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Abstract We numerically approximate, on the real line, solutions to a large class of
parabolic partial differential equations which are “gradient flows” of some energy func-
tionals with respect to the Lp-Wasserstein metrics for all p > 1. Our method relies on vari-
ational principles involving the optimal transport problem with general strictly convex cost
functions.
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1 Introduction

In what follows, Ω denotes an open, bounded, convex and smooth subset of R
n, where n ≥ 1

is an integer. Let c : R
n → [0,∞) be a strictly convex symmetric function, and u,v : Ω →

[0,∞) be two probability densities on Ω ; u,v ∈ P(Ω). The optimal transport (or Monge-
Kantorovich) problem between u(x) and v(y) with the cost function c(x − y) consists of
finding the—optimal transport—map T : Ω → Ω that minimizes the total cost,

Wc(u, v) := inf
T :Ω→Ω

{∫
Ω

c
(
x − T (x)

)
u(x)dx;T#u = v

}
, (1)
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of transporting u onto v, where c(x−y) is the basic cost of transporting a unit mass of matter
from a position x ∈ Ω to a location y ∈ Ω , and T#u = v means that v(B) = u(T −1(B)) for
all Borel sets B ⊂ R

n, or equivalently∫
Ω

ϕ(y)v(y)dy =
∫

Ω

ϕ
(
T (x)

)
u(x)dx, ∀ϕ ∈ C(Ω). (2)

When the cost function is c(z) = |z|p/p,p > 1, the corresponding optimal transport prob-
lem is known as the Lp optimal transport problem. Under the conditions on the cost function
c, it is known that problem (1) has a unique solution (a.e. with respect to u) which is char-
acterized by the gradient of a convex function [5] when c(z) = |z|2/2, or via a c-concave
function in general [6, 9]. Moreover when the cost function is c(z) = |z|p/p for any p > 1,
then (1) defines a metric, dp(u, v) := (Wc(μ, ν))1/p , over the set of probability densities on
Ω , called the Lp-Wasserstein metric, see [17].

Here, we are interested in applications of the Lp-Wasserstein metrics to partial differen-
tial equations (PDE’s). It is known [1, 4, 10, 12] that solutions to parabolic PDE’s of the
form ⎧⎪⎨

⎪⎩
∂ρ

∂t
= ∇ · {ρ∇c∗[∇(F ′(ρ) + V + W � ρ)]} in Ω × (0,∞)

ρ∇c∗[∇(F ′(ρ) + V + W � ρ)] · ν = 0 on ∂Ω × (0,∞)

ρ(t = 0) = ρ0 on Ω

(3)

can be obtained variationally via the following time-discrete iterative scheme involving the
optimal transport problem with the cost function cτ (z) := c(z/τ),

ρk := Argmin

{
Wcτ (ρ,ρk−1) + 1

τ
E(ρ) : ρ ∈ P(Ω)

}
, (4)

where ρ0 ∈ P(Ω), τ > 0 denotes a time-step size, c∗ is the Legendre transform of c, and the
energy functional E is defined by

E(ρ) =
∫

Ω

[
F(ρ) + ρV + 1

2
ρ(W � ρ)

]
dx, (5)

for some given functions F : [0,∞) → R, V : Ω → R and W : R
n → R; here W �ρ denotes

the convolution of W and ρ. This family of PDE’s contains the heat equation, the Fokker-
Planck equation and the porous medium equation, where the cost function is c(z) = |z|2/2;
the doubly nonlinear equation, where c(z) = |z|q/q with q = p/(p − 1) and F(x) = mxγ

γ (γ−1)

with γ = m + p−2
p−1 , and in particular the parabolic p-Laplacian equation where m = 1 in

the above choice of F . These are well-known equations used to model many phenonema in
mathematical physics. For other models in mathematical biology included in this class of
PDE’s (3), we refer to [8] and the references therein.

