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Abstract—With the advent of electric mobility, new challenges
arise for car makers, utility companies, car sharing ventures,
and policy makers in planning, deployment, and management
of electric vehicle infrastructures. To this end, efficient systems
for the large scale acquisition, management, and analysis of
mobility and consumption data become an enabling factor. We
present a framework for collecting heterogeneous fleet-related
data to generate reports about vehicle and fleet usage. Using this
framework, we present an analysis of trips and charge intervals
from one year of telemetry data gathered from a subset of a pilot
electric vehicle fleet in northern Germany. We further investigate
which factors are associated with differences of relative levels of
energy usage per kilometer.

I. INTRODUCTION

For policy makers and companies with interest in electric
mobility, the uncertainty about how large fleets of electric
vehicles in use by end users will behave in terms of en-
ergy needed, regional distribution of charging points, vehicle
availability, and mileage represents a major impediment to
commit themselves to EV fleet investments. The prognosis
of usage statistics for the large scale deployment of electric
vehicles (EVs) remains a hen and egg problem: Reliable data
of EV user behavior can only be gathered by sufficiently large
fleets which remain risky investments if sufficient data for due
diligence work is not available. To address this problem, the
model region Bremen/Oldenburg, one of the eight EV model
regions in Germany, has installed a fleet trial in which private
and commercial users are given EVs and data is recorded from
the fleet. The long term goal of the model region includes the
prediction of the fleet’s energy storage capacity, which has
been suggested to be used as a means of stabilizing the power
grid for fluctuating renewable energy sources [1], [2], [3].

The data that is recorded during the fleet trial may provide
valuable information for car manufacturers and consumers,
since usual vehicle testing procedures follow standard driving
cycles (such as the NEDC or the FTP-75) and do not take
into account driving behavior influenced by the necessities of
electric mobility (e.g., state-of-charge, availability of charging
infrastructures, etc.). During the fleet trial it is expected that
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Fig. 1. Architecture of the data acquisition framework. EVs are fitted with
data loggers attached to the CAN bus that transmit data via a GPRS connection
to a server stack where data is parsed and consolidated in a data warehouse.
Parametrization of data loggers can be performed remotely (e.g., to configure
which CAN values are to be transmitted via the network).

actual usage patterns will generate additional insights into
operation parameters of EVs.

Other work has been carried out to evaluate the impact of
EVs on several aspects of the ecosystem, the economy, and
daily life itself using fleet trials. The Electric Power Research
Institute (EPRI) started a fleet trial of 60 GM Volt plug-in
hybrid EVs (PHEVs) in 2011, mainly to assess performance
and customer satisfaction [4]. There are other approaches that
focus on PHEVs in small scale trials [5], [6]. The REV Project
is a long-term fleet trial, focusing on standard cars that are
converted to EVs and the use of renewable energy sources
[7]. The Öko-Institut has analyzed a fleet trial at SAP AG
where a number of EVs are in use as part of the company’s
vehicle fleet. The analysis focuses mainly on CO2 reduction
that can potentially be achieved given different usage profiles
within a company’s vehicle fleet [8].

In the remainder of this paper, we will first give a brief
overview of the infrastructure for data acquisition and an
outline of what types of data are gathered. We will then present
the major preprocessing steps that are performed to simplify



the subsequent data analysis. Finally, we will describe the
actual analysis and some results that were obtained so far.

II. METHOD

A. Data Acquisition

Data acquisition protocols are usually designed to suit the
EV model type and research question at hand. However, the
EV product landscape is changing rapidly, as are the type
of questions asked while new research alliances are being
formed. We therefore advocate a different approach to EV
fleet data management. We present a solution that is mostly
agnostic of the vehicle type and can be used to record data
from heterogeneous EV fleets. Also, we aim to record as much
data as possible by tapping into the vehicles’ CAN bus and
consolidating the data in a central repository.

A stream model of data processing is then employed to
analyze the data with respect to specific research questions.
Here, we present an analysis of trip distances, battery charge
consumed per trip, and charging intervals.

