
Martin BloemendalDelft University of Technology & KWR Water research institute · Water resources & Geohydrology
Martin Bloemendal
Assistant professor Underground thermal energy storage
About
54
Publications
14,832
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
555
Citations
Introduction
Martin Bloemendal currently works at the Department of Water management, Delft University of Technology (assistant professor) and KWR. Martin teaches and carries out research in Aquifer Thermal Energt Storage.
Additional affiliations
October 2010 - August 2018
October 2010 - August 2018
January 2010 - February 2017
Education
September 2000 - May 2007
Publications
Publications (54)
This paper presents a low-order aquifer thermal energy storage (ATES) model for simulation of combined sub-surface and above-surface energy systems. The model is included in the Modelica IBPSA Library, which is a free open-source library with basic models for building and district energy and control systems. The model uses a lumped-component method...
Heating and cooling of buildings accounts for ~25% of the primary energy end use, hence is critical to decarbonize. In many climatic conditions heating and cooling systems can be decarbonized using seasonal thermal energy storage to overcome the mismatch in availability and demand [1], with Aquifer Thermal Energy Storage (ATES) being an example sys...
High-Temperature Aquifer Thermal Energy Storage (HT-ATES) systems have the potential to cost-effectively store large volumes of thermal energy, bridging the supply-demand gap for variable renewable heat sources, such as solar thermal or power-2-heat conversion [3, 4]. These systems involve the injection and extraction of heated and cooled groundwat...
The Dutch research consortium WINDOW has developed and applied a converging selection process to identify preferred locations and integration concepts for HT-ATES in the Netherlands. A longlist of 22 locations was reduced to 7 feasible locations, based on criteria for geological conditions, legal constraints, preliminary business case, planning hor...
The suitability of high temperature aquifer thermal energy storage (HT-ATES) systems, among many other applications in the subsurface, is for a large extent determined by the hydrogeological aquifer properties. Important subsurface properties that are challenging to fully determine in the field are the hydraulic conductivity, the vertical variation...
Governments and companies have set high targets in avoiding CO 2 emissions and reducing energy. Aquifer Thermal Energy Storage (ATES) systems can contribute by overcoming the temporal mismatch between the availability of sustainable heat (during summer) and the demand for heat (during winter). Therefore, ATES is an increasingly popular technique; c...
For efficient operation of heating and cooling grids, underground thermal energy storage (UTES) can be a key element. This is due to its ability to seasonally store heat or cold addressing the large mismatch between supply and demand. This technology is already available and there are many operational examples, both within and outside a district he...
Larger well diameters allow higher groundwater abstraction rates. But particularly for the construction of wells at greater depth, it may be more cost‐efficient to only expand the borehole in the target aquifer. However, current drilling techniques for unconsolidated formations are limited by their expansion factors (<2) and diameters (<1000 mm). T...
Aquifer Thermal Energy Storage (ATES) Systems is a technology to sustainably and economically provide space heating and cooling. However, it cannot be applied everywhere because successful application depends on the presence of a suitable aquifer and favorable climatic conditions. Despite some operational ATES systems, the Spanish ATES market is im...
The primary energy use of ATES systems evaluated for high and low aquifer utilisation levels. • High aquifer utilisation levels reduce energy use of individual systems, as more wells can be placed. • The highest aquifer utilization level considered is 115% and resulted in 82% ATES adoption. • For aquifer utilization <80%, energy use of buildings is...
Aquifer thermal energy storage (ATES) is an energy efficient technique to provide heating and cooling to buildings by storage of warm and cold water in aquifers. In regions with large demand for ATES, ATES adoption has lead to congestion problems in aquifers. The recovery of thermal energy stored in aquifers can be increased by reducing the distanc...
In the energy transition, multi-energy systems are crucial to reduce the temporal, spatial and functional mismatch between sustainable energy supply and demand. Technologies as power-to-heat (PtH) allow flexible and effective utilisation of available surplus green electricity when integrated with seasonal heat storage options. However, insights and...
In order to assess the thermo-hydraulic modelling capabilities of various geothermal simulators, a comparative test suite was created, consisting of a set of cases designed with conditions relevant to the low-enthalpy range of geothermal operations within the European HEATSTORE research project. In an effort to increase confidence in the usage of e...
