Marta Lipinski

Marta Lipinski
University of Maryland, Baltimore | UMB · Department of Anesthesiology

PhD

About

71
Publications
68,117
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,102
Citations
Additional affiliations
July 2017 - present
University of Maryland, Baltimore
Position
  • Professor
July 2017 - present
University of Maryland, Baltimore
Position
  • Professor
July 2011 - July 2017
University of Maryland, Baltimore
Position
  • Professor
Education
September 1995 - September 2011
Massachusetts Institute of Technology
Field of study
  • Cancer Biology
September 1991 - May 1995
Indiana University Bloomington
Field of study
  • Biology

Publications

Publications (71)
Article
Full-text available
Autophagy is induced by many cytotoxic stimuli but it is often unclear whether, under specific conditions, autophagy plays a prosurvival or a prodeath role. To answer this critical question we developed a novel methodology that employs automated live microscopy and image analysis to measure autophagy and apoptosis simultaneously in single cells. We...
Article
Full-text available
Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) trans...
Article
Full-text available
Autophagy is a catabolic mechanism facilitating degradation of cytoplasmic proteins and organelles in a lysosome-dependent manner. Autophagy flux is necessary for normal neuronal homeostasis and its dysfunction contributes to neuronal cell death in several neurodegenerative diseases. Elevated autophagy has been reported after spinal cord injury (SC...
Article
Full-text available
Significance: Traumatic brain injury (TBI) and spinal cord injury (SCI) are major causes of death and long-term disability worldwide. Despite important pathophysiological differences between these disorders, in many respects, mechanisms of injury are similar. During both TBI and SCI, some cells are directly mechanically injured, but more die as a...
Article
Full-text available
Necroptosis, a regulated necrosis pathway mediated by the receptor-interacting protein kinases 1 and 3 (RIPK1 and RIPK3), is induced following spinal cord injury (SCI) and thought to contribute to neuronal and glial cell death. However, mechanisms leading to activation of necroptosis after SCI remain unclear. We have previously shown that autophagy...
Article
Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms....
Article
Full-text available
Mutations in the GBA1 gene are the single most frequent genetic risk factor for Parkinson’s disease (PD). Neurodegenerative changes in GBA1-associated PD have been linked to the defective lysosomal clearance of autophagic substrates and aggregate-prone proteins. To elucidate novel mechanisms contributing to proteinopathy in PD, we investigated the...
Article
Full-text available
Excessive and prolonged neuroinflammation following traumatic brain injury (TBI) contributes to long-term tissue damage and poor functional outcomes. However, the mechanisms contributing to exacerbated inflammatory responses after brain injury remain poorly understood. Our previous work showed that macroautophagy/autophagy flux is inhibited in neur...
Article
Full-text available
Autophagy is a cellular catabolic pathway generally thought to be neuroprotective. However, autophagy and in particular its upstream regulator, the ULK1 kinase, can also promote axonal degeneration. We examined the role and the mechanisms of autophagy in axonal degeneration using a mouse model of contusive spinal cord injury (SCI). Consistent with...
Article
Full-text available
Autophagy is a catabolic process that degrades cytoplasmic constituents and organelles in the lysosome, thus serving an important role in cellular homeostasis and protection against insults. We previously reported that defects in autophagy contribute to neuronal cell damage in traumatic spinal cord injury (SCI). Recent data from other inflammatory...
Article
Full-text available
Elderly patients with traumatic brain injury (TBI) have greater mortality and poorer outcomes than younger individuals. The extent to which old age alters long-term recovery and chronic microglial activation after TBI is unknown, and evidence for therapeutic efficacy in aged mice is sorely lacking. The present study sought to identify potential inf...
Preprint
Full-text available
Background: Elderly patients with traumatic brain injury (TBI) have greater mortality and poorer outcomes than younger individuals. Given the critical role for autophagy in promoting the cellular degradation of damaged organelles and the negative impact of aging on this protective mechanism, we hypothesized that treatment with an autophagic inducer...
Article
Changes in plasmalogen glycerophosphoethanolamine (PE-P) composition (structure and abundance) are a key indicator of altered lipid metabolism. Differential changes in the levels of PE-P have been reported in different disease states, including neurodegenerative diseases. Of particular interest, traumatic brain injury (TBI) has resulted in altered...