The model region’s vehicle fleet comprises a heterogeneous
set of 44 vehicles including transporters, standard cars that
have been refitted for electric mobility, small series EVs, and
electric motorcycles. For the analysis of trips and charging
intervals presented here, we concentrated on a subset of 16
Think City vehicles. These cars were selected since charging
interval data was available for a full year at the time of writing.
After initial analysis, we excluded one vehicle from the data
set since no data from the speedometer was available (though
GPS-based speed readings were) leaving us with a total of 15
cars for the analysis of trips and charging intervals. For the
creation of road utilization maps we used data of the entire
fleet. The vehicles were given to private and business users
in the model region who gave written consent to the use of
their mobility data. The identity of the user for a lease period
was not revealed to the data analyst. No record was made of
drivers for individual trips.

The data set includes GPS position, vehicle speed, battery
parameters (current, voltage, temperature, state-of-charge),
static vehicle information, and status and control flags.
Weather data is also recorded from three weather stations
located inside the model region via the Yahoo! Weather web
service [9] and stored alongside the telemetry information.
Most of the data analyses that are presented in the following
are based on the GPS positions and the battery state-of-charge
values of the vehicles. However, the data that is available in
total provides the potential for an extended analysis of other
operational parameters as well.

To achieve this, all vehicles in the fleet are equipped with a
board computer designed for fleet management purposes. The
system is equipped with a custom-built firmware that enables
reading telemetry from the vehicles’ CAN bus and transmitting
the recorded raw data via a GPRS connection to a central
server stack where the data is decoded and consolidated.
Wireless communication is secured via a VPN tunnel to the
data center. The server stack consists of three virtualized
machines running on a blade center with attached storage.

Fig. 2. The three-layered database architecture that separates data at different
levels of abstraction.

Data is replicated from the data loggers’ gateway software
into a Postgres database where it is consolidated before raw
telemetry data is decoded. Fig. 1 gives a schematic overview
of the data acquisition infrastructure.

The database architecture consists of three layers named
RAW, PLAIN and SYN (see Fig. 2). On the lowest layer
(RAW), data that is collected from the vehicles is stored
directly without any conversions made. A process, which runs
simultaneously to the data acquisition itself, parses the data
records stored on the RAW level and converts these vehicle-
specific records into a homogeneous format. The results are
stored on the second level (PLAIN). For example, while on
the RAW level different vehicle models use different CAN
IDs to transmit speed readings from the speedometer, these
are mapped to the same ID signifying speedometer speed
readings on the PLAIN level. Reporting tools and data mining
applications can access this set of homogeneous data records,
perform their analysis and store the results on the third level
(SYN).

By using this three-layer bottom-up strategy, the raw data
collection is preserved in its original state, thus allowing for
later changes to the raw data decoder or the addition of
further steps of preprocessing. Furthermore, the generation
of homogeneous data structures on the PLAIN layer allows
analysis of data collected from different vehicle models in a
unified fashion independent of the specific native format in
which the corresponding data was encoded originally. If the
formatting on the lower levels changes, subsequent processing
applications can simply be re-run to update higher level
representations to the most recent state, e.g. in case of new
data sources being available on the PLAIN level, or in case
of new analysis tools for the SYN level.

B. Preprocessing

The entire preprocessing procedure serves two aims. As
explained in the previous section, the vehicle-specific data
needs to be converted into a homogeneous format. Second, the
available data needs to be sampled, transformed, and cleaned.
The second aspect will be addressed in this section.

1) Data Stream Generation: Data is exported from the
system as a sequence of triples containing timestamp, data
type identifier (e.g., for the telemetry stream: speed, latitude,
longitude, battery state-of-charge, etc.) and value (ti, σi, xi)
to the analysis tools. Timestamps need not be evenly spaced,
it is only guaranteed that ti ≤ ti+1 for two subsequent triples.