Geothermal operations are expanding and increasingly contributing to the current energy supply. Assessing the long-term operable lifetime of these projects is complicated as the reservoirs they produce from are often deep and subsurface properties are uncertain and spatially variable. The minimum lifetime of a geothermal project usually considers t...
The fossil-based energy system is transitioning towards a renewable energy system. One important aspect is the spatial and temporal mismatch between intermitted supply and continuous demand. To ensure a reliable and affordable energy system, we propose an integrated system approach that integrates electricity production, mobility, heating of buildi...
The storage of heat in aquifers, also referred to as Aquifer Thermal Energy Storage (ATES), bears a high potential to bridge the seasonal gap between periods of highest thermal energy demand and supply. With storage temperatures higher than 50 °C, High-Temperature (HT) ATES is capable to facilitate the integration of (non-)renewable heat sources in...
Heating and cooling using aquifer thermal energy storage (ATES) has hardly been applied outside the Netherlands, even though it could make a valuable contribution to the energy transition. The Climate-KIC project "Europe-wide Use of Energy from aquifers" - E-USE(aq) - aimed to pave the way for Europe-wide application of ATES, through the realizatio...
Aquifer Thermal Energy Storage (ATES) systems provide buildings with sustainable space heating and cooling by seasonally storing and recovering thermal energy in the subsurface. The increased use of ATES in Dutch cities resulted in dense use of ATES in urban aquifers, often up to congestion level. Because thermal interactions among neighbouring sys...
Aquifer Thermal Energy Storage (ATES) systems combined with a heat pump save energy for space heating and cooling of buildings. In most countries the temperature of the stored heat is allowed up to 25-30°C. However, when heat is available at higher temperatures (e.g. waste heat, solar heat), it is more efficient to store higher temperatures because...
Energy consumption for space heating and cooling of buildings can be decreased by 40-80% by use of Aquifer Thermal Energy Storage (ATES). ATES is a proven technique, however, it is not known how efficient currently operating systems are recovering stored energy from the subsurface and how this can be determined with available data. Recent research...
Aquifer Thermal Energy Storage (ATES) system make use of the groundwater to exchange energy with the building: in winter, groundwater is pumped from the warm well to the buildings heat exchanger and the building extracts heat from the groundwater as energy source for the heat pumps, while the groundwater will be injected in the cold well at lower t...
Our soils can provide sustainable energy. Aquifer Thermal Energy Storage (ATES) is a smart way to re-use heat and cold in buildings and it is widely recognized as promising technology for sustainable energy. Global demand for heating and cooling in the built environment accounts for about 40% of total primary energy consumption. ATES is a simple wa...
A transition to a low carbon energy system is needed to respond to global challenge of climate change mitigation. Aquifer Thermal Energy Storage (ATES) is a technology with worldwide potential to provide sustainable space heating and cooling by (seasonal) storage and recovery of heat in the subsurface. However, adoption of ATES varies strongly acro...
Aquifer Thermal Energy Storage (ATES) is a building technology used to seasonally store thermal energy in the subsurface, which can reduce the energy use of larger buildings by more than half. The spatial layout of ATES systems is a key aspect for the technology, as thermal interactions between neighboring systems can degrade system performance. In...
A transition to a low carbon energy system is needed to respond to global challenge of climate change mitigation. Aquifer Thermal Energy Storage (ATES) is a technology with worldwide potential to provide sustainable space heating and cooling by (seasonal) storage and recovery of heat in the subsurface. However, adoption of ATES varies strongly acro...
The modelling of social-ecological systems can provide useful insights into the interaction of social and environmental processes. However, quantitative social-ecological models should acknowledge the complexity and uncertainty of both underlying subsystems. For example, the agent-based models which are increasingly popular for groundwater studies...
Aquifer thermal energy storage (ATES) is a technology with worldwide potential to provide sustainable space heating and cooling using groundwater stored at different temperatures. In areas with high ambient groundwater flow velocity (> 25 m/y) thermal energy losses by displacement of groundwater may be prevented by application of multiple doublets....
Aquifer thermal energy storage (ATES) is a technology with worldwide potential to provide sustainable space heating and cooling using groundwater stored at different temperatures. The thermal recovery efficiency is one of the main parameters that determines the overall energy savings of ATES systems and is affected by storage specifics and site-spe...
A heat pump combined with Aquifer Thermal Energy Storage (ATES) has high potential in efficiently and sustainably providing thermal energy for space heating and cooling. This makes the subsurface, including its groundwater, of crucial importance for primary energy savings. ATES systems are often placed in aquifers in which salinity increases with d...
