathrm{E}$, 14.iii. 10
Limnadopsis cf. parvispinus Henry, 1924 'Buchanan'	P. 84186	X	HQ717767		Australia, QLD, vegetated swamp (Y17), former beach of Lake Buchanan, $21^{\circ} 32^{\prime} 06.6^{\prime \prime} \mathrm{S}, 145^{\circ} 47^{\prime} 50.7^{\prime \prime} \mathrm{E}$, 26.ii. 2008

Australia, QLD, vegetated swamp (Y17), former beach of Lake 26.ii. 2008
Australia, QLD, vegetated swamp (Y17), former beach of Lake 26.ii. 2008
Australia, QLD, vegetated swamp (Y17), former beach of Lake 04.iv. 2009 , reared from
Australia, QLD, vegetated swamp (Y17), former beach of Lake 04.iv.2009, reared from
Australia, QLD, vegetated swamp (Y7), former beach of Lake Buchanan, $21^{\circ} 34^{\prime} 34.1^{\prime \prime} \mathrm{S}, 145^{\circ} 48^{\prime} 10.2^{\prime \prime} \mathrm{E}$, 24.ii. 2008
Australia, QLD, Y12, former beach of Lake Buchanan, $21^{\circ} 32^{\prime} 02.8^{\prime \prime} \mathrm{S}$, $145^{\circ} 48^{\prime} 15.6^{\prime \prime}$ E, 04.iv. 2009
Australia, QLD, Y2, former beach of Lake Buchanan, $21^{\circ} 30^{\prime} 55.2^{\prime \prime} \mathrm{S}$, $145^{\circ} 48^{\prime} 20.8^{\prime \prime} \mathrm{E}$, 04.iv. 2009 , reared from sediment Australia, QLD, Y31, former beach of Lake Buchanan, $21^{\circ} 30^{\prime} 41.7^{\prime \prime} \mathrm{S}$,
$45^{\circ} 48^{\prime} 09.5^{\prime \prime} \mathrm{E}, 05 . \mathrm{iv} 2009$, reared from sediment Australia, WA, Burrup Peninsula, 17.viii. 2005 Australia, WA, Burrup Peninsula, 22.viii. 2005
Australia, NSW, Titanic Blackbox Swamp, BS, $29^{\circ} 26^{\prime} \mathrm{S}, 144^{\circ} 47^{\prime} \mathrm{E}$,
07.vi. 2007
Australia, NSW, Titanic Blackbox Swamp, BS, $29^{\circ} 26^{\prime} \mathrm{S}, 144^{\circ} 47^{\prime} \mathrm{E}$,
07.vi. 2007
Australia, QLD, Number 33 Blackbox Swamp, RS, $28^{\circ} 54^{\prime} \mathrm{S}, 144^{\circ} 58^{\prime} \mathrm{E}$,
09.vi. 2007

	og 	$\xrightarrow{\circ}$	N N	N $\stackrel{N}{N}$ 	$\xrightarrow{\text { ® }}$		$\begin{aligned} & \infty \\ & \stackrel{0}{0} \\ & \stackrel{\circ}{\circ} \\ & 0 \\ & \end{aligned}$	H $\stackrel{N}{N}$ O	10 $\stackrel{10}{N}$ $\stackrel{1}{2}$

P. 84187
P. 84188
P. 84189
P. 84190
P. 84191
P. 84192
P. 85014
P. 84197
P. 84196
P. 84194

Henry, 1924
'Buchanan' Limnadopsis cf. snu?ds?̣aııd N Limnadopsis cf

 'Buchanan'
Limnadopsis cf.
 Henry, 1924
'Buchanan'

 «ивиечэпя,
 N Limnadopsis pilbarensis Timms, 2009 Limnadopsis cf. tatei 'Titanic'
Limnadopsis cf. tatei 'Titanic'
Limnadopsis cf. tatei 'Titanic'
Table 1. Continued

Species	Specimen number	Clasper	COI	EF1 α	Location
Limnadopsis cf. tatei ‘Titanic'	P. 84198		FJ830345		Australia, QLD, Number 33 Blackbox Swamp, RS, $28^{\circ} 54^{\prime} \mathrm{S}, 144^{\circ} 58^{\prime} \mathrm{E}$, 09.vi. 2007
Limnadopsis cf. tatei ‘Titanic’	P. 84199	X	HQ717777	HQ717734	Australia, QLD, small gilgai pool, RS, $28^{\circ} 51^{\prime} \mathrm{S}, 144^{\circ} 57.6^{\prime} \mathrm{E}, 09 . \mathrm{vi} .2007$
Limnadopsis cf. tatei 'Titanic'	P. 84200		HQ717778		Australia, QLD, small gilgai pool, RS, $28^{\circ} 51^{\prime} \mathrm{S}, 144^{\circ} 57.6^{\prime} \mathrm{E}, 09 . v i .2007$
Limnadopsis cf. tatei 'Titanic'	P. 84201	X	HQ717779	HQ717735	Australia, QLD, small gilgai pool, RS, $28^{\circ} 51^{\prime} \mathrm{S}, 144^{\circ} 57.6^{\prime} \mathrm{E}$, 09.vi. 2007
Limnadopsis cf tatei 'Titanic'	P. 84202		HQ717780		Australia, QLD, small gilgai pool, RS, $28^{\circ} 51^{\prime} \mathrm{S}, 144^{\circ} 57.6^{\prime} \mathrm{E}, 09 . \mathrm{vi} .2007$
Limnadopsis cf. tatei 'Titanic'	P. 84203	X	HQ717781	HQ717736	Australia, QLD, small gilgai pool, RS, $28^{\circ} 51^{\prime} \mathrm{S}$, $144^{\circ} 57.6^{\prime} \mathrm{E}, 09 . v i .2007$
Limnadopsis cf. tatei 'Titanic'	P. 85864		JF966719		Australia, SA, vegetated stony dug out 34 km north of Marla, $27^{\circ} 05^{\prime} 26.8^{\prime \prime} \mathrm{S}, 133^{\circ} 28^{\prime} 16.2^{\prime \prime} \mathrm{E}, 10 . \mathrm{iii} .2011$
Limnadopsis cf. tatei 'Titanic'	P. 85865		JF966720		Australia, SA, vegetated stony dug out 34 km north of Marla, $27^{\circ} 05^{\prime} 26.8^{\prime \prime} \mathrm{S}, 133^{\circ} 28^{\prime} 16.2^{\prime \prime} \mathrm{E}, 10 . \mathrm{iii} .2011$
Limnadopsis cf. tatei ‘Titanic’	P. 85866		JF966721		Australia, SA, vegetated stony dug out 34 km north of Marla, $27^{\circ} 05^{\prime} 26.8^{\prime \prime} \mathrm{S}, 133^{\circ} 28^{\prime} 16.2^{\prime \prime} \mathrm{E}, 10 . \mathrm{iii} .2011$
Limnadopsis cf. tatei ‘Titanic'	P. 85867	X	JF966722	JF966697	Australia, SA, vegetated stony dug out 34 km north of Marla, $27^{\circ} 05^{\prime} 26.8^{\prime \prime} \mathrm{S}, 133^{\circ} 28^{\prime} 16.2^{\prime \prime} \mathrm{E}, 10 . \mathrm{iii} .2011$
Limnadopsis cf. tatei ‘Titanic’	P. 85868	X	JF966723		Australia, SA, vegetated stony dug out 34 km north of Marla, $27^{\circ} 05^{\prime} 26.8^{\prime \prime}$ S, $133^{\circ} 28^{\prime} 16.2^{\prime \prime}$ E, 10.iii. 2011
Limnadopsis cf. tatei 'Titanic'	P. 85869	X	JF966724	JF966698	Australia, SA, vegetated stony dug out 34 km north of Marla, $27^{\circ} 05^{\prime} 26.8^{\prime \prime}$ S, $133^{\circ} 28^{\prime} 16.2^{\prime \prime} \mathrm{E}, 10 . \mathrm{iii} .2011$
Limnadopsis cf. tatei 'Titanic'	P. 85870	X	JF966725	JF966699	Australia, SA, vegetated stony dug out 34 km north of Marla, $27^{\circ} 05^{\prime} 26.8^{\prime \prime} \mathrm{S}, 133^{\circ} 28^{\prime} 16.2^{\prime \prime} \mathrm{E}, 10 . \mathrm{iii} .2011$
Limnadopsis cf. tatei ‘Titanic’	P. 85871		JF966726		Australia, SA, vegetated stony dug out 34 km north of Marla, $27^{\circ} 05^{\prime} 26.8^{\prime \prime} \mathrm{S}, 133^{\circ} 28^{\prime} 16.2^{\prime \prime} \mathrm{E}, 10 . \mathrm{iii} .2011$
Limnadopsis cf. tatei 'Titanic'	P. 85872		JF966727		Australia, SA, vegetated stony dug out 34 km north of Marla, $27^{\circ} 05^{\prime} 26.8^{\prime \prime}$ S, $133^{\circ} 28^{\prime} 16.2^{\prime \prime}$ E, 10.iii. 2011
Limnadopsis cf. tatei 'Titanic'	P. 85873	X	JF966728	JF966700	Australia, SA, vegetated stony dug out 34 km north of Marla, $27^{\circ} 05^{\prime} 26.8^{\prime \prime} \mathrm{S}, 133^{\circ} 28^{\prime} 16.2^{\prime \prime} \mathrm{E}, 10 . \mathrm{iii} .2011$
Limnadopsis cf. tatei 'Carter's'	P. 84204		HQ717782		Australia, NSW, Carter's Swamp, MS, $29^{\circ} 26^{\prime} 05^{\prime \prime} \mathrm{S}, 144^{\circ} 58^{\prime} 52^{\prime \prime}$, 31.iii.2009, reared from sediment
Limnadopsis cf. tatei 'Carter's'	P. 84205		HQ717783	HQ717737	Australia, NSW, Carter's Swamp, MS, $29^{\circ} 26^{\prime} 05^{\prime \prime} \mathrm{S}, 144^{\circ} 58^{\prime} 52^{\prime \prime}$, 31.iii.2009, reared from sediment
Limnadopsis cf. tatei 'Carter's'	P. 84206		HQ717784		Australia, NSW, Carter's Swamp, MS, $29^{\circ} 26^{\prime} 05^{\prime \prime}$ S, $144^{\circ} 58^{\prime} 52^{\prime \prime}$, 19.i. 2010

