Martin Danelljan

Martin Danelljan
Linköping University | LiU · Department of Electrical Engineering (ISY)

About

166
Publications
50,041
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
22,286
Citations
Citations since 2016
154 Research Items
22095 Citations
201620172018201920202021202201,0002,0003,0004,0005,000
201620172018201920202021202201,0002,0003,0004,0005,000
201620172018201920202021202201,0002,0003,0004,0005,000
201620172018201920202021202201,0002,0003,0004,0005,000

Publications

Publications (166)
Article
Full-text available
Video instance segmentation is one of the core problems in computer vision. Formulating a purely learning-based method, which models the generic track management required to solve the video instance segmentation task, is a highly challenging problem. In this work, we propose a novel learning framework where the entire video instance segmentation pr...
Chapter
We propose a trainable Image Signal Processing (ISP) framework that produces DSLR quality images given RAW images captured by a smartphone. To address the color misalignments between training image pairs, we employ a color-conditional ISP network and optimize a novel parametric color mapping between each input RAW and reference DSLR image. During i...
Chapter
Estimating the target extent poses a fundamental challenge in visual object tracking. Typically, trackers are box-centric and fully rely on a bounding box to define the target in the scene. In practice, objects often have complex shapes and are not aligned with the image axis. In these cases, bounding boxes do not provide an accurate description of...
Chapter
Current multi-category Multiple Object Tracking (MOT) metrics use class labels to group tracking results for per-class evaluation. Similarly, MOT methods typically only associate objects with the same class predictions. These two prevalent strategies in MOT implicitly assume that the classification performance is near-perfect. However, this is far...
Chapter
Traditional domain adaptive semantic segmentation addresses the task of adapting a model to a novel target domain under limited or no additional supervision. While tackling the input domain gap, the standard domain adaptation settings assume no domain change in the output space. In semantic prediction tasks, different datasets are often labeled acc...
Chapter
Few-shot segmentation is a challenging dense prediction task, which entails segmenting a novel query image given only a small annotated support set. The key problem is thus to design a method that aggregates detailed information from the support set, while being robust to large variations in appearance and context. To this end, we propose a few-sho...
Chapter
While Video Instance Segmentation (VIS) has seen rapid progress, current approaches struggle to predict high-quality masks with accurate boundary details. Moreover, the predicted segmentations often fluctuate over time, suggesting that temporal consistency cues are neglected or not fully utilized. In this paper, we set out to tackle these issues, w...
Article
Full-text available
Accurate and robust visual object tracking is one of the most challenging and fundamental computer vision problems. It entails estimating the trajectory of the target in an image sequence, given only its initial location, and segmentation, or its rough approximation in the form of a bounding box. Discriminative Correlation Filters (DCFs) and deep S...
Preprint
Transfer learning based approaches have recently achieved promising results on the few-shot detection task. These approaches however suffer from ``catastrophic forgetting'' issue due to finetuning of base detector, leading to sub-optimal performance on the base classes. Furthermore, the slow convergence rate of stochastic gradient descent (SGD) res...
Preprint
Normalizing Flows (NFs) are flexible explicit generative models that have been shown to accurately model complex real-world data distributions. However, their invertibility constraint imposes limitations on data distributions that reside on lower dimensional manifolds embedded in higher dimensional space. Practically, this shortcoming is often bypa...
Preprint
Full-text available
One of the key factors behind the recent success in visual tracking is the availability of dedicated benchmarks. While being greatly benefiting to the tracking research, existing benchmarks do not pose the same difficulty as before with recent trackers achieving higher performance mainly due to (i) the introduction of more sophisticated transformer...
Preprint
Full-text available
While Video Instance Segmentation (VIS) has seen rapid progress, current approaches struggle to predict high-quality masks with accurate boundary details. Moreover, the predicted segmentations often fluctuate over time, suggesting that temporal consistency cues are neglected or not fully utilized. In this paper, we set out to tackle these issues, w...
Preprint
Full-text available
Current multi-category Multiple Object Tracking (MOT) metrics use class labels to group tracking results for per-class evaluation. Similarly, MOT methods typically only associate objects with the same class predictions. These two prevalent strategies in MOT implicitly assume that the classification performance is near-perfect. However, this is far...
