
Martin HassellövUniversity of Gothenburg | GU · Department of Marine Sciences
Martin Hassellöv
Professor
About
99
Publications
52,302
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,463
Citations
Citations since 2017
Introduction
Martin Hassellöv research focus on marine pollution in its solid form, from nanometer scale to macro litter and impact at the ecosystem level. The marine environmental nanochemistry group are active in developing novel correlative microscopy platforms and workflows including Light, electron, confocal laser and infrared microscope probing of the same particles. Dedicated tools for nanomaterials of both inorganic and polymer origins are also developed and applied for environmental forensic studies
Additional affiliations
July 2013 - June 2015
Publications
Publications (99)
Microplastics in the marine environment have been the focus of intense research recently, however little attention has been given to boat paint sources, despite its direct influence on the marine ecosystem. This is largely due to the lack of established analytical methods. Microplastics from boating sources may originate from antifouling paints on...
The ubiquitous occurrence of anthropogenic particles, including microplastics in the marine environment, has, over the last years, gained worldwide attention. As a result, many methods have been developed to estimate the amount and type of microplastics in the marine environment. However, there are still no standardized protocols for how different...
Herein we report on a deep-learning method for the removal of instrumental noise and unwanted spectral artifacts in Fourier transform infrared (FTIR) or Raman spectra, especially in automated applications in which a large number of spectra have to be acquired within limited time. Automated batch workflows allowing only a few seconds per measurement...
Fragmentation of macroplastics into microplastics in the marine environment is probably one of the processes that have generated most drive for developing the microplastics research field. Thus, it is surprising that the level of scientific knowledge on the combinative effect of oxidative degradation and mechanical stressors on fragmentation is rel...
Coastal seas and oceans receive engineered nanoparticles that are released from nano-enabled consumer and industrial products and incidental nanoparticles that are formed as byproducts of combustion and friction. The marine environment is often perceived as a rapid sink for particles, because of the high salinity promoting the attachment between pa...
Human activities leave traces of marine litter around the globe. The Arctic is, despite its remoteness, emerging as an area of no exception to this environmental issue. Arctic sea ice has previously been found to constitute a temporal sink of microplastics, but the potential release and subsequent fate of microplastics in the marine environment are...
A realistic risk assessment of microplastic pollution must stand on representative data on the abundance, size distribution and chemical composition of polymers. Infrared spectroscopy is an indispensable tool for the analysis of microplastics (<5 mm). Spectral imaging, which provides simultaneous measurement of spatial (e.g., particle morphology) a...
Owing to the development and adoption of a variety of methods for sampling and identifying microplastics, there is now data showing the presence of microplastics in surface waters from all over the world. The difference between the methods, however, hampers comparisons, and to date, most studies are qualitative rather than quantitative. In order to...
Heteroaggregation of engineered nanoparticles (ENPs) with suspended particulate matter (SPM) ubiquitous in natural waters often dominates the transport behaviour and overall fate of ENPs in aquatic environments. In order to provide meaningful exposure predictions and support risk assessment for ENPs, environmental fate and transport models require...
The ubiquitous occurrence of microplastics and other
synthetic anthropogenic micro-sized particles in the marine
environment has over the past decade gained substantial
worldwide attention. This has resulted in the development
of numerous methods to estimate the amount and type of
microplastics present in different marine habitats (Hildago-
Ruz et...
Microplastics and other types of microlitter, such as paraffin, are found in environmental samples all over the world. Most of the studies have sampled surface waters, which have given us important insights on prevalence and transport. Due to the high turnover time associated with surface water samples and the often low number of particles obtained...
Standardized methods for the digestion of biota for microplastic analysis are currently lacking. Chemical methods can be effective, but can also cause damage to some polymers. Enzymatic methods are known to be gentler, but often laborious, expensive and time consuming. A novel tissue digestion method with pancreatic enzymes and a pH buffer (Tris) i...
This report was the product of a GESAMP Working Group, consisting of 15 independent experts based in North America, South America, Asia, Africa, Europe and Australasia. The report was edited by Kershaw, Turra and Galgani. It with provides recommendations to encourage a more harmonised approach to the monitoring and assessment of plastic litter, inc...
The accumulation of plastic litter in natural environments is a global issue. Concerns over potential negative impacts on the economy, wildlife, and human health provide strong incentives for improving the sustainable use of plastics. Despite the many voices raised on the issue, we lack a consensus on how to define and categorize plastic debris. Th...
Microlitter consists of minute particles of anthropogenic or processed natural material. The project brings together research groups to conduct specific case studies in gradients from near urban sources such as the traffic environment and cities to the coastal water and sediments in order to study the relative occurrence of specific sources and the...