De belangrijkste bevindingen uit het proefschrift "The hidden side of cities" Meer besparing met bodemenergie Bodemenergie (of Warmte koude opslag) is een techniek die ge-bouwen voorziet van duurzame verwarming en koeling. In Nederlandse steden kan het percentage gebouwen met een bode-menergiesysteem in de toekomst oplopen tot 25 procent. Bij een d...
Vrijwel alle drinkwaterbedrijven hebben ambities voor een klimaatneutrale bedrijfsvoering. Een aantal drinkwaterbedrijven probeert met opwekking van duurzame energie hun CO2-voetafdruk te verlagen. Een bijzondere manier van energieopwekking is de levering van thermische energie uit drinkwater, kortweg TED. Toepassing van TED moet een positieve mili...
A benchmark of existing ATES plans is carried out and the ATES planning method is improved. • The effectiveness of design parameters and assessment criteria for ATES planning are identified and quantified. • Aquifer usage density thresholds beyond which planning is necessary are determined. A R T I C L E I N F O Keywords: Aquifer Thermal Energy Sto...
Bodemenergiesystemen worden veelvuldig toegepast om energie te besparen. De warmtepomp van zulke systemen gebruikt echter nog altijd veel elektriciteit, waardoor voor grootschalige toepassing ook grootschalige netverzwaring nodig is. Daarom is het voor de verduurzaming van de gebouwde omgeving belangrijk om alternatieve duurzame technieken voor ver...
Aquifer Thermal Energy Storage (ATES) is an innovative building technology that can be used to store thermal energy in natural subsurface formations [1, 4, 10]. In combination with a heat pump, ATES can reduce the energy demand of larger buildings by more than half, which has made the technology increasingly popular in northern Europe (see Figure 1...
Aquifer thermal energy storage (ATES) is a technology with worldwide potential to provide sustainable space
heating and cooling using groundwater stored at different temperatures. The thermal recovery efficiency is one
of the main parameters that determines the overall energy savings of ATES systems and is affected by storage
specifics and site-spe...
The application of seasonal Aquifer Thermal Energy Storage (ATES) contributes to meet goals for energy savings and greenhouse gas (GHG) emission reductions. Heat pumps have a crucial position in ATES systems because they dictate the operation scheme of the ATES wells and therefore play an important role in utilizing the storage potential of the sub...
This paper presents a complete model of a building heating and cooling equipment and a ground source heat pump (GSHP) coupled with an aquifer thermal energy storage (ATES) system. This model contains detailed mathematical representations of building thermal dynamics, ATES system dynamics, heat exchanger (HE), and GSHP together with heating and cool...
This paper proposes a building energy management framework, described by mixed logical dynamical systems due to operating constraints and logic rules, together with an aquifer thermal energy storage (ATES) model. We develop a deterministic model predictive control strategy to meet building thermal energy demand. At each sampling a mixed integer qua...
Aquifer Thermal Energy Storage (ATES) can yield significant reductions in the energy use and greenhouse gas (GHG) emissions of larger buildings, and the use of these systems has been rapidly growing in Europe – especially in the Netherlands, where over 3000 systems are currently active in urban areas. However, the successful management of this tech...
This paper presents a control-oriented model for combined building climate comfort and aquifer thermal energy storage (ATES) system. In particular, we first provide a description of building operational systems together with control framework variables. We then focus on the derivation of an analytical model for ATES system dynamics. The dynamics of...
Aquifer thermal energy storage (ATES) is a technology to sustainably provide space heating and cooling. Particularly in The Netherlands the number of ATES systems has grown rapidly in the past decade, often with the (re)development of urban areas. To meet objectives for greenhouse gas emission reduction the number of ATES systems is expected and re...
Aquifer thermal energy storage (ATES) is applied for 25 years in the Netherlands, which resulted in approximately 2000 ATES systems operational at the end of 2015. To identify how these systems perform and contribute to greenhouse gas (GHG) emission reduction in practice, the Dutch government commissioned to evaluate these systems. This document is...
ATES suitability World map – SHAPE files
In this data-set the shape files for the ATES suitability maps as established and presented in: Bloemendal, M., Olsthoorn, T., van de Ven, F., 2015. Combining climatic and geo-hydrological preconditions as a method to determine world potential for aquifer thermal energy storage. Science of the Total Environ...