Preprint
Positional encodings have enabled recent works to train a single adversarial network that can generate images of different scales. However, these approaches are either limited to a set of discrete scales or struggle to maintain good perceptual quality at the scales for which the model is not trained explicitly. We propose the design of scale-consis...
Article
Autonomous systems that operate in dynamic environments require robust object tracking in 3D as one of their key components. Most recent approaches for 3D multi-object tracking (MOT) from LIDAR use object dynamics together with a set of handcrafted features to match detections of objects across multiple frames. However, manually designing such feat...
Preprint
Estimating the target extent poses a fundamental challenge in visual object tracking. Typically, trackers are box-centric and fully rely on a bounding box to define the target in the scene. In practice, objects often have complex shapes and are not aligned with the image axis. In these cases, bounding boxes do not provide an accurate description of...
Preprint
Optimization based tracking methods have been widely successful by integrating a target model prediction module, providing effective global reasoning by minimizing an objective function. While this inductive bias integrates valuable domain knowledge, it limits the expressivity of the tracking network. In this work, we therefore propose a tracker ar...
Preprint
Full-text available
We propose a trainable Image Signal Processing (ISP) framework that produces DSLR quality images given RAW images captured by a smartphone. To address the color misalignments between training image pairs, we employ a color-conditional ISP network and optimize a novel parametric color mapping between each input RAW and reference DSLR image. During i...
Preprint
We propose Probabilistic Warp Consistency, a weakly-supervised learning objective for semantic matching. Our approach directly supervises the dense matching scores predicted by the network, encoded as a conditional probability distribution. We first construct an image triplet by applying a known warp to one of the images in a pair depicting differe...
Preprint
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time. The association step naturally leads to discrete optimization problems. As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware. Adiabatic...
Preprint
Video super-resolution (VSR) has many applications that pose strict causal, real-time, and latency constraints, including video streaming and TV. We address the VSR problem under these settings, which poses additional important challenges since information from future frames are unavailable. Importantly, designing efficient, yet effective frame ali...
Preprint
Free-form inpainting is the task of adding new content to an image in the regions specified by an arbitrary binary mask. Most existing approaches train for a certain distribution of masks, which limits their generalization capabilities to unseen mask types. Furthermore, training with pixel-wise and perceptual losses often leads to simple textural e...
Preprint
Full-text available
Class-conditioning offers a direct means of controlling a Generative Adversarial Network (GAN) based on a discrete input variable. While necessary in many applications, the additional information provided by the class labels could even be expected to benefit the training of the GAN itself. Contrary to this belief, we observe that class-conditioning...
Preprint
Full-text available
Accurate and robust visual object tracking is one of the most challenging and fundamental computer vision problems. It entails estimating the trajectory of the target in an image sequence, given only its initial location, and segmentation, or its rough approximation in the form of a bounding box. Discriminative Correlation Filters (DCFs) and deep S...
Article
Multiple object tracking and segmentation requires detecting, tracking, and segmenting objects belonging to a set of given classes. Most approaches only exploit the temporal dimension to address the association problem, while relying on single frame predictions for the segmentation mask itself. We propose Prototypical Cross-Attention Network (PCAN)...
Preprint
Two-stage and query-based instance segmentation methods have achieved remarkable results. However, their segmented masks are still very coarse. In this paper, we present Mask Transfiner for high-quality and efficient instance segmentation. Instead of operating on regular dense tensors, our Mask Transfiner decomposes and represents the image regions...
Conference Paper
Multiple object tracking and segmentation requires detecting, tracking, and segmenting objects belonging to a set of given classes. Most approaches only exploit the temporal dimension to address the association problem, while relying on single frame predictions for the segmentation mask itself. We propose Prototypical Cross-Attention Network (PCAN)...
Conference Paper
Multiple object tracking and segmentation requires detecting, tracking, and segmenting objects belonging to a set of given classes. Most approaches only exploit the temporal dimension to address the association problem, while relying on single frame predictions for the segmentation mask itself. We propose Prototypical Cross-Attention Network (PCAN)...