Australia, NSW, Carter's Swamp, MS, $29^{\circ} 26^{\prime} 05^{\prime \prime}$ S, $144^{\circ} 58^{\prime} 52^{\prime \prime}$, 19.i. 2010

Australia, NSW, Carter's Swamp, MS, $29^{\circ} 26^{\prime} 05^{\prime \prime}$ S, $144^{\circ} 58^{\prime} 52^{\prime \prime}$, 19.i. 2010 Australia, NSW, Grassy Pool north of Yantabulla, $29^{\circ} 19^{\prime} 04.8^{\prime \prime} \mathrm{S}$, Australia, NSW, Grassy Pool north of Yantabulla, $29^{\circ} 19^{\prime} 04.8^{\prime \prime} \mathrm{S}$,
$145^{\circ} 00^{\prime} 31.5^{\prime \prime} \mathrm{E}, 20 . \mathrm{i} .2010$
Australia, NSW, Grassy Pool north of Yantabulla, $29^{\circ} 19^{\prime} 04.8^{\prime \prime} \mathrm{S}$, $145^{\circ} 00^{\prime} 31.5^{\prime \prime} \mathrm{E}, 20 . \mathrm{i} .2010$ Australia, QLD, Eoleptestheria lagoon, $25^{\circ} 12^{\prime} 54.2^{\prime \prime} \mathrm{S}, 149^{\circ} 34^{\prime} 34.5^{\prime \prime} \mathrm{E}$,
13.ii. 2010 Australia, QLD, Eoleptestheria lagoon, $25^{\circ} 12^{\prime} 54.2^{\prime \prime} \mathrm{S}, 149^{\circ} 34^{\prime} 34.5^{\prime \prime} \mathrm{E}$, 13.ii. 2010 五 Australia, QLD, Eoleptestheria lagoon, $25^{\circ} 12^{\prime} 54.2^{\prime \prime} \mathrm{S}, 149^{\circ} 34^{\prime} 34.5^{\prime \prime} \mathrm{E}$,
Australia, QLD, Eoleptestheria lagoon, $25^{\circ} 12^{\prime} 54.2^{\prime \prime} \mathrm{S}, 149^{\circ} 34^{\prime} 34.5^{\prime \prime} \mathrm{E}$, 13.ii. 2010
Australia, QLD, Eoleptestheria lagoon, $25^{\circ} 12^{\prime} 54.2^{\prime \prime} \mathrm{S}, 149^{\circ} 34^{\prime} 34.5^{\prime \prime} \mathrm{E}$,
Australia, QLD, Eoleptestheria lagoon, $25^{\circ} 12^{\prime} 54.2^{\prime \prime} \mathrm{S}, 149^{\circ} 34^{\prime} 34.5^{\prime \prime} \mathrm{E}$,
13.ii. 2010
Australia, QLD, Eoleptestheria lagoon, $25^{\circ} 12^{\prime} 54.2^{\prime \prime} \mathrm{S}, 149^{\circ} 34^{\prime} 34.5^{\prime \prime} \mathrm{E}$,

19.ii. 2010 Noskos Paleolake, BS, $29^{\circ} 27^{\prime} 42.9^{\prime \prime} \mathrm{S}, 144^{\circ} 48^{\prime} 12.5^{\prime \prime} \mathrm{E}$,
Australia, NSW, Roskos Paleolake, BS, $29^{\circ} 27^{\prime} 42.9^{\prime \prime} \mathrm{S}, 144^{\circ} 48^{\prime} 12.5^{\prime \prime} \mathrm{E}$,
Australia, NSW, first pool east of Mossgiel, $33^{\circ} 17^{\prime} 40.7^{\prime \prime} \mathrm{S}, 144^{\circ} 42^{\prime} 54.3^{\prime \prime} \mathrm{E}$, 23.i. 2010
Australia, NSW, Quandong Gilgai Swamp, BS, $29^{\circ} 26^{\prime} \mathrm{S}, 144^{\circ} 51^{\prime} \mathrm{E}$, 07.vi. 2007
HQ717738
HQ717739
OFLLILOH ITLLLLOH
EZLLLLOH
GZLLLLOH HQ717742 $\stackrel{\text { N }}{\substack{\text { N } \\ \multirow{2}{*}{\multirow{2}{*}{\text { O } \\ \hline}}\\ \multirow {2} { * } \\ \text { O } \\ \hline}}$
HQ717785
HQ717786
HQ717787
HQ717788
HQ717789
HQ717754
HQ717792
HQ717793
HQ717794
HQ717795
HQ717790
HQ717791
HQ717746
FJ830341
 $\Varangle \quad$

P. 82580
N
$\stackrel{N}{2}$
in
in
~

\circ
$\stackrel{0}{2}$
$\stackrel{0}{\infty}$
i
P. 85175
-
Egg51
P. 84142
Limnadopsis cf. tatei 'Carter's'
Limnadopsis cf. tatei 'Carter's'
Limnadopsis cf. Limnadopsis cf.,

 Limnadopsis cf .
tatei 'Carter's' Limnadopsis sp.
 (2)
 Limnadopsis sp. 'Lagoon'
Limnadopsis sp .
 Limnadopsis sp. 'Lagoon'
Limnadopsis sp 'Roskos' Limnadopsis sp. Limnadopsis sp . 'Roskos' Limnadia sp. A