In [3, 4, 7, 13], it is shown that PDE (3) can be interpreted as a gradient flow of the energy
functional (5) w.r.t. the optimal transport cost Wc . Here, we are concerned with the numerical
approximation of the solution to PDE (3), using the scheme (4). For that, we are inspired by
the work of Kinderlehrer and Walkington [11] where some numerical algorithms were given
in one dimension, to solve (3) in the particular case when the cost function is quadratic,
c(z) = |z|2/2. We propose to extend their work to all strictly convex cost functions, then
solving numerically all PDE’s of the form (3) in a one dimensional space. More specifically,
we will focus on the following, more general class of parabolic PDE’s with forcing terms,
which includes the non-homogeneous analogue of (3), in one dimension:⎧⎪⎨

⎪⎩
∂u
∂t

− ∂
∂x

(uc′∗[ ∂
∂x

(F ′(u) + V + W � u)]) = f (x, t) in Ω × (0,∞)

uc′∗[ ∂
∂x

(F ′(u) + V + W � u)] = 0 on ∂Ω × (0,∞)

u(t = 0) = u0 in Ω

(6)
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where u0 : Ω → [0,∞) belongs to L1(Ω), c : R → [0,∞) is a strictly convex symmetric
cost function, c∗ denotes the Legendre transform of c, c∗(x) := supy∈R

{xy − c(y)}, and �

stands for the convolution operation, W � u(x) := ∫
Ω

W(x − y)u(y)dy. We will assume
throughout the paper that c ∈ C1(R), lim|x|→∞ c(x)

|x| = ∞, and we fix Ω := (0,1). A typical

example of c is c(x) = |x|q/q for any q > 1, in which case c∗(x) = |x|p/p where 1
p

+ 1
q

= 1.
The functions f : Ω × [0,∞) → [0,∞), F : [0,∞) → R, V : Ω → R and W : R → R are
sufficiently smooth and satisfy the assumptions in [1, 4, 14] which guarantee the existence
of a unique solution to PDE (6) via the variational scheme

un := Argmin

{
Wcτ

(
u,vn−1

) + 1

τ
E(u) :

∫
Ω

u(x)dx =
∫

Ω

vn−1(x)dx

}
, (7)

where u : Ω → [0,∞), vn−1(x) = un−1(x) + ∫ nτ

(n−1)τ
f (x, t)dt , and u0 : Ω → [0,∞) is

given in L1(Ω). The existence of solutions to (6) can also formally be seen from the Euler-
Lagrange equation to the variational problem (7) that we recall in Sect. 2, using the explicit
formula of the optimal transport cost (1) in one dimension, as we show below. For simplicity,
assume that u,v : Ω → (0,∞) are continuous with

∫
Ω

u(x)dx = ∫
Ω

v(x)dx. If T : Ω → Ω

denotes the optimal transport map in (1), then T is C1, and by the change of variable y =
T (x) in (2), we have the identity

v
(
T (x)

)
T ′(x) = u(x), (8)

which by integration, gives V (T (x)) = U(x), where U(x) = ∫ x

0 u(y)dy and V (x) =∫ x

0 v(y)dy are respectively the cumulative distribution functions of u and v. Therefore, the
optimal transport map in (1) is explicitly given by

T (x) = V −1 ◦ U(x). (9)

Inserting formula (9) into (1) and using the substitution η = U(x), we obtain the formula of
the optimal transport cost (1) in one dimension,

Wc(u, v) =
∫ 1

0
c
(
x − V −1 ◦ U(x)

)
u(x)dx =

∫ U(1)

0
c
(
U−1(η) − V −1(η)

)
dη. (10)

The rest of the paper is organized as follows. In Sect. 3, we present the numerical algo-
rithms that will be used to approximate the solutions to PDE (6). These algorithms extend
to all strictly convex symmetric cost functions, c, the ones given in [11] for the quadratic
cost c(z) = |z|2/2. In Sect. 4, we test the algorithms on some numerical examples, and we
conclude with some remarks in Sect. 5.

2 Gradient Flows

Here we derive the Euler-Lagrange equation to the discrete scheme (7) of PDE (6) in Ω =
(0,1). This derivation follows the lines of the proof in [11] for the quadratic cost c(z) =
|z|2/2, but mainly relies on ideas in [1]. Indeed, assume that un−1 : Ω → (0,∞) is a given
integrable function, and denote by un the minimizer of the variational problem (7), that we
also assume to be positive; (the positivity of the un are guaranteed provided that u0 > M for
some M > 0, see e.g., [1, 16]). Our goal is to show that un satisfies, in a weak sense, the
following equation which can be viewed as a discrete formulation of PDE (6) for a time step
τ > 0 small enough,
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un − un−1

τ
− d

dx

[
unc′

∗

(
d

dx

[(
F ′(un

) + V + W � un
])]

= 1

τ

∫ nτ

(n−1)τ

f (x, t)dt + Correction terms. (11)

In fact, (11) justifies that (7) is a correct discrete scheme for PDE (6) or in other words, that
PDE (6) can be interpreted as a gradient flow of the energy functional (5) w.r.t. the optimal
transport cost (1).