Preprint
Super-resolution is an ill-posed problem, where a ground-truth high-resolution image represents only one possibility in the space of plausible solutions. Yet, the dominant paradigm is to employ pixel-wise losses, such as L_1, which drive the prediction towards a blurry average. This leads to fundamentally conflicting objectives when combined with a...
Preprint
Energy-based models (EBMs) have experienced a resurgence within machine learning in recent years, including as a promising alternative for probabilistic regression. However, energy-based regression requires a proposal distribution to be manually designed for training, and an initial estimate has to be provided at test-time. We address both of these...
Preprint
Full-text available
Few-shot segmentation is a challenging dense prediction task, which entails segmenting a novel query image given only a small annotated support set. The key problem is thus to design a method that aggregates detailed information from the support set, while being robust to large variations in appearance and context. To this end, we propose a few-sho...
Preprint
Establishing robust and accurate correspondences between a pair of images is a long-standing computer vision problem with numerous applications. While classically dominated by sparse methods, emerging dense approaches offer a compelling alternative paradigm that avoids the keypoint detection step. However, dense flow estimation is often inaccurate...
Preprint
Traditional domain adaptation addresses the task of adapting a model to a novel target domain under limited or no additional supervision. While tackling the input domain gap, the standard domain adaptation settings assume no domain change in the output space. In semantic prediction tasks, different datasets are often labeled according to different...
Preprint
We propose a deep reparametrization of the maximum a posteriori formulation commonly employed in multi-frame image restoration tasks. Our approach is derived by introducing a learned error metric and a latent representation of the target image, which transforms the MAP objective to a deep feature space. The deep reparametrization allows us to direc...
Preprint
Full-text available
Normalizing flows have recently demonstrated promising results for low-level vision tasks. For image super-resolution (SR), it learns to predict diverse photo-realistic high-resolution (HR) images from the low-resolution (LR) image rather than learning a deterministic mapping. For image rescaling, it achieves high accuracy by jointly modelling the...
Preprint
Multiple object tracking and segmentation requires detecting, tracking, and segmenting objects belonging to a set of given classes. Most approaches only exploit the temporal dimension to address the association problem, while relying on single frame predictions for the segmentation mask itself. We propose Prototypical Cross-Attention Network (PCAN)...
Preprint
Full-text available
This paper reviews the NTIRE2021 challenge on burst super-resolution. Given a RAW noisy burst as input, the task in the challenge was to generate a clean RGB image with 4 times higher resolution. The challenge contained two tracks; Track 1 evaluating on synthetically generated data, and Track 2 using real-world bursts from mobile camera. In the fin...
Preprint
Tracking of objects in 3D is a fundamental task in computer vision that finds use in a wide range of applications such as autonomous driving, robotics or augmented reality. Most recent approaches for 3D multi object tracking (MOT) from LIDAR use object dynamics together with a set of handcrafted features to match detections of objects. However, man...
Preprint
The key challenge in learning dense correspondences lies in the lack of ground-truth matches for real image pairs. While photometric consistency losses provide unsupervised alternatives, they struggle with large appearance changes, which are ubiquitous in geometric and semantic matching tasks. Moreover, methods relying on synthetic training pairs o...
Preprint
The presence of objects that are confusingly similar to the tracked target, poses a fundamental challenge in appearance-based visual tracking. Such distractor objects are easily misclassified as the target itself, leading to eventual tracking failure. While most methods strive to suppress distractors through more powerful appearance models, we take...
Preprint
Full-text available
Few-shot segmentation is a challenging task, requiring the extraction of a generalizable representation from only a few annotated samples, in order to segment novel query images. A common approach is to model each class with a single prototype. While conceptually simple, these methods suffer when the target appearance distribution is multi-modal or...
Preprint
While single-image super-resolution (SISR) has attracted substantial interest in recent years, the proposed approaches are limited to learning image priors in order to add high frequency details. In contrast, multi-frame super-resolution (MFSR) offers the possibility of reconstructing rich details by combining signal information from multiple shift...