Algorithm 1: Route construction from GPS
Data: Stream of GPS positions
Result: List of edges in street graph
begin

Find the start of a trip;
p←first GPS point of the trip;
START ← all edges near p;
root← empty hypothesis;
Add all edges e ∈ START as successors of root;
TRIP ← empty list of edges;
while no end of trip detected do

Get the next GPS point p;
NE ← nearby edges of point p;
SH ← active hypotheses including an edge
e ∈ NE;
for all hypotheses h ∈ SH do

Add support to h recursively back to root;
Find adjacent edges in street graph;
Add these edges as successors to h;

while root has only one likely successor do
step← most likely successor of root;
Remove all other successors of root;
Add root to TRIP ;
root← step;

return TRIP ;
end

The nature of the stream-based approach allows for simple
merging of two separate streams and for the attachment of
more than one analysis tool to the same stream. For example,
one could add external data sources like weather data at a later
point in time and attach an additional module that gathers
weather statistics per trip. Note that while we are presently
exporting data streams from a consolidated database, stream-
based approaches that do not necessitate materialization of
all incoming data are an interesting prospect (see [10] for a
detailed overview on the potentials and the issues related to
stream-based approaches to data processing.)

Further, this approach adds the possibility of allowing future
online analysis of the EV fleet in operation, which could be
interesting for a number of real-time vehicle routing problems
(VRPs) on a fleet base (see [11] for an overview of VRPs).

2) Identification of Trips: Vehicle data is also logged while
the vehicle is standing. Therefore, it was necessary to perform
a trip identification procedure to be able to detect usage
intervals. Additionally, later analyses require knowledge of
the traveled distance during the trips, which is not available
from the CAN bus in the present case. To get a noise-free
representation of individual trips we did not directly use the
recorded GPS positions to construct the traveled path. Instead,
we constructed the trip indirectly by matching GPS positions
to a OSM-based road graph using the following algorithm
(making use of PostGIS and pgRouting [12], [13], [14]).

The core of this route construction module is Algorithm 1.

Fig. 3. Section of a trip’s GPS coordinates (gray dots) mapped onto the
road graph using our method (mapped edges are shown by dark gray line).
c© OpenStreetMap contributors, CC-BY-SA.

This approach allows to solve ambiguities between very close
or parallel road sections that could not be resolved with the
typically noisy GPS positions. It allows to produce connected
routes through the road graph even where very short road
sections are not directly confirmed by a GPS position.

First, the continuous stream of GPS positions is searched for
the possible start of a trip indicated by a major change in the
position for a number of consecutive points. Once the start of
a trip has been detected, all edges in the routing graph within a
predefined search radius from the starting position are selected.
Each of these is considered a candidate for the real start of
the trip and as such forms a hypothesis for the route that the
vehicle might have taken. The algorithm then continues by
recursively “predicting” the possible course for each currently
active hypothesis for a defined minimum distance ahead. At
each junction in the routing graph, a hypothesis is split into
several ones, each one marking a new possible route. When the
prediction is completed, the algorithm continues by selecting
all edges near the next GPS position. These edges are then
given a certain support value which is back-propagated to all
hypotheses that lead to this edge. If a hypothesis has gained
significantly more support than all of its competitors, it is
accepted and all competing hypotheses are dropped. This is
continued until the end of the trip is found, when there is no
further change in the GPS position for a certain amount of
time.

Fig. 3 shows an example for a trip that was constructed
using this algorithm. The dots mark the recorded GPS posi-
tions and the line represents the edges of the routing graph
that positions were matched to.

The module for trip detection described above generates a
stream of triples that mark entry and exit of routing graph
edges, trip start and end, and trip distance calculated from the
OpenStreetMap road graph.

C. Data Analysis

The analysis modules that were attached to the generated
streams are described below. For the analysis of trips and
charging intervals the vehicle telemetry stream was merged
with the stream of reconstructed trip data.

1) Road Utilization Statistics: On the basis of the trip data
we generated a road utilization map that allows to determine



Fig. 4. Part of the road utilization map of the model region for the initial
year of operation. The thickness of road segments indicates the frequency of
road utilization. Map data c© OpenStreetMap contributors, CC-BY-SA

the frequency by which each road segment was actually used
by the entire fleet (see Fig. 4). This is valuable information,
e.g., for traffic planning or for determining optimal locations
for charging points.