[^1]Table 2. List of all primers utilized for polymerase chain reactions and sequencing

Name	Sequence $5^{\prime}-3^{\prime}$	Reference
COI		
LCO1490	GGTCAACAAATCATAAAGATATTGG	Folmer et al. (1994)
LCO2	TCNACHAAYCATAAAGAYATTGGAAC	New primer by L. Krebes and R. Bastrop (pers.
		comm.)
LCO3	TCNACHAAYCATAAAGAYATTGGTAC	Krebes et al. (2010)
HCOoutout	GTAAATATATGNTGNGCTC	Folmer et al. (1994)
HCO-MZ1-rev	CTTTVATDCCNGTVGGSACWGCRATAATYAT	Krebes et al. (2010)
HCO709	AATNAGAATNTANACTTCNGGGTG	Blank et al. (2008)
EF1 α		
HaF2For1	GGGYAAAGGWTCCTTCAARTATGC	Richter, Olesen \& Wheeler (2007) [American
		Museum of Natural History (AMNH) laboratory]
2R53ST	CAGGAAACAGCTATGACGCGAACTT	Richter et al. (2007) (AMNH laboratory)

COI, cytochrome c oxidase subunit I; EF1 α, elongation factor 1α.

The Maximum Parsimony analysis was calculated using Winclada (Nixon, 1999) implementing Nona (Goloboff, 1999). An heuristic search was carried out with 100 replications, 1000 starting trees and a maximum of 1000 trees to keep. The search strategy was 'Multiple TBR + TBR'. Node support was assessed with 1000 bootstrap replications with 10 search replications and 100 starting trees per replication. The Bayesian analysis was carried out with MrBayes 3.1.2 (Huelsenbeck \& Ronquist, 2001; Ronquist \& Huelsenbeck, 2003) with four runs, six chains and 6×10^{6} generations, every 1200 th of which was sampled. The first 10% of sampled trees were discarded as 'burn-in'. Of the remaining 4500 trees, a majority rules consensus tree was calculated. The posterior probability was used as node support. For the separate analyses of COI and $\mathrm{EF} 1 \alpha$, the evolutionary model GTR + I was implemented as determined by MrModeltest (Posada \& Crandall, 2001; Nylander, 2004) using the Akaike information criterion. The concatenated alignment of both gene fragments was partitioned according to the genes, and the evolutionary model GTR + I + G as suggested by Nylander et al. (2004) was implemented. All trees were visualized and processed with FigTree v1.2 (Rambaut, 2006).
The genetic distance between COI sequences is a common tool for the delineation of genetically distinct lineages. Commonly, genetic distances are calculated by applying a model of genetic evolution, and reported as the mean genetic distances within and between lineages, instead of giving the full range of distances. This has been shown to artificially increase the barcoding gap (Meier, Zhang \& Ali, 2008). We decided to calculate uncorrected p distances for COI and EF1 α; these are the percentage differences between
sequences without the assumption of an additional model. Instead of a mean, we reported the range of intra- and interspecific distances to obtain a more detailed overview of the genetic distance distribution. Genetic distances were calculated with MEGA4 (Tamura et al., 2007). Furthermore, we applied the 'Cluster' algorithm implemented in Species Identifier 1.7.8 (Meier et al., 2006) to group the sequences into clusters. In these clusters, each sequence is linked to at least one other sequence by a genetic distance below a certain threshold value, eliminating the problem that, of three sequences, two pairwise distances can be below a threshold value whereas the third pairwise distance can be above the threshold. Threshold values in the range $1-10 \%$, with 1% increments, were employed.

SCANNING ELECTRON MICROSCOPY (SEM) IMAGING

Forty-three adult Limnadopsis males (Table 1) were chosen to study the clasper morphology. Both right claspers of these specimens were dissected, leaving the claspers interconnected. For a few specimens, the two left claspers were dissected as well. The claspers were cleaned in an ultrasonic water bath (Elma®) for 5 s. Prior to critical point drying (Emitech, K850), they were transferred to 100% acetone. The critical point-dried claspers were glued onto a fine pin and sputter coated with gold. The pin was then mounted on a specimen holder as described by Pohl (2010). Most SEM images were taken with a DSM 906A (Zeiss) at the Electron Microscopy Centre at the University of Rostock. A few specimens were scanned at the Australian Museum Sydney using an EVO LS15 (Zeiss) with backscatter. The specimens scanned at the Australian Museum were mounted on SEM stubs.

Figure 1. Bayesian inference majority rule tree based on the cytochrome c oxidase subunit I (COI) dataset. For each branch, the posterior probabilities of the Bayesian analysis and bootstrap support values of the Maximum Parsimony analysis are shown. Support values within putative species are not given. If several individuals had identical COI sequences, the respective COI sequence was included only once in the analyses. Individuals with identical sequences are: 1, P.85023; 2, P.84187; 3, P.82580, P. 85177 and P.85180; 4, P.84158, P.84159, P.84161, P.84164, P.84166, P. 84176 and P.84179; 5, P.84162; 6, P.84172; 7, P.84165, P.84168, P. 84171 and P.84178; 8, P84174; 9, P.84196, P. 84199 and P.84201; 10, P. 84195 ; 11, P. 84202 and P.85864; 12, P.85865, P.85867, P.85868, P.85869, P.85870, P. 85871 and P. 85872 ; 13, P. 84204 and P.84205; 14, P.84210; 15, P. 84209 .

RESULTS

INITIAL IDENTIFICATION OF SPECIES

Based on Timms (2009), most specimens could be identified to belong to one of the eight previously described Limnadopsis species. Specimens of two locations could not be assigned to any described species; they were termed Limnadopsis sp. 'Lagoon' and Limnadopsis sp. 'Roskos' in the following.

ALIGNMENTS AND DELINEATION OF MONOPHYLETIC LINEAGES

The alignment of the partial COI sequence data had a length of 627 bp with an AT content of $61.2 \% ; 213$ sites were variable, 192 of which were parsimony informative. The alignment of the partial EF1 α sequences had a total length of 795 bp ; 59 positions were variable, 41 of which were parsimony informative. The AT content was 43%. Both alignments contained no indels and the transcribed amino acid sequences showed no stop codon or any accumulation of amino acid substitutions in any sequence. Therefore, we found no indication for the presence of pseudogenes or numts in our data.
Both the Maximum Parsimony and Bayesian analysis of the COI dataset recovered eight main distinct monophyletic lineages (Fig. 1), splitting what we have identified as L. tatei and L. parvispinus into two distinct lineages each. The recovered lineages are (Fig. 1): L. cf. parvispinus 'Paroo', L. cf. parvispinus 'Buchanan', L. sp. 'Roskos', L. sp. 'Lagoon', L. paradoxa, L. birchii, L. cf. tatei 'Titanic' and L. cf. tatei 'Carter's'. All of these lineages are supported by bootstrap support values ≥ 99 and posterior probabilities ≥ 0.96 (Fig. 1). These main monophyletic lineages correspond to the clusters recovered by Species Identifier for a 3% threshold (values $\leq 2 \%$ recovered additional clusters and values $\geq 7 \%$ collapsed both L. cf. parvispinus clusters into one). The uncorrected COI p distances within each of the eight main lineages are within the range of $0-4.2 \%$ (Table 3), whereas the distances among main lineages are in the range 6.8$18.6 \%$ (usually $>10 \%$), thus exhibiting a clear gap between the intra- and interlineage genetic distances. Notably, the two highest intralineage COI distances (4.2% and 3.5%) occur within each of the L. cf. parvispinus lineages, and the lowest interlineage distance (6.8\%) occurs between the two L. cf. parvispinus lineages.