Let g : Ω → Ω be a continuous function, and set G(x) = ∫ x

0 g(y)dy. We assume that
G(1) = ∫

Ω
g(y)dy = 0. Consider now the variation uε = un + εg of un for some ε ∈ R

small enough, and denote by Uε(x) = ∫ x

0 uε(y)dy the cumulative distribution function of
uε . Since G(0) = G(1) = 0, then uε is admissible in (7) and we have

0 = dI (uε)

dε

∣∣∣∣
ε=0

= d

dε
Wcτ

(
uε, v

n−1
)∣∣∣∣

ε=0

+ 1

τ

dE(uε)

dε

∣∣∣∣
ε=0

, (12)

where

I (u) := Wcτ

(
u,vn−1

) + 1

τ
E(u), E(u) :=

∫
Ω

[
F(u) + uV + 1

2
u(W � u)

]
dx. (13)

By a direct computation where we use that W is symmetric, the second term in (12) gives

dE(uε)

dε

∣∣∣∣
ε=0

=
∫

Ω

[
F ′(un(x)

) + V (x) + W � un(x)
]
g(x)dx. (14)

To compute the first term in (12), we first note using (9), that Tε(x) = V −1
n−1 ◦ Uε(x) (resp.

T (x) = V −1
n−1 ◦ Un(x)) is the optimal map in Wcτ (uε, v

n−1) (resp. Wcτ (u
n, vn−1)), where

Vn−1(x) =
∫ x

0
vn−1(y)dy, Un(x) =

∫ x

0
un(y)dy.

So using (10), we have that

d

dε
Wcτ

(
uε, v

n−1
)∣∣∣∣

ε=0

= d

dε

∫
Ω

cτ

(
x − Tε(x)

)
uε(x)dx

∣∣∣∣
ε=0

=
∫

Ω

[−c′
τ

(
x − T (x)

)
T ′(x)G(x) + cτ

(
x − T (x)

)
g(x)

]
dx.

Inserting the identity

−c′
τ

(
x − T (x)

)
T ′(x)G(x) + cτ

(
x − T (x)

)
g(x)

= d

dx

[
cτ

(
x − T (x)

)
G(x)

] − c′
τ

(
x − T (x)

)
G(x)

in the subsequent equality, we have

d

dε

∣∣∣∣
ε=0

Wcτ

(
uε, v

n−1
) = cτ

(
x − T (x)

)
G(x)

∣∣1

0
−

∫
Ω

c′
τ

(
x − T (x)

)
G(x)dx.

Since G(0) = G(1) = 0, the first term on the r.h.s. of the above equality vanishes. Using an
integration by parts in the second term, and the fact that G(0) = G(1) = 0, we obtain that

d

dε

∣∣∣∣
ε=0

Wcτ

(
uε, v

n−1
) =

∫
Ω

[∫ x

0
c′
τ

(
s − T (s)

)
ds

]
g(x)dx. (15)
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We combine (12)–(15) to have that

dI (uε)

dε

∣∣∣∣
ε=0

=
∫

Ω

[∫ x

0
c′
τ

(
s − T (s)

)
ds + 1

τ

(
F ′(un(x)

) + V (x) + W � un(x)
)]

g(x)dx

= 0 (16)

for all continuous functions g : Ω → R such that
∫

Ω
g(x)dx = 0. Therefore

τ

∫ x

0

[
c′
τ

(
s − T (s)

)]
ds + F ′(un(x)

) + V (x) + W � un(x) = constant,

which gives after differentiation w.r.t. x,

τc′
τ

(
x − T (x)

) = − d

dx

[
F ′(un(x)

) + V (x) + W � un(x)
]
,

i.e.,

x − T (x)

τ
= c′

∗

(
− d

dx

[
F ′(un(x)

