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Nuclear quantum effects on proton transfer and reorientation in BaZrO3 is investigated theoretically

using the ab initio path-integral molecular-dynamics simulation technique. The result demonstrates that

adding quantum fluctuations has a large effect on, in particular, the transfer barrier. The corresponding

rates and diffusion coefficient are evaluated using the path-centroid transition state theory. In contrast with

what is found assuming classical mechanics for the nuclear motion, the reorientation step becomes rate

limiting below 600 K.
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Proton conduction is a ubiquitous phenomenon, influ-
encing dynamical behavior in a wide variety of systems
ranging from materials science to biochemistry. Several
perovskite-type oxides with the general formula ABO3

exhibit significant proton conductivity at elevated tempera-
tures and are potential candidates as electrolyte materials
in various electrochemical applications [1]. Apart from
being of technological importance, they also serve as
model systems for fast proton transport in solids [2].
Basically, the long-range proton migration in these oxides
occurs as a sequence of hydrogen-bond mediated proton
transfers (T) between neighboring lattice oxygens and
reorientations (R) around the same oxygen site [3]. A
system particularly well suited for studying the elementary
diffusional steps is BaZrO3, as it possesses cubic symmetry
over a wide range of temperatures. Its highly symmetric
structure simplifies theoretical modeling of transport prop-
erties as well as analysis and interpretation of experimental
data and it can be viewed as a model system for proton
transport in perovskite oxides.

First-principles based density functional theory (DFT) is
a powerful tool to extract detailed information about mi-
croscopic proton transport mechanisms. Using structure
optimization [4–9] and molecular-dynamics approaches
[10–13], the stable sites, transition states, and transition
pathways of hydrogen in various perovskite oxides have
been investigated. It is generally concluded from these
simulation studies that the transfer step is slow compared
with reorientation, and thereby rate limiting [3,7,11,13].
On the other hand, the strong redshifted OH-stretching
mode in experimental infrared spectra is indicative of
strong hydrogen-bond interactions, which favor fast proton
transfer rather than reorientation, the latter requiring the
breaking of such bonds [3]. However, the above simulation
studies all treat the nuclei as classical particles. Although
attempts have been made to take the quantum nature of the
hydrogen motion into account [14–16], a thorough study of

the nuclear quantum effects, without resort to quasiclass-
ical approximations, is still lacking. Thus, the nuclei quan-
tum effects, which are likely to be important due to the
small hydrogen mass and the high O-H vibrational fre-
quencies, have never been accurately determined.
The path-integral (PI) formulation offers an important

way to study the quantum nature of the nuclear degrees of
freedom at finite temperature. The combination of path-
integral molecular dynamics (PIMD) with electronic struc-
ture optimization, the ab initio approach, has been used to
study various systems [17]; however, few users have con-
sidered proton transport in solids and, in particular, proton
transport in oxides.
Based on ab initio PIMD [18], the present Letter deals

with the nuclear quantum effects, such as zero-point mo-
tion and tunneling, associated with proton transfer and
reorientation in BaZrO3. The ab initio PI technique allows
the many-body interaction potential to be calculated ‘‘on
the fly,’’ using contemporary first-principles electronic
structure techniques. The thermal and quantal fluctuations
are fully accounted for in the interacting many-atom sys-
tem [19]. This is particularly important for the present
system where it is known that the dynamics of the oxygen
sublattice is crucial for the proton migration [3] and where
quantum effects should be important. Using this method
we derive the proton probability distribution over a wide
range of temperatures, spanning both the classical and the
quantum regimes, and determine the corresponding tem-
perature dependent rates and diffusion coefficient using the
path-centroid transition state theory [20]. We find that
when the quantum effects are included the reorientation
and not the transfer step becomes rate limiting for 600 K
and below, in contrast to when the nuclei are treated as
classical objects.
The two different elementary steps for proton transport

in BaZrO3 are illustrated in Fig. 1. We introduce a reaction
coordinate � for each process. For proton transfer it is
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chosen as the difference between the two oxygen-hydrogen
bond lengths �R ¼ RO1;H � RO2;H, while for proton reor-

ientation we use the angle � between Ba-O-H.
The first-principles calculations were carried out within