The analyses of EF1 α also recovered the lineages of L. paradoxa, L. birchii, L. cf. tatei 'Carter's', L. cf. tatei 'Titanic' and L. cf. parvispinus as monophyletic, but partially with low support values (Fig. 2). Limnadopsis sp. 'Lagoon' was not recovered as monophyletic with respect to L. cf. parvispinus. The uncorrected

Figure 2. Bayesian inference majority rule tree based on the elongation factor 1α (EF1 α) dataset. For each branch, the posterior probabilities of the Bayesian analysis and bootstrap support values of the maximum parsimony analysis are shown. Support values within putative species are not given.

EF1 αp distances were lower than the COI distances (Table 3): within lineages $0.0-2.4 \%$ (all lineages except L. sp. 'Lagoon' have distances $\leq 0.4 \%$) and among lineages $0.8-4.5 \%$. Thus, a clear gap separating intralineage from interlineage $\mathrm{EF} 1 \alpha$ distances is not present. Only if L. sp. 'Lagoon' is excluded a gap of $0.4-0.8 \%$ separating intralineage from interlineage distances is present.

CLASPER MORPHOLOGY

The terminology used for the description of the claspers is based on Olesen et al. (1996). The structures at the tip of the movable finger are referred to as 'scales' following Richter \& Timms (2005). The spatial orientation of the claspers needs to be explained in detail, as arrangements are not intuitive (compare with Fig. 3A, B). All images of the claspers and their components are upside down for a more intuitive visualization. Therefore, the ventral part is always shown on top of the dorsal part.

All studied specimens have typical spinicaudatan claspers (Fig. 3) comprising the same basic components: The movable finger bears round scales on the
surface that is opposing the apical club (Fig. 3E). Further ventrally at the very tip of the movable finger, one to four scales are present which differ markedly from the other scales of the movable finger (Figs 3A, B, 4 and 5). These scales exhibit a great variability in shape and number (Table 4). Even among the four claspers of a single individual, the scales are not identical; in particular, the number of scales varies among the claspers within several individuals. Despite the variation present within species [as identified on the basis of Timms (2009)], most species can be differentiated from others on the basis of the characteristics of the scales (Table 4); this includes individuals of both lineages of L. cf. tatei (L. cf. tatei 'Titanic' and L. cf. tatei 'Carter's'), which can be differentiated on the basis of the presence/absence of a ledge ventrally on the scale. The delineation of the two L. cf. parvispinus lineages ('Paroo' and 'Buchanan') from one another and from L. sp. 'Lagoon' is problematic. There is no characteristic that differentiates among both L. cf. parvispinus lineages. This can be partly attributed to the great variation present in these lineages. Limnadopsis sp. 'Lagoon' (Fig. 5O, P) differs slightly in number, size and arrangement of

Figure 3. The clasper of Limnadopsis, shown for Limnadopsis cf. parvispinus 'Paroo' P. 84181 as an example: A, posterior view; B, anterior view; C, setae on apical club, anterior view; D, teeth-like setae on apical club; E, flat, broad scales on movable finger facing the apical club; F, detail of setae on apical club. The arrows in (A) and (B) indicate the scales on the tip of the movable finger. ac, apical club; h, hand; lp, large palpus; mf, movable finger; sp, small palpus.
scales from L. cf. parvispinus (Fig. 5I-N, Table 4). In addition, the scales of L. sp. 'Roskos' and L. occidentalis are very similar; the scales of the latter, however, are shorter and thinner.

DISCUSSION

SUCCESS OF THE INTEGRATIVE APPROACH FOR SPECIES DELINEATION

Species delineation, as part of an integrative taxonomy approach, relies on the combination of very different data (e.g. morphological, behavioural, ecological or genetic; Dayrat, 2005). These different types of data complement each other by solving ambiguities or by pointing out erroneous assumptions on the basis of any single character set. Consistency among the data strengthens the proposed species delineation, but, in most cases, conflicts among datasets can be expected (Padial \& de la Riva, 2010). Such conflicts may indicate ongoing speciation processes that have not yet been finalized, e.g. on the basis of genetic data, allopatric populations are delineated into several lineages, but mechanisms for reproductive isolation are still missing. Padial \& de la Riva (2010) argued that full congruence among data from various
sources cannot be demanded or even expected. As a result of heterogeneous evolutionary forces, not all characters will be equally affected during speciation processes, implying that congruence among data is desirable, but not mandatory, for species delineation. Obviously, the extent to which these conflicts affect species delineation depends on the species concept applied.

Our analyses of COI resulted in eight distinct monophyletic lineages; all of these lineages are separated by COI distances of at least 6.8%. The results of the EF1 α data showed no indication of gene flow among the lineages. Although not all of the lineages were monophyletic in the $\mathrm{EF} 1 \alpha$ analyses, no sequence was shared among individuals of the different lineages. On the basis of these data, the eight lineages are qualified as distinct species based on the ESC, PSC sensu Mishler \& Theriot and PSC sensu Wheeler \& Platnick. Of these eight lineages, clasper scale morphology differs between the lineages L. paradoxa, L. birchii, L. cf. tatei 'Titanic', L. cf. tatei 'Carter's' and L. sp. 'Roskos', but the shape of the scales does not show a clear species-specific pattern (partly as a result of extensive intraspecific variation) between the lineages L. sp. 'Lagoon', L. cf. parvispinus

Figure 4. Scales at the tip of the movable finger of Limnadopsis species. A-D, Limnadopsis paradoxa: A, P. 84167 first right clasper, medial view; B, P. 84167 , posterior view; C, P. 84167 second right clasper, medial view; D, P. 84170 second right clasper, anterior-medial view. E-F, Limnadopsis cf. tatei ‘Titanic': E, P. 84203 first right clasper, medial view; F, P.84203, anterior view. G-I, Limnadopsis cf. tatei ‘Carter's’: G, P. 84209 second right clasper, posterior-medial view; H, P. 84209 first right clasper, ventral view; I, P. 84208 first right clasper, medial view (white arrow indicates palp-like structure). J-K, Limnadopsis pilbarensis P. 84194 first right clasper: J, medial view; K, anterior view. L-N, Limnadopsis multilineata P.84154: L, first right clasper, medial view; M, frontal view; N, second right clasper, medial view. O-P, Limnadopsis minuta P. 84153 first right clasper: O, medial view; P, posterior view.
'Buchanan' and L. cf. parvispinus 'Paroo' (the scales of both L. cf. parvispinus lineages are identical). For the first group, differences in clasper morphology add an argument for the species status based on the PSC
sensu Wheeler \& Platnick (diagnosability). As the scales of the movable finger potentially play an important role in the identification of suitable mating partners, species status is also indicated by the BSC, HSC

Figure 5. Scales at the tip of the movable finger of Limnadopsis species. A-D, Limnadopsis birchii: A, P. 84144 first right clasper, medial view; B, P. 84143 second right clasper, posterior-medial view; C, P. 84152 first left clasper, medial view; D, ST5 first right clasper, posterior view. E-F, Limnadopsis occidentalis: E, P. 84156 first right clasper, medial view; F, P. 84156 frontal view. G-H, Limnadopsis sp. 'Roskos': G, P. 85175 second right clasper, medial view; H, P.85175, posterior view. I-L, Limnadopsis cf. parvispinus 'Paroo': I, P. 85022 first right clasper, anterior view; J, P. 84181 first right clasper, posterior-medial view; K, P. 84181 second right clasper, medial view; L, P. 80898 first right clasper, medial view. M-N, Limnadopsis cf. parvispinus 'Buchanan' P. 84186 second right clasper: M, medial view; N, posterior view. O-P, Limnadopsis sp. 'Lagoon' P. 82580 first right clasper: O, medial view; P, posterior view.
and RSC. The sympatric (Timms \& Richter, 2002) and partially syntopic (own observation) distribution of L. birchii with L. cf. tatei (L. cf. tatei 'Titanic' and/or L. cf. tatei 'Carter's') in the catchment area of the