) + V (x) + W � un(x)
])

, (17)

where we have used that τc′
τ (z) = c′(x/τ) and (c′)−1 = c′∗. Next, we use that c′∗ is an odd

function (since c is even) to rewrite (17) as

x − T (x)

τ
= −c′

∗

(
d

dx

[
F ′(un(x)

) + V (x) + W � un(x)
])

. (18)

To obtain (11) from (18), we proceed as in [1]. First, we multiply (18) by un(x)g(x) and
integrate over Ω = (0,1). We have after using an integration by parts and the fact that
G(0) = G(1) = 0,∫

Ω

x − T (x)

τ
un(x)g(x)dx

=
∫

Ω

d

dx

[
unc′

∗

(
d

dx

[
F ′(un

) + V + W � un
])]

G(x)dx. (19)

Next, we express
∫

Ω

x−T (x)

τ
un(x)g(x)dx in terms of

∫
Ω

[ un(x)−un−1(x)

τ
]G(x)dx. We first use

T#u
n = vn−1 to have that∫

Ω

un(x) − vn−1(x)

τ
G(x)dx = −

∫
Ω

G(T (x)) − G(x)

τ
un(x)dx. (20)

Now we insert the Taylor expansion of G,

G
(
T (x)

) − G(x) = g(x)
(
T (x) − x

) + Correction terms,

into (20) to get∫
Ω

x − T (x)

τ
un(x)g(x)dx =

∫
Ω

un(x) − vn−1(x)

τ
G(x)dx + Correction terms. (21)

Combining (19) and (21), we obtain in a weak sense,

un − vn−1

τ
= d

dx

[
unc′

∗

(
d

dx

[
F ′(un

) + V + W � un
]) + Correction terms. (22)

Finally we substitute vn−1(x) = un−1(x) + ∫ nτ

(n−1)τ
f (x, t)dt into (22) to conclude (11). �
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3 Numerical Algorithms

Following [11], we approximate solutions to PDE (6) using piecewise constant functions.
The data u0, V and W in (6) are taken to be piecewise constant functions whose values
coincide with the actual values of these functions at the midpoint of each interval [xi, xi+1],
where xi = ih, h = 1/N denotes the mesh size, and N is a given positive integer. For ex-
ample, a function v : Ω → R will be numerically represented by the sequence (vi)i , where
vi := v(

xi+xi+1
2 ) = v((i + 1/2)h), i = 0, . . . ,N − 1, denotes the value of the approxima-

tion of v on the interval [xi, xi+1]. Similarly, the time interval [0,∞) will be discretized as
[tn, tn+1] where tn = nτ , n = 0,1, . . . , and τ = 1/M > 0 denotes the time-step size, and M

is a given integer. So a function g : [0,∞) → R will be numerically represented by the se-
quence (gn+1/2)n where gn+1/2 := g(

tn+tn+1
2 ) = g((n+1/2)τ ) represents the value of the ap-

proximation of g on the interval [tn, tn+1]. Therefore, a function h(x, t), (x, t) ∈ Ω ×[0,∞),
(and in particular the datum f (x, t) in (6)), is approximated by the sequence (h

n+1/2
i ) where

h
n+1/2
i := h((i + 1/2)h, (n + 1/2)τ ) represents the value of the approximation of h on the

rectangle [xi, xi+1] × [tn, tn+1]. Under these approximations, the integral constraint in the
scheme (7) becomes:

∫
Ω

u(x)dx � h

N−1∑
i=1

ui, (23)

∫
Ω

vn(x)dx =
∫

Ω

[
un(x) +

∫ (n+1)τ

nτ

f (x, t)dt

]
dx � h

N−1∑
i=0

(
un

i + τf
n+1/2
i

)
.

Therefore, given un � (un
i )i , we will look for the minimizer un+1 � (un+1

i )i of (7) in the
space

S =
{

u ∈ L1(Ω) | u ≥ 0, u|(xi ,xi+1) = ui,

N−1∑
i=0

ui =
N−1∑
i=0

un
i + τf

n+1/2
i

}
, (24)

where a function u ∈ S can be identified with the sequence (ui)i ∈ R
N defined as above.