the framework of DFT employing the generalized gradient
approximation (GGA) due to Becke-Lee-Yang-Parr
(BLYP) [21]. Using the Car-Parrinello molecular dynamics
(CPMD) package [22], with Troullier-Martins norm-
conserving pseudopotentials [23], the path-integral (PI)
simulations were performed combined with Born-
Oppenheimer molecular dynamics. The wave function op-
timization was performed using a standard iterative sub-
space method (ODIIS) together with wave function
extrapolation for multi k-point calculations. The quantum
paths were discretized into P ¼ 16 imaginary time slices
(P ¼ 32 at T ¼ 100 K) together with the normal mode
transformation with fictitious masses for the noncentroid
modes, while Nose-Hoover chain is coupled to each non-
centroid nuclear degree of freedom (and one Nose-Hoover
chain for the centroid mode) [24]. Most of the computa-
tions were performed on a 1� 1� 1 supercell containing
1 H and a five-atom BaZrO3 unit. Such a small cell was
used as a compromise to reduce the computational cost of
the PI simulation. Hydrogen was introduced in the þ1
charge state and the resulting system was neutralized by
the standard means of including a uniform background
charge. The setup gave a stable cubic structure with an

equilibrium lattice constant a0 ¼ 4:13 �A, which is close to

the experimental result a0 ¼ 4:19 �A [25]. Brillouin zone
sampling was done using a 3� 3� 3 k-point grid and we
used the energy cutoff 100 Ry.

To test whether the 1� 1� 1 supercell can reproduce
the proton properties appropriately, we have computed the
classical migration barriers Vm using both the 1� 1� 1
supercell and a 2� 2� 2 supercell. The barriers were

obtained as the differences in total energies with the proton
located at the saddle points and at the stable site, respec-
tively. The results are summarized in Table I. We find that
the 1� 1� 1 cell reproduces the results of the larger
supercell quite well. We also find that the present BLYP
data agree well with the previous GGA/PW91 results in
Refs [8,19].
We first consider the quantum paths. For each quantum

path the value of the reaction coordinate �ð�Þ can be
evaluated as function of imaginary time �. In the MD

sampling procedure the centroid �c ¼ ð�@Þ�1
R�@
0 d��ð�Þ

is kept fixed. For each value of the centroid �c we can then
determine the corresponding distribution function Pð�Þ. In
Fig. 2 we show the result for Pð�Þwith the centroid fixed at
the barrier top, �c ¼ �#, for the transfer and reorientation
process, respectively. The spatial extension of Pð�Þ with
�c ¼ �# provides qualitative information on the character
of the diffusion process. At high temperatures, the distri-
bution approaches the classical limit, Pð�Þ ¼ �ð�� �#Þ,
with no quantum fluctuations. When the temperature is
lowered Pð�Þ broadens due to quantum fluctuations to a
Gaussian shaped function and the diffusion can be viewed
more or less as semiclassical overbarrier motion. As can be
seen in Fig. 2, this is the situation at 300 and 600 K for both
transfer and reorientation. At low temperatures Pð�Þ will
delocalize with amplitudes towards the two neighboring
stable positions. This corresponds to that tunneling pro-
cesses become crucial for the diffusive motion. This is
clearly seen at 100 K, most pronounced for the transfer
process.
We next consider the potential of mean force Wð�Þ, or

free energy, for the reaction coordinate �. This is evaluated
using the constrained molecular-dynamics scheme [26,27]
in the blue moon ensemble [26]. The sampling time for the
various production runs is 1.5 �4 ps and the length of an
equilibration run is of the same order as the corresponding
production run. The constrained force evaluation is per-
formed at 7 nonequivalent positions along the reaction
coordinate and the force is then integrated to obtain the
potential of mean force. This is done both in the classical
and quantum cases and in the latter the reaction coordinate
� is equal to centroid coordinate �c of the corresponding
quantum path. Our results are shown in Fig. 3. The classi-

TABLE I. Proton transfer and reorientation barriers calculated
with the host lattice atoms fixed at their original positions (fixed
lattice) and with the host lattice atoms relaxed to their equilib-
rium positions in the presence of the hydrogen atom (relaxed
lattice) and using two different supercell sizes corresponding to
1� 1� 1 primitive cells (2� 2� 2 primitive cells).

Configuration VmðeVÞ
Fixed lattice Relaxed lattice

Transfer 1.394 (1.313) 0.182 (0.206)

Reorientation 0.337 (0.318) 0.175 (0.182)
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FIG. 1 (color online). Schematic illustration of the proton
transfer (T) and reorientation (R) pathways. The small white
balls represent the energy minimum position of the proton, and
they are equivalent due to the symmetry of the crystal.
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cal free energy barriers are quite similar at the different
temperatures (they differ by less than 10 meV) and hence
only one of them is presented. The reduction in free energy
barrier, as function of temperature, is substantial, in par-
ticular, for the transfer process.