2) Trip Statistics: Another module was attached to the
stream to generate statistics on the basis of the detected trips,
such as battery state-of-charge, trip start and end time, and
flags indicating which road segment the vehicle was traveling
on. The trip length was calculated using the accumulated edge
lengths covered in the road graph.

The state-of-charge is an indicator for the actual charge of
the battery. It is a dimensionless number [0, 1] as displayed on
the cars’ dashboard rather than a physical measure of battery
capacity. While the latter is valuable information for energy
planning, the battery state-of-charge value is important to EV
users as they have to rely on this measure to assess whether
there is sufficient charge left for a planned trip.

Let E be the index set of all edges of the road graph. For
the purpose of our analysis, we defined a (trip) leg l as being
a sequence of n (trip) segments l = (s1, . . . , sn) with si =
(e, tenter, texit) where e ∈ E is the specific edge identifier,
and tenter and texit the timestamps when the vehicle entered
and left the specific road segment.

While the length of a trip segment si is given by the length
d(ei) of the specific edge of the road graph, we defined the
distance of a leg as the sum of the lengths of its segments
d(l) = Σnl

i d(ei).
The state-of-charge difference of a (trip) leg δSOC(l) was

defined to be the difference between the first and the last state-
of-charge value recorded while the vehicle was visiting the
leg’s road segments. We applied a moving window median
to the values of the state-of-charge to reduce the influence of
noise effects. On the basis of these definitions we defined the
state-of-charge usage of a (trip) leg l as the state-of-charge
difference per covered distance of the leg

Ul =
δl(SOC)

d(l)
.

A trip is a leg where the vehicle is standing before the
first and after the last trip segment with a certain maximum
standing time allowed during the trip.

Fig. 5. Aggregated vehicle usage over the course of a day. The y-axis shows
the number of trips that fell into the specific time frame. Contributions by
individual vehicles are color-coded.

Analogous to trip legs and trip segments, route legs and
route segments designate the corresponding edges of the road
graph without timestamps indicating when they were entered
and exited.

Trip detection was performed to assess the distribution of
trip durations and covered distances.

3) Identification of Charging Intervals: A module was
attached to the stream that gathers statistics on the charging
intervals (such as start and stop times). A charging interval
was defined to start whenever the measured battery current as
reported by the vehicles’ energy management system was neg-
ative. Note that this definition includes recuperation happening
during driving.

III. RESULTS

A. Trip Statistics

We detected a total number of 5505 trips in the initial year
of operation that covered a minimum distance of dmin = 1 km
and had no significant gaps in telemetry coverage (max 60s).
Interestingly, although the vehicle model has a range of well
over 100km, most trips were very short as can be seen in
Fig. 6 (top). Despite this, the majority of trips was started
with highly charged batteries, although battery capacity would
have allowed to recharge the vehicles less often as can be seen
in Fig. 6 (bottom). There seems to be a linear relationship
between trip distance (as calculated from the road graph)
and Utrip (R2 = 0.946). We found that the spread of state-
of-charge differences per traveled kilometer was significantly
higher when distances were calculated from GPS positions
alone (data not shown; R2 = 0.441) as we calculated on
a subset of data (n = 3855). This indicates that using GPS
positions alone to measure total trip length leads to less
accurate results. We therefore plan to integrate these findings
into a road planner for the model region that can show the
user the expected range on the road graph given his vehicles
current charge.

We also analyzed vehicle usage over the course of a day
(Fig. 5) and could for the first time characterize the usage
profile of our fleet. The profile indicates two usage peaks
consistent with rush hours in the region.



Fig. 6. Trip statistics. Each point in the scatter plot represents a trip. The battery state-of-charge at the start of the trip is color-coded. The upper charts show
histograms of duration (left) and covered distance (right) of the recorded trips.