Article
Full-text available
Traumatic brain injury (TBI) is a major cause of mortality and long-term disability around the world. Even mild to moderate TBI can lead to lifelong neurological impairment due to acute and progressive neurodegeneration and neuroinflammation induced by the injury. Thus, the discovery of novel treatments which can be used as early therapeutic interv...
Article
Full-text available
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monit...
Preprint
Full-text available
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monit...
Preprint
Full-text available
the PDF can be download freely on pubmed. https://pubmed.ncbi.nlm.nih.gov/33634751/
Cover Page
Full-text available
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monit...
Article
Full-text available
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monit...
Article
Full-text available
Bi-allelic GBA1 mutations cause Gaucher's disease (GD), the most common lysosomal storage disorder. Neuronopathic manifestations in GD include neurodegeneration, which can be severe and rapidly progressive. GBA1 mutations are also the most frequent genetic risk factors for Parkinson's disease. Dysfunction of the autophagy-lysosomal pathway represen...
Preprint
Full-text available
Traumatic brain injury (TBI) is a major cause of mortality and long-term disability around the world. Even mild to moderate TBI can lead to lifelong neurological impairment due to acute and progressive neurodegeneration and neuroinflammation induced by the injury. Thus, the discovery of novel treatments which can be used as early therapeutic interv...
Article
Full-text available
Autophagy is a physiological process that helps maintain a balance between the manufacture of cellular components and breakdown of damaged organelles and other toxic cellular constituents. Changes in autophagic markers are readily detectable in the spinal cord and brain following neurotrauma, including traumatic spinal cord and brain injury (SCI/TB...
Article
Full-text available
The autophagy–lysosomal pathway plays an essential role in cellular homeostasis as well as a protective function against a variety of diseases including neurodegeneration. Conversely, inhibition of autophagy, for example due to lysosomal dysfunction, can lead to pathological accumulation of dysfunctional autophagosomes and consequent neuronal cell...
Article
Full-text available
Lysosomal membrane permeabilization (LMP) is observed under many pathological conditions, leading to cellular dysfunction and death. However, the mechanisms by which lysosomal membranes become leaky in vivo are not clear. Our data demonstrate that LMP occurs in neurons following controlled cortical impact induced (CCI) traumatic brain injury (TBI)...
Article
Full-text available
Recent studies indicate a causative relationship between defects in autophagy and dopaminergic neuron degeneration in Parkinson disease (PD). However, it is not fully understood how autophagy is regulated in the context of PD. Here we identify USP24 (ubiquitin specific peptidase 24), a gene located in the PARK10 (Parkinson disease 10 [susceptibilit...
Article
Full-text available
We describe the use of ultra performance liquid chromatography coupled to data independent tandem mass spectrometry with traveling wave ion mobility for detection and structural identification of ether‐linked glycerophosphoethanolamine. The experimental design generated 4‐dimensional data (chromatographic retention time, precursor accurate mass, dr...
Article
Full-text available
Drosophila models have been successfully used to identify many genetic components that affect neurodegenerative disorders. Recently, there has been a growing interest in identifying innate and environmental factors that influence the individual outcomes following traumatic brain injury (TBI). This includes both severe TBI and more subtle, mild TBI...
Article
Full-text available
Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. In addition, there has been a growing appreciation that even repetitive, milder forms of TBI (mTBI) can have long-term deleterious consequences to neural tissues. Hampering our understanding of genetic and environmental factors that influence the cellular and molecu...
Article
Full-text available
Clinical and experimental studies show that spinal cord injury (SCI) can cause cognitive impairment and depression that can significantly impact outcomes. Thus, identifying mechanisms responsible for these less well-examined, important SCI consequences may provide targets for more effective therapeutic intervention. To determine whether cognitive a...
Article
Full-text available
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring au...
Article
Full-text available
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monit...
Article
Full-text available