Preprint
Full-text available
The difficulty of obtaining paired data remains a major bottleneck for learning image restoration and enhancement models for real-world applications. Current strategies aim to synthesize realistic training data by modeling noise and degradations that appear in real-world settings. We propose DeFlow, a method for learning stochastic image degradatio...
Preprint
Full-text available
Segmenting objects in videos is a fundamental computer vision task. The current deep learning based paradigm offers a powerful, but data-hungry solution. However, current datasets are limited by the cost and human effort of annotating object masks in videos. This effectively limits the performance and generalization capabilities of existing video s...
Preprint
Full-text available
Establishing dense correspondences between a pair of images is an important and general problem. However, dense flow estimation is often inaccurate in the case of large displacements or homogeneous regions. For most applications and down-steam tasks, such as pose estimation, image manipulation, or 3D reconstruction, it is crucial to know when and w...
Preprint
Full-text available
We propose a novel neural network module that transforms an existing single-frame semantic segmentation model into a video semantic segmentation pipeline. In contrast to prior works, we strive towards a simple and general module that can be integrated into virtually any single-frame architecture. Our approach aggregates a rich representation of the...
Chapter
Video instance segmentation is one of the core problems in computer vision. Formulating a purely learning-based method, which models the generic track management required to solve the video instance segmentation task, is a highly challenging problem. In this work, we propose a novel learning framework where the entire video instance segmentation pr...
Preprint
The state-of-the-art object detection and image classification methods can perform impressively on more than 9k and 10k classes, respectively. In contrast, the number of classes in semantic segmentation datasets is relatively limited. This is not surprising when the restrictions caused by the lack of labeled data and high computation demand for seg...
Preprint
Accurate 3D object detection (3DOD) is crucial for safe navigation of complex environments by autonomous robots. Regressing accurate 3D bounding boxes in cluttered environments based on sparse LiDAR data is however a highly challenging problem. We address this task by exploring recent advances in conditional energy-based models (EBMs) for probabili...
Preprint
Full-text available
Most existing approaches to video instance segmentation comprise multiple modules that are heuristically combined to produce the final output. Formulating a purely learning-based method instead, which models both the temporal aspect as well as a generic track management required to solve the video instance segmentation task, is a highly challenging...
Chapter
How to make a segmentation model efficiently adapt to a specific video as well as online target appearance variations is a fundamental issue in the field of video object segmentation. In this work, a graph memory network is developed to address the novel idea of “learning to update the segmentation model”. Specifically, we exploit an episodic memor...
Chapter
While deep learning-based classification is generally tackled using standardized approaches, a wide variety of techniques are employed for regression. In computer vision, one particularly popular such technique is that of confidence-based regression, which entails predicting a confidence value for each input-target pair (x, y). While this approach...
Chapter
Video object segmentation (VOS) is a highly challenging problem, since the target object is only defined by a first-frame reference mask during inference. The problem of how to capture and utilize this limited information to accurately segment the target remains a fundamental research question. We address this by introducing an end-to-end trainable...
Chapter
Current state-of-the-art trackers rely only on a target appearance model in order to localize the object in each frame. Such approaches are however prone to fail in case of e.g. fast appearance changes or presence of distractor objects, where a target appearance model alone is insufficient for robust tracking. Having the knowledge about the presenc...
Preprint
Full-text available
Learning in a low-data regime from only a few labeled examples is an important, but challenging problem. Recent advancements within meta-learning have demonstrated encouraging performance, in particular, for the task of few-shot classification. We propose a novel optimization-based meta-learning approach for few-shot classification. It consists of...
Chapter
Super-resolution is an ill-posed problem, since it allows for multiple predictions for a given low-resolution image. This fundamental fact is largely ignored by state-of-the-art deep learning based approaches. These methods instead train a deterministic mapping using combinations of reconstruction and adversarial losses. In this work, we therefore...
Preprint
Full-text available
The feature correlation layer serves as a key neural network module in numerous computer vision problems that involve dense correspondences between image pairs. It predicts a correspondence volume by evaluating dense scalar products between feature vectors extracted from pairs of locations in two images. However, this point-to-point feature compari...