Similarly, the energy functional (13) is approximated as:

E(u) � h

N−1∑
i=0

(
F(ui) + uiVi

) + 1

2
h2

N−1∑
i,j=1

uiujWi,j (25)

where
∫ xi+1

xi

∫ yj+1
yj

W(x−y)dx dy � h2Wi,j := h2W(
xi+xi+1

2 − yj +yj+1
2 ) and Vi := V (

xi+xi+1
2 ).

Moreover, using formula (10), the transport cost,

Wcτ

(
u,vn

) =
∫ U(1)

0
cτ

(
U−1(η) − V −1

n (η)
)

dη,

can also be computed in the same way, by approximating U(x) = ∫ x

0 u(y)dy and Vn(x) =∫ x

0 Vn(y)dy as in (23). This allows to find a numerical approximation of the minimizing
functional I (u) = Wcτ (u, vn) + 1

τ
E(u) in (7) for any u ∈ S. As a consequence, given un �

(un
i )i , we can approximate the minimizer un+1 � (un+1)i of (7),

un+1 := Argmin

{
I (u) = Wcτ

(
u,vn

) + 1

τ
E(u) : u ∈ S

}
,

vn(x) := un(x) +
∫ (n+1)τ

nτ

f (x, t)dt,
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by using either of the two algorithms proposed in [11], that we next recall here for com-
pleteness. Below, Π : R

N → S denotes the orthogonal projection onto the subspace S of
R

N ; more details on this projection will be given later.

The Relaxation Algorithm We search the minimizer un+1 � (un+1
j )j among the functions

Π(uε) ∈ S, where uε ≡ (uε
j )j is of the form uε = vn + ∑N−1

i=0 εiei , εi are some small real
numbers, and ei are the vectors of the standard orthonormal basis {e0, e1, . . . eN−1} of R

N ,
i.e., ei = (z0, z1, . . . zN−1) with zi = 1 and zj = 0 for j �= i; here vn � (vn

j )j . More precisely,
the relaxation algorithm is as follows:

1. Let ε = 1 and set u = (vn
j )j where vn

j = un
j + τf

n+1/2
j .

2. While ε > 10−6, do:
(a) For i = 0 to N − 1, let zi = 1 and zj = 0 for j �= i, and set e = (z0, z1, . . . zN−1).
(b) Compute v = Π(u + εe). If I (v) < I (u) assign u = v.
(c) Compute v = Π(u − εe). If I (v) < I (u) assign u = v.
(d) Repeat steps (a)–(c) until u does not change, and then assign ε = ε/2.

3. Assign un+1 = u.

The Projected Gradient Algorithm Contrarily to the relaxation algorithm where the search
of the minimizer is performed among the functions Π(vn + ∑N−1

i=0 εiei), here we directly
follow the direction of −∇I (u) where the functional I (u) decreases most rapidly. There-
fore, we look for the minimizer in the smaller class of functions of the form u − ε∇I (u),
where ε > 0 is small. While this method is in general faster than the previous one, it could
sometimes take many iterates to converge (or may not converge at all!) when a component of
u � (ui)i is very close to zero, in which case the direction of −∇I (u) might not be well de-
fined numerically (this is the case in the example of Sect. 4.3). More precisely, the gradient
algorithm is as follows:

1. Let ε = 1, and u = (vn
j )j where vn

j = un
j + τf

n+1/2
j .

2. While ε < 10−16, do:
(a) Compute v = Π(u − ε∇I (u)).
(b) If I (v) < I (u), assign u = v, otherwise assign ε = ε/2.
(c) Repeat steps (a)–(b) until convergence, or until ε < 10−16.

3. Assign un+1 = u.

Now we comment on the projection Π : R
N → S. If we denote m := ∑N−1

i=0 un
i +τf

n+1/2
i ,

then the set S can be identified with the affine subset S = A + S of R
N , where A =

(0, . . . ,0,m), and S is the subspace of span{w0,w1, . . . ,wN−2} whose vectors have non-
negative components along the wi , and wi = (z0, . . . , zN−1) with zi = 1, zN−1 = −1 and
zj = 0 for j �∈ {1,N − 1}. So if M ′ = (z′