Paroo River strengthens the assumption that reproductive isolation mechanisms are effective between these species. This strengthens the species delineation based on BSC and HSC, in which sympatric
Table 4. Shape of the scales on the tip of the movable finger. The characteristics of the scales that are useful for the delineation of species are summed for each species and lineage of Limnadopsis, respectively. Species and lineages represent the initially identified species or the main lineages inferred from the cytochrome c oxidase subunit I (COI) dataset

	L. paradoxa	L. cf. tatei 'Titanic'	L. cf. tatei 'Carter's'	L. pilbarensis	L. multilineata	L. minuta	L. birchii	L. occidentalis	L. cf. parvispinus 'Paroo'	L. cf. parvispinus 'Buchanan'	L. sp. 'Lagoon'	L. sp. 'Roskos'
Number of scales	1	1	1	1	1-2*	1	1-2*	1	2-4*	2-4*	1-3*	1
Arrangement of scales (if >1)	n.a.	n.a.	n.a.	n.a.	In a row	n.a.	In a row	n.a.	2-3 scales in a row, rarely in a rhombus, 4 scales in a rhombus	2-3 scales in a row, 4 scales in a rhombus	2 scales in a row, three scales triangular	n.a.
Sub-division	One pieced	Bifid	Bifid	Bifid	Bifid	Bifid	Bifid					
Form of scales (dorsal part of bifid scales)	Rounded, sometimes with triangular ledge ventrally	Rounded	Rounded with triangular ledge ventrally (ledge palp-like elongated in P.84208)	Rounded	Slender, pointed; second clasper with smaller hook-like scale	Slender, pointed, slightly flattened	Widely rounded, bent towards mf	Slender, not or weakly bent towards mf				
Form of ventral part of bifid scales	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Slender (palp-like)	Mostly slender (palp-like); sometimes triangular	Slender (palp-like) or triangular \dagger	Slender (palp-like) or triangular \dagger	Triangular	Slender (palp-like)
Orientation of ventral to dorsal part of bifid scales	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Almost parallel	Almost parallel	Almost vertical	Almost vertical	Almost vertical	Almost parallel
Serration along the edges	Strong, several indentations	Minor	Minor	None	Minor							
Length in $\mu \mathrm{m}$ (for bifid scales only dorsal part)	34-53	20-44	40-53	43	40 (hook-like scale: 30)	45	33-42	19-28	14-30 \dagger	14-30 \dagger	14-20 \dagger	29-35
Width in $\mu \mathrm{m}$ (for bifid scales only dorsal part)	22-34	19-36	20-23	25	9 (hook-like scale: 12)	9	23-31	8-9	8-16†	7-9 \dagger	7-9*	13-14

[^2]occurrence of closely related species is considered to be a test of the presence and effectiveness of the isolation mechanisms.

In analogy with the previous cases, differences in scale morphology among allopatric lineages may indicate separate species. This is important for the West Australian species L. paradoxa, L. pilbarensis, L. multilineata, L. minuta and L. occidentalis, for which only the scales were studied. The scales of all four species showed clear differences between these and all other Limnadopsis species, implying reproductive isolation (BSC, HSC) and mechanisms for the recognition of mates of the same species (RSC). The scales further represent a unique combination of character states (PSC sensu Wheeler \& Platnick) and indicate the independent evolutionary fate of the species (ESC). The PSC sensu Mishler \& Theriot (2000) cannot be applied, as this concept requires an a priori phylogenetic analysis. For an integrative approach, additional molecular data are lacking to corroborate the results of the scale morphology for these four species.

The delineation of L. cf. parvispinus 'Paroo', L. cf. parvispinus 'Buchanan' and L. sp. 'Lagoon' is the most complex and therefore most interesting case. The phylogenetic analyses of the COI dataset resulted in three reciprocal monophyletic lineages, which are also separated by large distances. The COI distances within each lineage are smaller ($\leq 4.2 \%$) than the distances among lineages ($\geq 6.8 \%$ among the L. cf. parvispinus lineages, $\geq 12.4 \%$ for L. sp. 'Lagoon'). The COI distances between both L. cf. parvispinus lineages are, however, smaller than the distances between all other putative Limnadopsis species. In this context, also, L. sp. 'Roskos' should be considered. Its COI distances to the L. cf. parvispinus (10.4-13.8\%) and L. sp. 'Lagoon' (12.3-12.8\%) lineages, however, are similar or lower than the COI distance between the L. cf. parvispinus lineages and L. sp. 'Lagoon' (12.4$14.2 \%$). This supports the delineation of L. sp. 'Lagoon' as a separate species from L. cf. parvispinus, as L. sp. 'Roskos' has already been delineated on the basis of all species concepts. The intralineage and interlineage EF1 α distances of L. sp. 'Lagoon' and both L. cf. parvispinus lineages are of the same magnitude (up to 2.4%) and do not allow a separation of the lineages on the basis of genetic distances. However, L. cf. parvispinus is monophyletic in the phylogenetic analysis of the EF1 α sequences. As mentioned above, the molecular data alone qualify to consider the lineages as distinct species under the ESC and the two PSCs. The shape of the scales does not show a clear species-specific pattern because of the extensive intraspecific variation in all three lineages. The scales of both L. cf. parvispinus lineages are too similar to be differentiated; thus, these two lineages, considering only the clasper morphology, would not be delineated into two species. Limnadopsis
sp. 'Lagoon' differs slightly from the L. cf. parvispinus lineages (e.g. smaller number of scales, shorter scales and ventral part never palp-like shaped), but the differences in the shape of the scales are not as distinct as among the other studied species. The delineation of the L. cf. parvispinus lineages and L. sp. 'Lagoon' into different species is problematic under the BSC and HSC, because these three lineages seem to occur allopatrically with no known distribution overlap; therefore, the reproductive isolation has not yet been tested by sympatry. Limnadopsis cf. parvispinus 'Paroo' occurs in southern Queensland and large parts of New South Wales [as described for L. parvispinus by Timms (2009)]. Limnadopsis cf. parvispinus 'Buchanan' occurs in northern central Queensland [the occurrence of L. parvispinus in this area is not mentioned by Timms (2009)], at least 700 km apart from L. cf. parvispinus 'Paroo' and, for L. sp. 'Lagoon', only a single pool in south-eastern Queensland is known (geographically closer to L. cf. parvispinus 'Paroo' than to 'Buchanan'; no individuals of any of these lineages were found in the area in between these locations). When integrating all the data and the deduced assumptions, two species are congruently delineated: L. sp. 'Lagoon' and L. cf. parvispinus. The allopatric distribution of L. cf. parvispinus and L. sp. 'Lagoon' is problematic for the BSC and HSC, but the differences in scale morphology and the obvious lack of gene flow among these species also qualify for their delineation on the basis of these two species concepts.

The scales of both L. cf. parvispinus lineages are too alike to assume either reproductive isolation or effective mate recognition mechanisms between these lineages. As we favour a species concept that also considers reproductive isolation, we propose that L. cf. parvispinus 'Paroo' and L. cf. parvispinus 'Buchanan' represent two genetically divergent lineages of a single species. It is possible that the lineages will show an effective mechanism for reproductive isolation once they come into secondary contact, but this cannot be deduced from the data currently available.

The lineage L. sp. 'Roskos' has been delineated from all other lineages. Nevertheless, the overall morphology of the individuals and the shape of the scales are rather similar to L. occidentalis, which, however, has only been recorded from Western Australia (Timms, 2009) and has never been recorded from the area in which L. sp. 'Roskos' has been found (Timms \& Richter, 2002). Therefore, these two might represent a single species. A final decision can only be made if genetic data for L. occidentalis become available.