Polyethylene is a commonly used polymer in plastic products and is often found as marine litter. Nevertheless there is limited knowledge about what happens to the material when it ends up in the sea. Polyethylene films were therefore thermally oxidised to four different levels of degradation. The films were then placed in stainless-steel cages in t...
Sampling and analyzing microplastics (MPs) comes with a unique set of challenges and currently a wide variety of methods are developed and applied. In order to facilitate future environmental monitoring we compared two methods that are often used for sampling MPs >300 μm; a manta trawl and a filtering pump. Six replicates per method were taken duri...
Polar oceans, though remote in location, are not immune to the accumulation of plastic debris. The present study, investigated for the first time, the abundance, distribution and composition of microplastics in sub-surface waters of the Arctic Central Basin. Microplastic sampling was carried out using the bow water system of ice-breaker Oden (singl...
The full report is available in Swedish at:
http://www.lansstyrelsen.se/VastraGotaland/Sv/publikationer/2018/Pages/2018-28.aspx
Particles of all origins (biogenic, lithogenic, as well as anthropogenic) are fundamental components of the coastal ocean and are re-distributed by a wide variety of transport processes at both horizontal and vertical scales. Suspended particles can act as vehicles, as well as carbon and nutrient sources, for microorganisms and zooplankton before e...
Plastic preproduction pellets are found in environmental samples all over the world and their presence is often linked to spills during production and transportation. To better understand how these pellets end up in the environment we assessed the release of plastic pellets from a polyethylene production site in a case study area on the Swedish wes...
Measurements of microplastics in biota and abiotic matrices are key elements of exposure and risk assessments for this emerging environmental pollutant. We investigated the abundance of microplastics in field-collected biota, sediment and water. An improved sediment extraction method, based on density separation was developed. For analysis of micro...
The quantities of engineered nanoparticles (NP) released to the environment are often influenced by their fate in waste water treatment plants (WWTP). Here, 40 nm silver NP (AgNP) were spiked into a mesocosm simulating the process used at a major municipal WWTP. The evolution of the mass distributions and number concentrations were followed by fast...
EXECUTIVE SUMMARY
PURPOSE OF THIS REPORT
Plastic waste that ends up in the oceans as marine litter is a tangible and urgent environmental pressure reaching even the most remote parts of the global oceans. It impacts marine life from plankton to whales and turtles to albatrosses. Public awareness on how the modern lifestyle and the use of plastics i...
Engineered nanoparticles released into the environment may interact with natural organic matter (NOM). Surface complexation affects the surface potential, which in turn may lead to aggregation of the particles. Aggregation of synthetic TiO2 (anatase) nanoparticles in aqueous suspension was investigated at pH 2.8 as a function of time in the presenc...
Gold nanoparticles (AuNP) possess unique characteristics that render them adequate for applications and also to be used as a model NP to evaluate the fate and behavior at low NP concentrations due to the ease of detection by modern analytical techniques. Moreover, AuNP may result in some negative effects in the environment and there is a necessity...
Silver nanoparticles (AgNP) are highly used worldwide, which will most likely lead to their release to the environment and subsequently increase environmental concentrations. Therefore studying AgNPs' deleterious effects to organisms is crucial to understand their environmental impacts. The freshwater snail Physa acuta was chosen to evaluate the po...
There is a need for different levels of model systems for effect studies of engineered nanoparticles and the development of nanoparticle structure-activity relationships in biological systems. Descriptors for nanoparticles based on their interactions in molecular model systems may become useful to predict toxicological responses of the nanoparticle...
Environmental exposure modeling has been used extensively in the last years to obtain estimates of environmental concentrations of engineered nanomaterials (ENMs). In this perspective piece, we explore the issues when aiming to validate modeled environmental concentrations and propose options for both modelers and analytical chemists on how to proc...
The applicability of single particle inductively coupled plasma mass spectrometry (spICPMS) is currently limited to particles larger than ~ 10 nm in diameter. In this work the size detection limit (DLs) was improved by resolving the ion bursts originating from silver or gold nanoparticles (AgNP, AuNP) using real time data acquisition with 0.1 ms ti...
The large-scale use of titanium dioxide nanoparticles (nano-TiO2) in consumer and industrial applications raised environmental health and safety concerns. Potentially impacted ecosystems include estuarine and coastal organisms. Results from ecotoxicological studies with nano-TiO2 dispersed in salt exposure media are difficult to interpret due to fa...