Although both transfer and reorientation are elementary
migration steps, they are fundamentally different in nature.
Proton transfer at the same time involves a process of
breaking an O-H bond with one oxygen atom and forming
an O-H bond with another. The O-H stretch mode softens
significantly during the transfer process and vanishes at the
transition state, which reduces the magnitude of the zero-

point energy fluctuations and lowers the free energy bar-
rier. However, that is not the case for the reorientation, in
which the proton binds tightly to an oxygen during the
whole process, and interacts only slightly with the nearest
barium atom in the vicinity of the saddle point. Thus the
vibrational properties are similar during the entire process
and the change of the magnitude of the zero-point energy
fluctuations is much less pronounced.
The computed free energies Wð�Þ can be used to obtain

the corresponding transition rates. In the classical limit we
use the classical transition state theory result kcl ¼ 1

2 �hj v� jiPclð�#Þ, where hj v� ji is the average flux of the

reaction coordinate at the transition state � ¼ �# and
Pclð�#Þ / exp½�Wclð�#Þ=kBT� is the probability for the
system to be located at the transition state, evaluated in
the classical limit. In the quantum case we use the path-
centroid transition state theory [20] and write the rate as
kqm ¼ 1

2 hj v� jifqmPqmð�#
cÞ where �c denotes the position

of the centroid. At high temperatures (kBT > @!b=2�)
fqm ¼ 1 and at low temperatures (kBT < @!b=2�) fqm ¼
2�kBT=@!b, where the imaginary barrier frequency !b is

defined as !b ¼ ffiffiffiffiffiffiffiffiffiffi
�=�

p
with � ¼ �d2Wð�cÞ=d2�c and �

equal to the reduced mass for the reaction coordinate �c

[26].
The transfer (kT) and reorientation (kR) rates are shown

in Fig. 4(a). The quantum effects on, in particular, the
transfer rate is substantial with an increase of 105 at

FIG. 3. Temperature dependence of the free energy Wð�Þ
along the migration path for (a) proton transfer and (b) proton
reorientation, both for the classical and quantum cases. The free
energy is given as function of (a) the difference of two O-H
bonds length �R ¼ RO1;H � RO2;H (unit: Å), and (b) the Ba-O-H

angle � for proton reorientation.

FIG. 4. (a) Proton jump rates for transfer (kT) and reorientation
(kR) and (b) diffusion coefficient. Solid and dashed lines repre-
sent the quantum (qm) and classical (cl) cases, respectively, and
T and R denote transfer and reorientation, respectively.

FIG. 2. Temperature dependence of the distribution of the
quantum paths Pð�Þ with the centroid �c located at the transition
state �c ¼ �# for proton transfer (left) and reorientation (right),
respectively. The unit of �R is Å.
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100 K. Both the transfer and reorientation process are
necessary for the occurrence of long-range diffusion and
the slowest process becomes rate limiting. In the classical
case the transfer rate is slower and rate limiting at all
temperatures, while in the quantum case the reorientation
step becomes rate limiting below 600 K. In Fig. 4(b) we
present our results for the diffusion coefficient, which is
given by the expression D ¼ ða2=6ÞkTkR=ðkT þ kRÞ [28].
In doped BaZrO3 the diffusion rate is reduced by about
2 orders of magnitudes [3], compared with the data in
Fig. 4(b), due to the effect of the dopants [9].

In conclusion, the quantum effects on the proton motion
in BaZrO3 have been studied using the ab initio path-
integral molecular-dynamics technique. The full complex-
ity of thermal and quantum fluctuations is thereby included
in a natural way for the interacting many-atom system. The
migration barriers for the two elementary steps, transfer,
and reorientation, have been computed at various tempera-
tures and the corresponding rates and diffusion coefficient
are evaluated using the path-centroid transition state the-
ory. In accordance with previous simulations we find that
the transfer step is rate limiting when the nuclei are treated
as classical point particles. However, when the nuclear
quantum effects are included the reorientation step be-
comes rate limiting below 600 K. Our finding that nuclear
quantum fluctuations influence the temperature depen-
dence for hydrogen-bond mediated transfer processes and
localized reorientation motion differently will be of im-
portance not only for oxides in general, but also for other
systems, e.g., solid acids [29], where the so called
Grotthuss mechanism is responsible for the proton transfer
process.
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