In summary, all the Limnadopsis lineages revealed in the COI dataset could be treated as separate species on the basis of the PSC sensu Mishler \& Theriot and the ESC without considering further data. To our understanding, however, this falls short
of the biological reality of these species and might artificially increase the number of recognized species (see also Ballard et al., 2002; Agapow et al., 2004). In most cases, species delineation was independent of the applied species concept (see also Laamanen et al., 2003 and Tan et al., 2010). Discrepancies arose when the various data types were incongruent (e.g. in the case of L. cf. parvispinus). Of course, these are the interesting cases for which the integration of the various species concepts is most important. If all types of data are not available for all individuals, this integrative approach still allows for well-founded assumptions regarding species delineation by direct comparison with other species for which more data are available. The following species could be delineated by the integrative approach: L. birchii, L. minuta, L. multilineata, L. occidentalis, L. paradoxa, L. cf. parvispinus, L. pilbarensis, L. cf. tatei 'Carter's', L. cf. tatei 'Titanic', L. sp. 'Lagoon' and L. sp. 'Roskos'. Overall, our study emphasizes the importance and value of an integrative approach to the resolution of taxonomic problems.

GENETIC THRESHOLDS FOR SPECIES DELINEATION?

One of the advantages of utilizing different datasets is the potential to determine the intra- and interspecific variation within each of these datasets. Between the eight main monophyletic lineages (including the two L. cf. parvispinus lineages), COI genetic distances were between 6.8 and 18.6% and, within these lineages, between 0.0 and 4.2%. This could imply a COI threshold value of about $5-6 \%$ to discriminate between intra- and interspecific genetic distances for Limnadopsis species. As argued above, however, the two L. cf. parvispinus lineages cannot be assigned to separate species unambiguously. If they indeed represent a single species (as deduced from the BSC, HSC and RSC) in an ongoing speciation process, the largest intraspecific genetic distance would be 9.9% and the lowest interspecific distance would be 9.6% (separating L. cf. tatei 'Titanic' and L. cf. tatei 'Carter's'). Such an overlap of intra- and interspecific distances is not uncommon and is one of the problems associated with DNA barcoding (Meyer \& Paulay, 2005; Meier et al., 2006). A comparison with other branchiopod taxa reveals a wide range of intra- and interspecific distances for COI with no clear threshold. Maximum intraspecific genetic distances are up to 1.74% for Daphnia magna (De Gelas \& De Meester, 2005), 2% for Daphnia optusa (Penton, Hebert \& Crease, 2004), $0.3-4.3 \%$ for various Daphnia and Ctenodaphnia species (Adamowicz, Hebert \& Marinone, 2004) and 5.7% for Daphnia ambigua (Hebert, Witt \& Adamowicz, 2003b). Although Cladocera show rather large minimum interspecific COI
distances, more than 16.2% for various Daphnia and Ctenodaphnia species (Adamowicz et al., 2004) and more than $\mathbf{1 5 . 4 \%}$ for North American Daphnia species (Penton et al., 2004), in anostracans the minimum interspecific distances are often lower: 2.2% for Chirocephalus species (Ketmaier et al., 2003) and 2.1\% for Artemia species (Muñoz et al., 2008). It should be noted that all but the last study used corrected distances (usually Kimura two-parameter corrected), rather than the uncorrected p distances used in this study, which increases their values slightly compared with the uncorrected p distances. Even considering this, the observed intraspecific distances within Limnadopsis species are in the upper range of the recorded intraspecific variations for branchiopods, even if both L. cf. parvispinus lineages are treated as two distinct species. The potential overlap of intraand interspecific genetic variations emphasizes the limitations of a universal threshold for species delineation, and highlights the importance of the identification of threshold values for each taxonomic group independently.

CLASPER CHARACTERISTICS AS TAXONOMICALLY VALUABLE CHARACTERS

The scales of the movable finger of the claspers have not been studied in detail previously; therefore, no a priori assumption regarding their variability was possible. The interspecific variation includes the differentiation into bifid or one-pieced scales, the presence/ absence of serration along the edge, the presence/ absence of a ledge, size differences, differences in the shape of the scale and different arrangements of the scales. The intraspecific variation generally accounts for minor differences in size and shape, e.g. differences in the number of indentations and whether or not the edges are serrated. Interestingly, the range of intra-individual variation among the four claspers is similar or identical to the variation observed within the whole species. The intraspecific variation in the number of scales is remarkable. In particular, the claspers of both Limnadopsis cf. parvispinus lineages and L. sp. 'Lagoon' feature varying numbers of scales, but also in L. birchii and L. multilineata single claspers bear two scales instead of one. Therefore, the number of scales is too variable within species to be a useful character for species delineation.

Our results suggest that the shape of the scales is species specific. This observation is congruent with the indications that parts of the clasper are part of SMRS (Paterson, 1993a) of these species. Components of the SMRS are expected to be under strong selection pressure, especially if closely related species occur in sympatry, leading to species-specific differentiations (character displacement; Brown \& Wilson, 1956). All
closely related species that occur in sympatry feature scales which are clearly distinguishable: L. parvispinus and L. sp. 'Roskos' and L. birchii, L. cf. tatei 'Titanic' and L. cf. tatei 'Carter's'. However, closely related species which do not occur sympatrically (e.g. L. parvispinus and L. sp. 'Lagoon') are hardly differentiated in the shape of their scales. Further research focusing on the species-specific parts of the claspers, as well as their interactions with the females, might reveal important aspects of the mate recognition mechanisms of spinicaudatan species.
Our results highlight the usefulness of the scales at the tip of the movable finger for the delineation and identification of Limnadopsis species. At present, these scales seem to be the best single character to distinguish male specimens. For egg-bearing females, the shape and structure of the resting eggs carried under the carapace could be a similarly useful character (Timms, 2009). The scales might prove to be a useful character to delineate species of further spinicaudatan taxa.

Implications for Limnadopsis species diversity

Our results suggest that the species diversity of Limnadopsis is larger than anticipated in the last review by Timms (2009). In addition to the eight recognized species, three additional as yet undescribed species could be delineated: L. sp. 'Lagoon', L. sp. 'Roskos' and one of the two L. cf. tatei lineages. For the latter, we suggest that L. cf. tatei 'Titanic' represents L. tatei Spencer \& Hall, 1896. The specimens collected from Marla (P.85864-P.85873) are closest to the type locality (Marla is about 200 km west of the poorly defined type locality area), and the specimens of this lineage resemble the original description of L. tatei much more closely than do specimens of the L. cf. tatei 'Carter's' lineage (this includes the number of body segments and telsonic spines; data not shown). Therefore, L. cf. tatei 'Carter's' is considered to represent an undescribed species.
Limnadopsis cf. parvispinus 'Paroo' most likely represents Limnadopsis parvispinus Henry, 1924 as the eggs 'Egg44' and 'Egg46' are from pools around Mossgiel, one of two type localities of L. parvispinus. If additional data support the delineation of the two L. cf. parvispinus lineages into two species, L. cf. parvispinus 'Buchanan' would have to be considered as a new species. So far, we consider all specimens identified in this study as L. cf. parvispinus to represent L. parvispinus Henry, 1924. Our study therefore increases the number of recognized Limnadopsis species to at least 11.
The study of Weeks et al. (2009), however, hinted at the presence of even further species. To integrate their results into this study, additional analyses were
carried out (Bayesian analysis and Maximum Parsimony with specifications as above; trees not shown) including all Limnadopsis individuals, as well as selected Limnadia individuals and two Eulimnadia individuals as outgroups. As Weeks et al. (2009) incorporated a slightly different portion of the COI fragment, additional sequences were obtained using the primer pair MidCox1CrustForward/ 3^{\prime} Cox1LimnReverse, as specified by Weeks et al. (2009), from a few chosen specimens for each main genetic lineage (these sequences are part of the sequences submitted to GenBank). It seems that what Weeks et al. referred to as 'Limnadopsis sp . 2' is identical with L. paradoxa (identical COI sequence as P.84158) and 'Limnadopsis tatei 2 ' is close to L. sp. 'Roskos' (2% genetic distance). Otherwise, none of their individuals could be assigned to any of the species included in this study. Their L. tatei specimens were not related to any of the two L. cf. tatei lineages of this study, and their L. parvispinus individuals were most closely related to L. sp. 'Lagoon'. 'Limnadopsis sp. 3 ' is rather closely related to L. cf. tatei 'Carter's' (5.5% genetic distance). The discrepancy between these studies might be partially attributed to the fact that Weeks et al. (2009) did not incorporate the descriptions and redescriptions of Timms (2009), which may have led to identification problems. Therefore, some of the individuals of Weeks et al. (2009) may belong to one of the species described by Timms (e.g. L. occidentalis, L. minuta, L. multilineata or L. pilbarensis), but this cannot be clarified with the data currently available. Nevertheless, it becomes obvious that the actual diversity of Limnadopsis species is larger than previously thought, and it seems likely that even more species will be discovered.

