Martin Magnusson

Martin Magnusson
Örebro University | oru · Center for Applied Autonomous Sensor Systems (AASS)

PhD in computer science

About

124
Publications
65,519
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,731
Citations
Additional affiliations
January 2015 - present
Örebro University
Position
  • SmokeBot
Description
  • www.smokebot.eu
May 2012 - June 2015
Örebro University
Position
  • ALLO
Description
  • Autonomous Long-term Load-haul-dump Operations
April 2009 - March 2012
Örebro University
Position
  • ALL-4-eHAM
Description
  • Fully Autonomous WheeL Loaders for efficient HAndling of Heterogeneous Materials
Education
September 1997 - February 2004
Uppsala University
Field of study
  • Computer science

Publications

Publications (124)
Article
Full-text available
This work introduces a novel detector, bounded false-alarm rate (BFAR), for distinguishing true detections from noise in radar data, leading to improved accuracy in radar odometry estimation. Scanning frequency-modulated continuous wave (FMCW) radars can serve as valuable tools for localization and mapping under low visibility conditions. However,...
Article
We present a new large dataset of indoor human and robot navigation and interaction, called THÖR-MAGNI, that is designed to facilitate research on social human navigation: for example, modeling and predicting human motion, analyzing goal-oriented interactions between humans and robots, and investigating visual attention in a social interaction cont...
Preprint
Full-text available
Maps of dynamics are effective representations of motion patterns learned from prior observations, with recent research demonstrating their ability to enhance performance in various downstream tasks such as human-aware robot navigation, long-term human motion prediction, and robot localization. Current advancements have primarily concentrated on me...
Article
Robots and other intelligent systems navigating in complex dynamic environments should predict future actions and intentions of surrounding agents to reach their goals efficiently and avoid collisions. The dynamics of those agents strongly depends on their tasks, roles, or observable labels. Class-conditioned motion prediction is thus an appealing...
Preprint
Full-text available
The human gaze is an important cue to signal intention, attention, distraction, and the regions of interest in the immediate surroundings. Gaze tracking can transform how robots perceive, understand, and react to people, enabling new modes of robot control, interaction, and collaboration. In this paper, we use gaze tracking data from a rich dataset...
Preprint
Full-text available
This paper motivates and describes the THÖR-MAGNI dataset: a collection of human motion data aligned with eye tracking data and robot sensor data. Submitted to The International Journal of Robotics Research (IJRR) on 28 of February 2024.
Preprint
Full-text available
RadaRays allows for the accurate modeling and simulation of rotating FMCW radar sensors in complex environments, including the simulation of reflection, refraction, and scattering of radar waves. Our software is able to handle large numbers of objects and materials, making it suitable for use in a variety of mobile robotics applications. We demonst...
Conference Paper
Autonomous systems, that need to operate in human environments and interact with the users, rely on understanding and anticipating human activity and motion. Among the many factors which influence human motion, semantic attributes, such as the roles and ongoing activities of the detected people, provide a powerful cue on their future motion, action...
Conference Paper
Full-text available
Human motion prediction is important for mobile service robots and intelligent vehicles to operate safely and smoothly around people. The more accurate predictions are, particularly over extended periods of time, the better a system can, e.g., assess collision risks and plan ahead. In this paper, we propose to exploit maps of dynamics (MoDs, a clas...
Article
Full-text available
Robotic mapping provides spatial information for autonomous agents. Depending on the tasks they seek to enable, the maps created range from simple 2D representations of the environment geometry to complex, multilayered semantic maps. This survey article is about maps of dynamics (MoDs), which store semantic information about typical motion patterns...
Preprint
Full-text available
Robots are increasingly used in shared environments with humans, making effective communication a necessity for successful human-robot interaction. In our work, we study a crucial component: active communication of robot intent. Here, we present an anthropomorphic solution where a humanoid robot communicates the intent of its host robot acting as a...
Preprint
Full-text available
Human motion prediction is essential for the safe and smooth operation of mobile service robots and intelligent vehicles around people. Commonly used neural network-based approaches often require large amounts of complete trajectories to represent motion dynamics in complex semantically-rich spaces. This requirement may complicate deployment of phy...
Article
Full-text available
Robust SLAM in large-scale environments requires fault resilience and awareness at multiple stages, from sensing and odometry estimation to loop closure. In this work, we present TBV (Trust But Verify) Radar SLAM, a method for radar SLAM that introspectively verifies loop closure candidates. TBV Radar SLAM achieves a high correct-loop-retrieval rat...
Preprint
Full-text available
Robust SLAM in large-scale environments requires fault resilience and awareness at multiple stages, from sensing and odometry estimation to loop closure. In this work, we present TBV (Trust But Verify) Radar SLAM, a method for radar SLAM that introspectively verifies loop closure candidates. TBV Radar SLAM achieves a high correct-loop-retrieval rat...
Article
Current intralogistics services require keeping up with e-commerce demands, reducing delivery times and waste, and increasing overall flexibility. As a consequence, the use of automated guided vehicles (AGVs) and, more recently, autonomous mobile robots (AMRs) for logistics operations is steadily increasing.