The widespread use of engineered nanomaterials (ENMs) in a variety of technologies and consumer products inevitably causes their release into aquatic environments and final deposition into the oceans. In addition, a growing number of ENM products are being developed specifically for marine applications, such as antifouling coatings and environmenta...
There can be a large variation in the measured diameter of nanoparticles depending on which method is used. In this work, we have strived to accurately determine the mean particle diameter of 30-40 nm colloidal silica particles by using six different techniques. A quantitative agreement between the particle size distributions was obtained by scanni...
The fundamental properties and processes that govern nanoparticle behavior in colloidal dispersions are critical to predict their performance in applications and also their environmental and health implications. Illite is a platy clay mineral that is present in large amounts in aquatic environments and can be used as a model natural particle for en...
The effects of biopolymeric (alginate) and refractory macromolecules (humic and fulvic acids) on the aggregation kinetics of anatase titanium dioxide (titania) nanoparticles were evaluated. The particles were synthesized using a wet-chemical method based on the hydrolysis of TiCl4. Stable suspensions of positively-charged titania were obtained at p...
The interpretation of nanoparticle toxicity data in soils is currently impeded by the lack of methods capable of characterising particles in situ. To draw relevant and accurate conclusions it would be desirable to characterise particle sizes, agglomeration state and number concentrations. In this article, methodologies for imaging nanoparticles in...
http://www.ttl.fi/en/publications/Electronic_publications/Nanosafety_in_europe_2015-2025/Documents/nanosafety_2015-2025.pdf
Single particle ICP-MS (spICP-MS) analysis of inorganic nanoparticles (NPs) cannot accurately distinguish dissolved ion signals and signals from relatively small NPs, although these particles are often more reactive than their larger counterparts. A signal deconvolution method was developed for spICP-MS analysis using gold (Au) NPs of nominally 10,...
The current production and use of nanomaterials in consumer products have increased the concern about the possibility that these enter the rivers during their entire life cycle. Further, many aquatic contaminants undergo partitioning to the ubiquitous aquatic colloids. Here is presented the development of a set of European water types for environme...
Nanominerals and mineral nanoparticles from a mining-contaminated river system were examined to determine their potential to co-transport toxic trace metals. A recent large-scale dam removal project on the Clark Fork River in western Montana (USA) has released reservoir and upstream sediments contaminated with toxic trace metals (Pb, As, Cu and Zn)...
The detection capabilities of single particle inductively coupled plasma-mass spectrometry (spICPMS) with respect to particle size and number concentrations are investigated for the case of silver nanoparticles (ca. 20-80 nm). An iterative algorithm was developed where particle measurement events were distinguished as outliers from the more continu...
Recent studies demonstrate that volcanic ash has the potential to increase phytoplankton biomass in the open ocean. However, besides fertilizing trace metals such as Fe, volcanic ash contains a variety of potentially toxic metals such as Cd, Cu, Pb, and Zn. Especially in coastal regions closer to the volcanic eruption, where ash depositions can be...
View Large Image | View Hi-Res Image | Download PowerPoint SlideIn vitro characterization of nanoparticles with respect to their interactions with biomolecules is becoming increasingly important due to the rapid development of novel applications for nanomaterials, both in nanomedical contexts as well as in various consumer products. Commonly, nanop...
Nanoparticles of controlled size, well defined shape, pure phase and of clean surfaces are ideal model systems to investigate surface/interfacial reactions. In this study we have explored the possibility of synthesizing TiO2 nanoparticles in the size range of 7–20nm under well controlled experimental conditions. A simple method based on the hydroly...
Aqueous dispersions of titania nanoparticles are shown to yield collective diffusion coefficients in dynamic light-scattering measurements that depend nonlinearly on particle concentration under dilute conditions. From theory, one expects a linear dependence for monodisperse systems except for strongly interacting charged particles in low ionic str...
The increasing number of nanomaterial based consumer products raises concerns about their possible impact on the environment. This study provides an assessment of the effluent from a commercially available silver nanowashing machine. The washing machine released silver in its effluent at an average concentration of 11μgL(-1), as determined by induc...
The manufacture of nanoparticles (NPs) and nanomaterial-based products is rapidly increasing and their possible occurrence in environment, food or biological tissue is becoming of concern for ecological and human health. However, there is a lack of suitable methods to analyze and to characterize NPs in low concentrations in complex matrixes. We com...
Managing the potential environmental risks of nanoparticles requires methods to link nanoparticle properties with macro-scale risks. This study outlines challenges in exposure modeling of nanoparticles in aquatic environments, such as the role of natural organic matter, natural colloids, fractal dimensions of agglomerates, coatings and doping of pa...