ACKNOWLEDGEMENTS

The authors thank Dr Stephen Keable and other staff members of the Australian Museum Sydney for their support, and Sue Lindsey for her help with some SEM imaging; many thanks are also due to the staff of the Electron Microscopy Centre at the University of Rostock for their help with SEM imaging. We thank numerous landowners for access to ponds on their properties, and the Herrods of Yarromere and Hansons of Bloodwood for their hospitality, as well as Dr G. D. F. Wilson for hospitality and scientific advice in Sydney. We thank Dr Ralf Bastrop for his support in this project and three anonymous reviewers for their remarkable efforts and helpful comments on an earlier version of the manuscript. M. Schwentner was financed by a scholarship from the Studienstiftung des deutschen Volkes. The project was funded by the Deutsche Forschungsgemeinschaft (DFG RI 837/12-1)
and additionally financially supported by the Denton Belk Memorial Fund of The Crustacean Society and a Postgraduate Award from the Australian Museum Sydney.

REFERENCES

Adamowicz SJ, Hebert PDN, Marinone MC. 2004. Species diversity and endemism in the Daphnia of Argentina: a genetic investigation. Zoological Journal of the Linnean Society 140: 171-205.
Agapow PM, Bininda-Emonds ORP, Crandall KA, Gittleman JL, Mace GM, Marshall JC, Purvis A. 2004. The impact of species concepts on biodiversity studies. The Quarterly Review of Biology 79: 161-179.
Alström P, Rasmussen PC, Olsson U, Sundberg P. 2008. Species delimitation based on multiple criteria: the Spotted Bush Warbler Bradypterus thoracicus complex (Aves: Megaluridae). Zoological Journal of the Linnean Society 154: 291-307.
Baird W. 1860. Description of a new Entomostracous Crustacean, belonging to the order Phyllopoda, from South Australia. Proceedings of the Zoological Society of London 28: 392-393.
Ballard JWO, Chernoff B, James AC. 2002. Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology, or behavior in Drosophila simulans. Evolution 56: 527-545.
Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. 2008. GenBank. Nucleic Acids Research 35: D21-D25.
Blank M, Laine AO, Juerss K, Bastrop R. 2008. Molecular identification key based on PCR/RFLP for three polychaete sibling species of the genus Marenzelleria, and the species' current distribution in the Baltic Sea. Helgoland Marine Research 62: 129-141.
Brown WL Jr, Wilson EO. 1956. Character displacement. Systematic Zoology 5: 49-64.
Dayrat B. 2005. Towards integrative taxonomy. Biological Journal of the Linnean Society 85: 407-415.
De Gelas K, De Meester L. 2005. Phylogeography of Daphnia magna in Europe. Molecular Ecology 14: 753-764.
Dumont HJ, Negrea SV. 2002. Introduction to the Class Branchiopoda. Guides to the microinvertebrates of the continental waters of the world. Leiden: Backhuys.
Eberhard WG. 1985. Sexual selection and animal genitalia. Cambridge: Harvard University Press.
Eberhard WG. 1993. Models of sexual selection: genitalia as a test case. The American Naturalist 142: 564-571.
Eberhard WG. 2001. Species-specific genitalic copulatory courtship in sepsid flies (Diptera, Sepsidae, Microsepsis) and theories of genetalic evolution. Evolution 55: 93-102.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
Goloboff P. 1999. NONA (no name) Vers. 2. Published by the author, Tucuman, Argentina.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series 41: 95-98.
Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003a. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B: Biological Sciences 270: 313-321.
Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM. 2004. Identification of birds through DNA barcodes. PLoS Biology 2: e312.
Hebert PDN, Witt JDS, Adamowicz SJ. 2003b. Phylogeographical patterning in Daphnia ambigua: regional divergence and intercontinental cohesion. Limnology and Oceanography 48: 261-268.
Henry M. 1924. A monograph of the freshwater Entomostraca of New South Wales. IV. Phyllopoda. Proceedings of the Linnean Society of New South Wales 49: 120-137.
Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.

Ketmaier V, Zarattini P, De Matthaeis E, Cobolli M, Mura G. 2003. Intra- and inter-specific relationships in the six Italian species of the fairy shrimp genus Chirocephalus: combining allozyme and mtDNA data. Journal of Zoological Systematics and Evolutionary Research 41: 276-285.
Knoll L. 1995. Mating-behavior and time budget of an androdioecious Crustacean, Eulimnadia texana (Crustacea, Conchostraca). Hydrobiologia 298: 73-81.
Krebes L, Blank M, Jurss K, Zettler ML, Bastrop R. 2010. Glacial-driven vicariance in the amphipod Gammarus duebeni. Molecular Phylogenetics and Evolution 54: 372385.

Laamanen TR, Petersen FT, Meier R. 2003. Kelp flies and species concepts - the case of Coelpa frigida (Fabricius, 1805) and C. nebularum Aldrich, 1929 (Diptera:Coelopidae). Journal of Zoological Systematics and Evolutionary Research 41: 127-136.
Marinček M, Petrov B. 1998. Taxonomical study of the genus Leptestheria (Conchostraca, Crustacea) II. Bulletin of Natural History Museum Belgrade 49-50: 129-143.
Martens K. 2000. Factors affecting the divergence of mate recognition systems in the Limnocytherinae (Crustacea, Ostracoda). Hydrobiologia 419: 83-101.
Mayden RL. 1999. Consilience and a hierarchy of species concepts: advances towards closure of the species puzzle. Journal of Nematologists 31: 95-116.
Mayr E. 1942. Systematics and the origin of species from the viewpoint of a zoologist. New York: Columbia University Press.
Mayr E. 2000. The biological species concept. In: Wheeler QD, Meier R, eds. Species concepts and phylogenetic theory. New York: Columbia University Press, 17-29.
Medland VL, Zucker N, Weeks SC. 2000. Implications for the maintenance of androdioecy in the freshwater shrimp, Eulimnadia texana Packard: encounters between males and hermaphrodites are not random. Ethology 106: 839-848.
Meier R, Shiyang K, Vaidya G, Ng PKL. 2006. DNA
barcoding and taxonomy in diptera: a tale of high intraspecific variability and low identification success. Systematic Biology 55: 715-728.
Meier R, Willmann R. 2000. The Hennigian species concept. In: Wheeler QD, Meier R, eds. Species concepts and phylogenetic theory. New York: Columbia University Press, 30-43.
Meier R, Zhang G, Ali F. 2008. The use of mean instead of smallest interspecific distances exaggerates the size of the 'barcoding gap' and leads to misidentifications. Systematic Biology 57: 809-813.
Meyer PC, Paulay G. 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3: 22292238.

Mishler BD, Theriot EC. 2000. The phylogenetic species concept (sensu Mishler and Theriot): monophyly, apomorphy and phylogenetic species concepts. In: Wheeler QD, Meier R, eds. Species concepts and phylogenetic theory. New York: Columbia University Press, 44-54.
Montero-Pau J, Gómez A, Muñoz J. 2008. Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnology and Oceanography: Methods 6: 218-222.
Muñoz J, Gómez A, Green AJ, Figuerola J, Amat F, Rico C. 2008. Phylogeography and local endemism of the native Mediterranean brine shrimp Artemia salina (Branchiopoda: Anostraca). Molecular Ecology 17: 3160-3177.
Naomi SI. 2011. On the integrated frameworks of species concepts: Mayden's hierarchy of species concepts and de Queiroz's unified concept of species. Journal of Zoological Systematics and Evolutionary Research 49: 177184.