Preprint
Full-text available
This paper presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments -- outdoors, from urban to woodland, and indoors in warehouses and mines - without changing parameters. Our method integrates motion compensation...
Article
Full-text available
Robots operating with humans in highly dynamic environments need not only react to moving persons and objects but also to anticipate and adhere to patterns of motion of dynamic agents in their environment. Currently, robotic systems use information about dynamics locally, through tracking and predicting motion within their direct perceptual range....
Preprint
Full-text available
Rapid development of social robots stimulates active research in human motion modeling, interpretation and prediction, proactive collision avoidance, human-robot interaction and co-habitation in shared spaces. Modern approaches to this end require high quality datasets for training and evaluation. However, the majority of available datasets suffers...
Article
Identifying the environment’s structure, through detecting core components such as rooms and walls, can facilitate several tasks fundamental for the successful operation of indoor autonomous mobile robots, including semantic environment understanding. These robots often rely on 2D occupancy maps for core tasks such as localisation and motion and ta...
Preprint
Full-text available
Robust perception is an essential component to enable long-term operation of mobile robots. It depends on failure resilience through reliable sensor data and preprocessing, as well as failure awareness through introspection, for example the ability to self-assess localization performance. This paper presents CorAl: a principled, intuitive, and gene...
Article
This paper presents CorAl: a principled, intuitive, and generalizable method to measure the quality of alignment between pairs of point clouds, which learns to detect alignment errors in a self-supervised manner. CorAl compares the differential entropy in the point clouds separately with the entropy in their union to account for entropy inherent to...
Preprint
Full-text available
Identifying the environment's structure, i.e., to detect core components as rooms and walls, can facilitate several tasks fundamental for the successful operation of indoor autonomous mobile robots, including semantic environment understanding. These robots often rely on 2D occupancy maps for core tasks such as localisation and motion and task plan...
Article
This article presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments—outdoors, from urban to woodland, and indoors in warehouses and mines—without changing parameters. Our method integrates motion compensation wit...
Conference Paper
Full-text available
This paper presents an accurate, highly efficient and learning free method for large-scale radar odometry estimation. By using a simple filtering technique that keeps the strongest returns, we produce a clean radar data representation and reconstruct surface normals for efficient and accurate scan matching. Registration is carried out by minimizing...
Preprint
Full-text available
This paper presents an efficient and accurate radar odometry pipeline for large-scale localization. We propose a radar filter that keeps only the strongest reflections per-azimuth that exceeds the expected noise level. The filtered radar data is used to incrementally estimate odometry by registering the current scan with a nearby keyframe. By model...
Preprint
Full-text available
This paper presents a new detector for filtering noise from true detections in radar data, which improves the state of the art in radar odometry. Scanning Frequency-Modulated Continuous Wave (FMCW) radars can be useful for localization and mapping in low visibility, but return a lot of noise compared to (more commonly used) lidar, which makes the d...
Article
Full-text available
This paper presents a efficient and accurate radar odometry pipeline for large-scale localization. We propose a radar filter that keeps only the strongest reflections per-azimuth that exceeds the expected noise level. The filtered radar data is used to incrementally estimate odometry by registering the current scan with a nearby keyframe. By modeli...
Preprint
Full-text available
In robotics perception, numerous tasks rely on point cloud registration. However, currently there is no method that can automatically detect misaligned point clouds reliably and without environment-specific parameters. We propose "CorAl", an alignment quality measure and alignment classifier for point cloud pairs, which facilitates the ability to i...
Preprint
Full-text available
This paper presents the accurate, highly efficient, and learning-free method CFEAR Radarodometry for large-scale radar odometry estimation. By using a filtering technique that keeps the k strongest returns per azimuth and by additionally filtering the radar data in Cartesian space, we are able to compute a sparse set of oriented surface points for...
Article
Full-text available
We consider the problem of calibrating range measurements of a lidar sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration proc...
Preprint
Full-text available
We consider the problem of calibrating distance measurement of Light Detection and Ranging (lidar) sensor without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environm...
Book
This book describes how robots can make sense of motion in their surroundings and use the patterns they observe to blend in better in dynamic environments shared with humans. The world around us is constantly changing. Nonetheless, we can find our way and aren’t overwhelmed by all the buzz, since motion often follows discernible patterns. Just like...
Preprint
Full-text available
We propose a method for measuring how well each point in an indoor 2D robot map agrees with the underlying structure that governs the construction of the environment. This structure scoring has applications for, e. g., easier robot deployment and Cleaning of maps. In particular, we demonstrate its effectiveness for removing clutter and artifacts fr...