0, . . . , z
′
N−1) ∈ S is the orthogonal projection of a

point M = (z0, . . . , zN−1) ∈ R
N , M ′ = Π(M), then the coordinates of M ′ can be computed

by solving the system of N equations with N unknowns

N−1∑
i=0

z′
i = m,

(
M − M ′) · wi = 0 for all i = 0, . . .N − 2,

by using matrix algebra arguments, and also by enforcing that they are all non-negative.
To evaluate ∇I (u) in the projected gradient algorithm, we proceed as follows. From (16),

we have that the “directional derivative” of the functional I at u in the “direction” of g is
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δI (u)g(x)

=
∫

Ω

[∫ x

0
c′
τ

(
s − T (s)

)
ds + 1

τ

(
F ′(u(x)

) + V (x) + W � u(x)
)]

g(x)dx.

Approximating u(x), g(x),V (x) and W(x − y) by piecewise constant functions as above,
we have that

δI (u)g(x)

�
N−1∑
i=0

{∫ xi+1

xi

∫ x

0
c′
τ

(
s − T (s)

)
ds dx + h

τ

[
F ′(ui) + Vi + h

N−1∑
j=0

ujWi,j

]}
gi. (26)

But by viewing I as a function on R
N and then u � (ui)i ∈ R

N and g = (gi)i ∈ R
N , we also

have

δI (u)g(x) := lim
ε→0

I (u + εg) − I (u)

ε
� 〈∇I (u), g

〉
RN =

N−1∑
i=0

(∇I (u)
)
i
gi . (27)

Combining (26) and (27), we obtain

(∇I (u)
)
i
=

∫ xi+1

xi

∫ x

0
c′
τ

(
s − T (s)

)
ds dx + h

τ

[
F ′(ui) + Vi + h

N−1∑
j=0

ujWi,j

]
. (28)

But note that T can be evaluated in every interval [xi, xi+1] according to our approximation.
Therefore, c′

τ (s − T (s)) is defined piecewise, and we have

∫ xi+1

xi

∫ x

0
c′
τ

(
s − T (s)

)
ds dx

=
∫ xi+1

xi

∫ xi

0
c′
τ

(
s − T (s)

)
ds dx +

∫ xi+1

xi

∫ x

xi

c′
τ

(
s − T (s)

)
ds dx

= h

i−1∑
j=0

∫ xj+1

xj

c′
τ

(
s − T (s)

)
ds +

∫ xi+1

xi

∫ x

xi

c′
τ

(
s − T (s)

)
ds dx.

We then deduce the formula:

(∇I (u)
)
i
= h

i−1∑
j=0

∫ xj+1

xj

c′
τ

(
s − T (s)

)
ds +

∫ xi+1

xi

∫ x

xi

c′
τ

(
s − T (s)

)
ds dx

+ h

τ

[
F ′(ui) + Vi + h

N−1∑
j=0

ujWi,j

]
. (29)

4 Numerical Tests

We implement the two numerical algorithms using MATLAB. We use the projected gradient
algorithm whenever possible, since it is the faster of the two algorithms.
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Fig. 1 Comparison between the exact solution of the non-homogeneous parabolic p-Laplacian equation (30)
and its numerical approximations for τ = 1/128 and h = 1/64 at time t = 1

Table 1 Errors for the solution
to the non-homogeneous
parabolic p-Laplacian equation
(30) using the projected gradient
method (PG)

τ h = 1/64

Algorithm ‖u(1) − ũ(1)‖
�1 ‖u − ũ‖

�1(�1)

1/128 PG 0.004459 0.001997

1/256 PG 0.001118 0.000644

1/512 PG 0.000362 0.000457

h τ = 1/128

Algorithm ‖u(1) − ũ(1)‖
�1 ‖u − ũ‖

�1(�1)

1/16 PG 0.004459 0.004961

1/64 PG 0.004459 0.001997

1/128 PG 0.004459 0.001751

4.1 Non-homogeneous Parabolic p-Laplacian Equation

We test the numerical scheme with an explicit solution of the non-homogeneous parabolic
p-Laplacian equation ⎧⎪⎨

⎪⎩
ut − [(ux)

3]x = f (x, t) x ∈ (0,1), t > 0

ux = 0 x ∈ {0,1}, t > 0

u(x,0) = 1 x ∈ (0,1)

(30)

where p = 4 and f (x, t) := cos2(πx) + 6t3π4(1 + cos(2πx) sin2(2πx)). Clearly, u(x, t) =
1 + t cos2(πx) + 3π4

2 t4 solves (30). Moreover, if we choose c(x) = 3
4 |x|4/3 (i.e. c∗(x) =

x4/4), F(x) = 9
10 x5/3 and V = W = 0 in (6), it easy to check that (30) is on the form (6).