Cu is a major active component in anti-fouling paints, which may reach toxic levels in areas with intense boat traffic and therefore is a metal of environmental concern. The bioavailability of metals is influenced by factors such as salinity and organic matter measured as total organic carbon (TOC). The influence of these two factors was studied, w...
Nanoparticles are already widely used in technology, medicine and consumer products, but there are limited data on their effects on the aquatic environment. In this study the uptake and effect of citrate (AgNP(CIT)) and polyvinylpyrrolidone (AgNP(PVP)) coated manufactured silver nanoparticles, as well as AgNO(3) (Ag(+)) were tested using primary gi...
To indentify sources and transport mechanisms of iron in a coastal marine environment, we conducted measurements of the physiochemical speciation of Fe in the euphotic zone at three different locations in the Baltic Sea. In addition to sampling across a salinity gradient, we conducted this study over the spring and summer season. Moving from the ri...
To indentify sources and transport mechanisms of iron in a coastal marine environment, we conducted measurements of the physiochemical speciation of Fe in the euphotic zone at three different locations in the Baltic Sea. In addition to sampling across a salinity gradient, we conducted this study over the spring and summer season. Moving from the ri...
Field-Flow Fractionation (FFF) is now recognised as a versatile pool of techniques allowing particle size or molar mass to be obtained in a wide variety of samples covering numerous applications in the fields of environment, materials or biology. In the same time, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) has an indisputable place in th...
Based on an international workshop (Gothenburg, 14–16 May 2008), this review article aims to combine interdisciplinary knowledge from coastal and open ocean research on iron biogeochemistry. The major scientific findings of the past decade are structured into sections on natural and artificial iron fertilization, iron inputs into coastal and estuar...
The continuous colloidal size spectra (0.5–40 nm) of chromophoric and fluorescent organic matter, Fe, P, Mn, Cu, Zn, Pb, and U, were determined by on-line coupling of flow field-flow fractionation (FFF) to detectors including UV-absorbance, fluorescence, and ICP-MS, in samples from the lower Mississippi River, the Atchafalaya River, the Pearl River...
A feasibility study of nanoparticle tracking analysis (NTA) for aquatic environmental samples is presented here. The method has certain virtues such as minimum perturbation of the samples, high sensitivity in terms of particle concentration, and provision of number-based size distributions for aquatic samples. NTA gave linear calibration curves in...
Analytical transmission electron microscopy (aTEM) and flow field flow fractionation (FlFFF) coupled to multi-angle laser light scattering (MALLS) and high-resolution inductively coupled plasma mass spectroscopy (HR-ICPMS) were utilised to elucidate relationships between trace metals and nanoparticles in contaminated sediment. Samples were obtained...
Colloidal size spectra of Fe, Cu, Ag, La, and Pb were determined by asymmetrical flow field-flow fractionation coupled to high-resolution inductively coupled plasma mass spectrometry, in samples from 0.5-40-m depth profiles from the Gullmarsfjord on the Swedish west coast, at nine occasions between February 2004 and July 2005. Trace elements were q...
Based on an international workshop (Gothenburg, 14–16 May 2008), this review article aims to combine interdisciplinary knowledge from coastal and open ocean research on iron biogeochemistry. The major scientific findings of the past decade are structured into sections on natural and artificial iron fertilization, iron inputs into coastal and estuar...
NanoImpactNet is a European Commission Framework Programme 7 (FP7) funded project that provides a forum for the discussion of current opinions on nanomaterials in relation to human and environmental issues. In September 2008, in Zurich, a NanoImpactNet environmental workshop focused on three key questions: 1. What properties should be characterised...
Iron chemistry measurements were conducted during summer 2007 at two distinct locations in the Baltic Sea (Gotland Deep and Landsort Deep) to evaluate the role of iron for cyanobacterial bloom development in these estuarine waters. Depth profiles of Fe(II) were measured by chemiluminescent flow injection analysis (CL-FIA) and reveal several origins...
NanoImpactNet is a European Commission Framework Programme 7 (FP7) funded project that provides a forum for the discussion of current opinions on nanomaterials in relation to human and environmental issues. In September 2008, in Zurich, a NanoImpactNet environmental workshop focused on three key questions: 1. What properties should be characterised...
The use of nanomaterials is rapidly increasing, while little is known about their possible ecotoxicological effects. This work investigates the toxic effects of silver (Ag) and gold (Au) nanoparticles on rainbow trout hepatocytes. In addition to toxicity assessment the particles were characterized by transmission electron microscopy (TEM) and nanop...