Nixon KC. 1999. WinClada 1.00 .08 . Published by the author, Ithaca, NY, USA.
Nylander JAA. 2004. MrModeltest v.2. Distributed by the author, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
Nylander JAA, Ronquist F, Huelsenbeck JP, NievesAldrey JL. 2004. Bayesian phylogenetic analysis of combined data. Systematic Biology 53: 47-67.
Olesen J, Martin JW, Roessler EW. 1996. External morphology of the male of Cyclestheria hislopi (Baird, 1859) (Crustacea, Branchiopoda, Spinicaudata), with a comparison of male claspers among the Conchostraca and Cladocera and its bearing on phylogeny of the 'bivalved' Branchiopoda. Zoologica Scripta 25: 291-316.
Pabst T, Richter S. 2004. The larval development of an Australian limnadiid clam shrimp (Crustacea, Branchiopoda, Spinicaudata), and a comparison with other Limnadiidae. Zoologischer Anzeiger 243: 99-115.
Padial JM, de la Riva I. 2010. A response to recent proposals for integrative taxonomy. Biological Journal of the Linnean Society 101: 747-756.
Page TJ, Choy SC, Hughes JM. 2005. The taxonomic feedback loop: symbiosis of morphology and molecules. Biology Letters 1: 139-142.
Paterson HEH. 1993a. Animal species and sexual selection. In: Lees DR and Edwards D (eds.), Evolutionary patterns
and processes. Linnean Society Symposium Series 14: 209228.

Paterson HEH. 1993b. Evolution and the recognition concept of species. Baltimore, MD: The John Hopkins University Press, 136-158.
Penton EH, Hebert PDN, Crease TJ. 2004. Mitochondrial DNA variation in North American populations of Daphnia obtusa: continentalism or cryptic endemism? Molecular Ecology 13: 97-107.
Pohl H. 2010. A scanning electron microscopy specimen holder for viewing different angles of a single specimen. Microscopy Research and Technique 73: 1073-1076.
Posada D, Crandall KA. 2001. Selecting the best-fit model of nucleotide substitution. Systematic Biology 50: 580-601.
de Queiroz K. 2005. A unified concept of species and its consequences for the future of taxonomy. Proceedings of the California Academy of Sciences 56: 196-215.
Rambaut A. 2006. Figtree v1.1: tree figure drawing tool. Edinburgh: Institute of Evolutionary Biology.
Richter S, Olesen J, Wheeler WC. 2007. Phylogeny of Branchiopoda (Crustacea) based on a combined analysis of morphological data and six molecular loci. Cladistics 23: 301-336.
Richter S, Timms BV. 2005. A list of recent clam shrimps (Crustacea: Laevicaudata, Spinicaudata, Cyclestherida) of Australia, including a description of a new species of Eocyzicus. Records of the Australian Museum 57: 341-354.
Roe AD, Sperling FAH. 2007. Population structure and species boundary delimitation of cryptic Dioryctria moths: an integrative approach. Molecular Ecology 16: 3617-3633.
Rogers DC. 2002. The amplexial morphology of selected Anostraca. Hydrobiologia 486: 1-18.
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
Sanders KL, Malhotra A, Thrope RS. 2006. Combining molecular, morphological and ecological data to infer species boundaries in a cryptic tropical pitviper. Biological Journal of the Linnean Society 87: 343-364.
Schwentner M, Timms BV, Bastrop R, Richter S. 2009. Phylogeny of Spinicaudata (Branchiopoda, Crustacea) based on three molecular markers - an Australian origin for Limnadopsis. Molecular Phylogenetics and Evolution 53: 716-725.
Song H, Buhay JE, Whiting MF, Crandall KA. 2008. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America 105: 13 486-13 491.
Spencer B, Hall TS. 1896. Crustacea. Report on the work of the horn expedition to Central Australia. II. Zoology 8: 227-248.
Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 15961599.

Tan DSH, Ali F, Kutty SH, Meier R. 2008. The need for specifying species concepts: how many species of silvered
langurs (Trachypithecus cristatus group) should be recognized? Molecular Phylogenetics and Evolution 49: 688-689.
Tan DSH, Ang Y, Lim GS, Bin Ismail MR, Meier R. 2010. From 'cryptic species' to integrative taxonomy: an iterative process involving DNA sequences, morphology, and behaviour leads to the resurrection of Sepsis pyrrhosoma (Sepsidae: Diptera). Zoologica Scripta 39: 51-61.
Tautz D, Arctender P, Minelli A, Thomas RH, Vogler AP. 2002. DNA points the way ahead in taxonomy. Nature 418: 479.

Tautz D, Arctender P, Minelli A, Thomas RH, Vogler AP. 2003. A plea for DNA taxonomy. Trends in Ecology and Evolution 18: 70-74.
The World Conservation Union. 2010. IUCN red list of threatened species. Summary statistics for globally threatened species. Town: Publisher, Table 1: numbers of threatened species by major groups of organisms (19962010). Available at: http://www.iucnredlist.org/documents/ summarystatistics/2011_1_RL_Stats_Table_1.pdf
Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.
Timms BV. 2009. A revision of the Australian endemic clam shrimp Limnadopsis Spencer \& Hall (Crustacea: Branchiopoda: Spinicaudata: Limnadiidae). Records of the Australian Museum 61: 49-72.
Timms BV, Richter S. 2002. A preliminary analysis of the conchostracans (Crustacea: Spinicaudata and Laevicaudata)
of the middle Paroo catchment of the Australian arid-zone. Hydrobiologia 486: 239-247.
Weeks SC, Benvenuto C. 2008. Mate guarding in the androdioecious clam shrimp Eulimnadia texana: male assessment of hermaphrodite receptivity. Ethology 114: 64-74.
Weeks SC, Chapman EG, Rogers DC, Senyo DM, Hoeh WR. 2009. Evolutionary transitions among dioecy, androdioecy and hermaphroditism in limnadiid clam shrimp (Branchiopoda: Spinicaudata). Journal of Evolutionary Biology 22: 1781-1799.
Wheeler QD, Platnick NI. 2000. The phylogenetic species concept (sensu Wheeler and Platnick. In: Wheeler QD, Meier R, eds. Species concepts and phylogenetic theory. New York: Columbia University Press, 55-69.
Wiemers M, Fiedler K. 2007. Does the DNA barcoding gap exist? - A case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology 4: 8.
Wiens JJ, Penkrot TA. 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology 51: 69-91.
Wiley EO. 1981. Phylogenetics: the theory and practice of phylogenetic systematics. New York: John Wiley \& Sons.
Wiley EO, Mayden RL. 2000. The evolutionary species concept. In: Wheeler QD, Meier R, eds. Species concepts and phylogenetic theory. New York: Columbia University Press, 70-89.
Will KW, Mishler BD, Wheeler QD. 2005. The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54: 844-851.

[^0]: *Corresponding author.
 E-mail: martin.schwentner@uni-rostock.de

[^1]: Specimens are marked with an ' X ' if their claspers were studied. All individuals whose specimen numbers include ' P.' were deposited at the Australian Museum Sydney.

 BS, Bloodwood Station; COI, cytochrome c oxidase subunit I; EF1 α, elongation factor 1 α; MS, Muella Station; NSW, New South Wales; NT, Northern Territory; QLD, Queensland; RS, Rockwell Station; SA, South Australia; WA, Western Australia.

[^2]: n.a., not applicable; mf, movable finger.

 Variable among the claspers of single individuals.
 \dagger Variable among the scales of a single claspers.