We first compare the actual solution of (30) at time t = 1 with the numerical approximations
obtained by both the relaxation algorithm and the projected gradient algorithm. The results
are presented in Fig. 1.

Next, we compare the errors between the actual solution u of (30) and the numerical
solution ũ computed by using the projected gradient method. The results are reported in
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Table 2 Comparison between the equilibrium solution u∞ and the numerical solution ui at t = 3 for the
rescaled porous medium equation (34), using h = 1/8 and τ = 1/64

Solution i

0 1 2 3 4 5 6 7

ui(t = 3) 1.082031 1.074219 1.058594 1.035156 1.003906 0.964844 0.917969 0.863281

u∞((i + 1/2)h) 1.082357 1.074544 1.058919 1.035482 1.004232 0.965169 0.918294 0.863607

Table 1. From this table, it appears that the �1 and �1(�1) errors due to time discretization
are larger than that of spatial discretization, which suggests that the algorithm has greater
sensitivity to changes in τ than changes in h.

The discrete L1(Ω) errors are computed using the following formulae given in [11]:

∥∥u(t) − ũ(t)
∥∥

�1 = h

N−1∑
i=0

∣∣u(
(i + 1/2)h, t

) − ũi (t)
∣∣ (31)

where ũi (t) is the ith component of the numerical solution at time t . Also,

‖u − ũ‖�1(�1) = τ

M∑
m=1

∥∥u(mτ) − ũ(mτ)
∥∥

�1 , (32)

where M denotes the number of time discretization points.

Remark 1 Comparing the projected gradient algorithm with the finite-difference method of
Crank-Nicolson time stepping, using the homogeneous heat equation

ut = uxx, u(x,0) = 1 + 0.5 cos(πx), ux |∂Ω = 0, (33)

we notice that the projected gradient method is more computationally costly and yields
errors two to ten times larger than the Crank-Nicolson algorithm. However in some cases
the finite difference scheme performs poorly (see the example in Sect. 4.3).

4.2 Rescaled Porous Medium and Doubly Nonlinear Equations

Example with quadratic cost function Consider the PDE,

ut = (
u2

)
xx

+ (xu)x (34)

which is the rescaled porous medium equation wT = (w2)yy , where the relations between
(x, t) and (y, T ) are given as in [2], and x, y ∈ R and t, T ∈ [0,∞). If x ∈ Ω , then (34)
is of the form (6) with F(x) = x2, V (x) = c(x) = x2/2 and f = W = 0. The equilibrium
solution u∞(x), is the Barenblatt profile which solves

2
du∞(x)

dx
+ x = 0,

∫
Ω

u∞(x)dx = 1,

that is, u∞(x) = 13/12 − x2/4. We evaluate this solution at the points (xi + xi+1)/2 =
(i + 1/2)h and compare the values with the numerical approximations ui at time t = 3
obtained by the projected gradient method. The results are presented in Table 2. As shown
in this table, our approximations are already close to the actual equilibrium solution u∞
(where u∞(x) = limt→∞ u(t, x)) at time t = 3.
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Table 3 Comparison between the equilibrium solution and the numerical solution of the rescaled doubly
nonlinear equation at t = 3, for h = 1/8 and τ = 1/64

Solution i

0 1 2 3 4 5 6 7

ui(t = 3) 1.02753 1.02682 1.02416 1.01825 1.00778 0.99145 0.96796 0.93600

u∞((i + 1/2)h) 1.02775 1.02704 1.02438 1.01847 1.00800 0.99167 0.96818 0.93623

Example with non-quadratic cost function Consider now the doubly nonlinear equation
wT = [|(wm)y |p−2(wm)y]y , where y ∈ R and T ∈ [0,∞). By rescaling (y, T ) into (x, t)

using the relations in [2], we may rewrite this PDE in the form

ut = [
uc′

∗
(
F ′(u)x

)]
x
+ (xu)x (35)

where c(x) = |x|q/q with q = p/(p − 1), and F(x) = mxγ

γ (γ−1)
with γ := m + p−2

p−1 . Note that

(35) is of the form (6) where V (x) = c(x) and f = W = 0. As shown in [2], the equilibrium
solution of (35) solves