Chapter
The key idea of modelling flow of discrete objects is to capture the way they move through the environment. One method to capture the flow is to observe changes in occupancy caused by the motion of discrete objects. In this chapter, we present a method to model and learn occupancy shifts caused by an object moving through the environment. The key i...
Chapter
The task of building maps of dynamics is the key focus of this book, as well as how to use them for motion planning. In this chapter, we present a categorisation and overview of different types of maps of dynamics. Furthermore, we give an overview of approaches to motion planning in dynamic environments, with a focus on motion planning over maps of...
Chapter
Maps of dynamics can be beneficial for motion planning. Information about motion patterns in the environment can lead to finding flow-aware paths, allowing robots to align better to the expected motion: either of other agents in the environment or the flow of air or another medium. The key idea of flow-aware motion planning is to include adherence...
Chapter
The shared feature of the flow of discrete objects and continuous media is that they both can be represented as velocity vectors encapsulating direction and speed of motion. In this chapter, we present a method for modelling the flow of discrete objects and continuous media as continuous Gaussian mixture fields. The proposed model associates to eac...
Conference Paper
Full-text available
This paper proposes a novel approach for global localisation of mobile robots in large-scale environments. Our proposed method leverages learning-based localisation and filtering-based localisation, to localise the robot efficiently and precisely through seeding Monte Carlo Localisation (MCL) with deep learned distribution. In particular, a fast lo...
Preprint
Full-text available
This paper proposes a novel approach for global localisation of mobile robots in large-scale environments. Our proposed method leverages learning-based localisation and filtering-based localisation, to localise the robot efficiently and precisely through seeding Monte Carlo Localisation (MCL) with deep learned distribution. In particular, a fast lo...
Article
Full-text available
Warehouse logistics is a rapidly growing market for robots. However, one key procedure that has not received much attention is the unwrapping of pallets to prepare them for objects picking. In fact, to prevent the goods from falling and to protect them, pallets are normally wrapped in plastic when they enter the warehouse. Currently, unwrapping is...
Article
Full-text available
We present a method for matching sketch maps to a corresponding metric map, with the aim of later using the sketch as an intuitive interface for human–robot interactions. While sketch maps are not metrically accurate and many details, which are deemed unnecessary, are omitted, they represent the topology of the environment well and are typically ac...
Article
Full-text available
In many applications of autonomous mobile robots, the following problem is encountered. Two maps of the same environment are available, one a prior map and the other a sensor map built by the robot. To exploit the available information in both maps to the full capacity, the robot must find the correct association between the frames of the input map...
Article
Full-text available
Simultaneous Localization And Mapping (SLAM) usually assumes the robot starts without knowledge of the environment. While prior information, such as emergency maps or layout maps, is often available, integration is not trivial since such maps are often out of date and have uncertainty in local scale. Integration of prior map information is further...
Article
Full-text available
We propose a method based on a non-linear transformation for non-rigid alignment of maps of different modalities, exemplified with matching partial and deformed 2D maps to layout maps. For two types of indoor environments, over a data-set of 40 maps, we have compared the method to state-of-the-art map matching and non-rigid image registration metho...
Article
Full-text available
The availability of environment maps for autonomous robots enables them to complete several tasks. A new IEEE standard, IEEE 1873-2015, Robot Map Data Representation for Navigation (MDR) [15], sponsored by the IEEE Robotics and Automation Society (RAS) and approved by the IEEE Standards Association Standards Board in September 2015, defines a commo...
Article
Full-text available
Environment monitoring remains a major challenge for mobile robots, especially in densely cluttered or highly populated dynamic environments, where uncertainties originated from environment and sensor significantly challenge the robot's perception. This paper proposes an effective occupancy filtering method called the dual probability hypothesis de...
Article
Full-text available
Matching and merging overlapping point clouds is a common procedure in many applications, including mobile robotics, three-dimensional mapping, and object visualization. However, fully automatic point-cloud matching, without manual verification, is still not possible because no matching algorithms exist today that can provide any certain methods fo...
Article
Full-text available
How to divide floor plans or navigation maps into a semantic representation, such as rooms and corridors, is an important research question in fields such as human-robot interaction, place categorization, or semantic mapping. While most algorithms focus on segmenting robot built maps, those are not the only types of map a robot, or its user, can us...
Conference Paper
Full-text available
Local scan registration approaches commonly only utilize ego-motion estimates (e.g. odometry) as an initial pose guess in an iterative alignment procedure. This paper describes a new method to incorporate ego-motion estimates, including uncertainty, into the objective function of a registration algorithm. The proposed approach is particularly suite...