X rX,Utrip

Mean speed 0.171
Trip duration 0.080
Trip distance 0.112
Battery temperature 0.101

TABLE I
PEARSON’S CORRELATION COEFFICIENTS OF TRIP ATTRIBUTES AND

STATE-OF-CHARGE USAGE Utrip (TWO-TAILED P-VALUE < 0.001 FOR
ALL X, N = 5505).

As can be seen in Fig. 6, the relative state-of-charge
differences are not constant per traveled kilometer. This is
unfavorable since the remaining state-of-charge value is used
as an indicator by the vehicle user to determine if there is
sufficient charge available for a certain trip of known distance.
We were thus interested if the observed variability is due to
measurement noise or can be attributed to other factors that
can be taken into account to make more accurate estimates of
Utrip.

To demonstrate the flexibility of the system, we compiled
a list of possible external factors that are expected to have an
influence on the state-of-charge usage. We then calculated the
correlation of each factor and the state-of-charge usage per
trip. We found mean speed to be most strongly correlated to
the state-of-charge usage per trip as can be seen in Table I.

Note that while this is a simple analysis, it can be further
segmented by additional information that is contained in the
stream as well (e.g., road segments, lending intervals, wind and
weather conditions). Future work will describe correlations

Fig. 7. Histogram of charge interval durations. Note the log-scale in the
upper left panel.

and possible interactions between attributes in order to find
those that can be used to predict state-of-charge usage for a
planned trip most accurately.

B. Charging Intervals

We detected over 420.000 battery charging intervals. Fig. 7
gives an overview of the distribution of interval durations. Note
there seem to be three peaks in the distribution of charge
interval durations. While the first peak between 0s and 2s
can be explained by recuperation charging during vehicle
deceleration, the charging intervals between 20s and 1min
remain to be explained. We plan to use time series knowledge
mining for the characterization of these intervals (see outlook).



Fig. 8. Aggregated charge interval coverage over the course of a day. The
y-axis shows the number of charge intervals that fell into the specific time
frame. Contributions by individual vehicles are color-coded.

Fig. 8 shows charge interval coverage (minimum duration
10min) over the course of the day.

IV. CONCLUSION

We presented a system for large scale recording, integration,
and analysis of data from heterogeneous EV fleets. Using a
stream-based approach, analysis tools and data sources can
be easily added to the setup to extract and aggregate relevant
information from the recorded telemetry data. We presented
a number of approaches to such analyses, specifically road
utilization statistics, the segmentation and construction of
individual trips within the data stream, and the computation of
statistics about the vehicles operational parameters (for both
charging and trip intervals). We showed that calculation of trip
distances from the road graph rather than directly from GPS
positions yields more robust distance estimates when mileage
readings are not available via telemetry.

V. FUTURE DIRECTIONS

Future modules will allow analysis of discharging coef-
ficients for individual route segments to build accurate and
model-specific EV range planners. Further studies will have
to elucidate whether the availability of such planners can help
strengthen users confidence in taking EVs for longer trips.

We are also planning to use the available weather data to
more thoroughly assess the effects of temperature, wind speed,
and direction on the possible range.

We are also integrating modules for mining temporal
patterns to aid in the discovery of user or user group-
specific mobility patterns using Time Series Knowledge Min-
ing (TSKM) [15].
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vehicle fleets],” Öko-Institut e.V., Tech. Rep., 2011, (in German).

[9] Yahoo! Weather, http://weather.yahoo.com/, accessed: 2011-10-14.
[10] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models

and issues in data stream systems,” in Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, ser. PODS ’02. New York, NY, USA: ACM, 2002, pp. 1–16.
[Online]. Available: http://doi.acm.org/10.1145/543613.543615

[11] G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno, “Real-time
vehicle routing: Solution concepts, algorithms and parallel computing
strategies,” European Journal of Operational Research, no. 1, pp. 1–11,
2003.

[12] OpenStreetMap, http://www.openstreetmap.org/, accessed: 2011-10-14.
[13] PostGIS, http://postgis.refractions.net/, accessed: 2011-10-14.
[14] pgRouting, http://www.pgrouting.org/, accessed: 2011-10-14.
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