(
F ′(u) + c(x)

)
x
= 0,

∫
Ω

u(x)dx = 1. (36)

If we set c(x) = |x|3/3 (i.e., q = 3 or p = 3/2) and F(x) = 3x2/2 (i.e., m = 3 and γ = 2),
then the equilibrium solution is u∞(x) = 37/36 − x3/9. As in the previous example, we
compare this solution at positions (xi + xi+1)/2 = (i + 1/2)h with the numerical approxi-
mation at time t = 3 obtained by the projected gradient method. The results are recorded in
Table 3. These results confirm that the conclusions drawn in the previous example extend to
all cost functions of the form c(x) = |x|q/q for any q > 1.

4.3 Convection-Diffusion

Consider the convection-diffusion equation⎧⎪⎨
⎪⎩

∂u
∂t

= ∂
∂x

(uc′∗[(ν lnu + x)x]) x ∈ (0,1); t > 0

(ν lnu + V ′u)x = 0 x = 0,1, t > 0

u(x,0) = 1 x ∈ (0,1)

(37)

where c(x) = |x|3/3 and ν = 1/100. This equation is of the form (6) with F(x) = νx ln(x),
V (x) = x and f = W = 0. It is easy to check that the equilibrium solution of (37) is the
probability density function solution of (ν lnu + x)x = 0, i.e.,

u∞(x) = K exp(−x/ν), 1/K = ν
(
1 − exp(−1/ν)

)
. (38)

To test our numerical algorithm on this example, we use the relaxation method since the
projected gradient method failed. However, the relaxation method is very slow, requiring
almost nine hours of computation time (on a Windows PC with an Intel Core i5 CPU M 520
@2.40 GHz processor and 4 gb RAM) for the solution where τ = 1/128 and h = 1/16. The
results are recorded in Table 4. They show that as the time step size gets smaller, then our
numerical results ui (computed at time t = 2), get closer to the actual equilibrium solution
u∞ for small values of x where u∞(x) is not too small (e.g., x ∈ (0,3/16)); but when
the values of u∞(x) get very small (i.e., close to zero), then our numerical results become
less accurate, but they still follow the same trend. This explains why the projected gradient
algorithm failed here, as we already mentioned in Sect. 3.
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Fig. 2 Approximate solution at
time t = 2 to the equilibrium
solution of the convection
diffusion equation (37), using
Crank-Nicolson finite difference
scheme

As pointed out in [11], when we use a Crank-Nicolson finite difference scheme to solve
this convection-diffusion problem, oscillations occur (as shown on Fig. 2). Therefore, the
relaxation algorithm, while slow, yields a better approximation to the solution of this prob-
lem.

5 Conclusion

We extend the numerical methods of [11] to all strictly convex symmetric cost functions,
and in particular to cost functions of the form |x|q/q for q > 1. This allows us to numeri-
cally approximate, on the real line, solutions to a large class of parabolic partial differential
equations which are gradient flows in the Lp-Wasserstein spaces for all p > 1. It was found
that the two algorithms of this paper require significantly more computation time than tra-
ditional finite difference solvers for simple diffusion PDE’s, however in certain cases they
give a better approximation than finite differences. In order for these variational methods to
be numerically practical, new numerical algorithms need to be developed to improve their
speed.

Another interesting issue that we plan to investigate in the near future is to extend these
numerical results to higher dimensions. Related to this problem, the only available litera-
ture so far seems to be the work by Carrillo and Moll [8] where an alternative numerical
algorithm is proposed for solving problem (3) in higher dimensions. In [8] the authors re-
formulated this equation using Lagrangian coordinates, which permits to avoid computing
numerically the Wasserstein distance in higher dimensions. Our goal instead is to combine
the present work (performed in one dimension) with a numerical resolution of the optimal
transport problem in higher dimensions obtained by the first author et al. in [15] (perhaps
at the discrete level), to produce a numerical algorithm for solving problem (3) in higher
dimensions via the scheme (4).
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