Traumatic spinal cord injury (SCI) induces cell cycle activation (CCA) that contributes to secondary injury and related functional impairments such as motor deficits and hyperpathia. E2F1 and E2F2 are members of the activator sub-family of E2F transcription factors that play an important role in proliferating cells and in cell cycle-related neurona...
Article
Full-text available
Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase). The severe forms of GD are associated with neurodegeneration with either rapid (type 2) or slow progression (type 3). Although the neurodegenerative process in GD has been linked to lysosomal dysfunction, the mechanisms invol...
Article
Full-text available
Spinal cord injury (SCI) is one of the most common causes of long-term disability among young adults world-wide. In the United States, 12,000–20,000 new cases are reported annually and approximately half a million people currently live with SCI. Unfortunately, beyond surgery for immobilization of the spine and prolonged rehabilitation there are no...
Article
Full-text available
Caspase-11 is a highly inducible caspase that controls both inflammatory responses and cell death. Caspase-11 controls interleukin 1β (IL-1β) secretion by potentiating caspase-1 activation and induces caspase-1-independent pyroptosis downstream of noncanonical NLRP3 inflammasome activators such as lipopolysaccharide (LPS) and Gram-negative bacteria...
Article
Full-text available
Geranylgeranylacetone (GGA) is an inducer of heat-shock protein 70 (HSP70) that has been used clinically for many years as an antiulcer treatment. It is centrally active after oral administration and is neuroprotective in experimental brain ischemia/stroke models. We examined the effects of single oral GGA before treatment (800 mg/kg, 48 hours befo...
Article
Full-text available
Multiple lines of evidence indicate a strong relationship between Αβ peptide-induced neurite degeneration and the progressive loss of cognitive functions in Alzheimer disease (AD) patients and in AD animal models. This prompted us to develop a high content screening assay (HCS) and Neurite Image Quantitator (NeuriteIQ) software to quantify the loss...
Article
Introduction The endoplasmic reticulum (ER) serves as the primary cellular protein processing factory where polypeptides destined for secretion or membrane insertion are folded. This membrane-bound organelle recruits translating ribosomes, translocates newly synthesized peptides into its lumen, and promotes a variety of post-translational modificat...
Article
Autophagy, a lysosome-dependent catabolic process involved in the turnover of cellular components, mediates normal homeostasis during development and protects multicellular eukaryotes from neurodegeneration, cancer and other diseases. However, the mechanisms regulating autophagy under normal nutritional conditions most frequently encountered by cel...
Article
Cell death has an important role in many human diseases, and strategies aimed at modulating the associated pathways have been successfully applied to treat various disorders. Indeed, several clinically promising cytotoxic and cytoprotective agents with potential applications in cancer, ischaemic and neurodegenerative diseases have recently been ide...
Article
Full-text available
Dysregulation of autophagy, a cellular catabolic mechanism essential for degradation of misfolded proteins, has been implicated in multiple neurodegenerative diseases. However, the mechanisms that lead to the autophagy dysfunction are still not clear. Based on the results of a genome-wide screen, we show that reactive oxygen species (ROS) serve as...
Article
High content neuron image processing is considered as an important method for quantitative neurobiological studies. The main goal of analysis in this paper is to provide automatic image processing approaches to process neuron images for studying neuron mechanism in high content screening. In the nuclei channel, all nuclei are segmented and detected...
Article
Autophagy is a cellular catabolic mechanism that plays an essential function in protecting multicellular eukaryotes from neurodegeneration, cancer, and other diseases. However, we still know very little about mechanisms regulating autophagy under normal homeostatic conditions when nutrients are not limiting. In a genome-wide human siRNA screen, we...
Article
Vacuolar protein sorting 34 (Vps34) complexes, the class III PtdIns3 kinase, specifically phosphorylate the D3 position of PtdIns to produce PtdIns3P. Vps34 is involved in the control of multiple key intracellular membrane trafficking pathways including endocytic sorting and autophagy. In mammalian cells, Vps34 interacts with Beclin 1, an ortholog...
Article
Full-text available
We report multifactorial analysis of candidate mechanisms of Alzheimer's disease utilizing high content analysis, gene expression microarray, and linear regression model to integrate neuronal imaging data with hippocampal gene expression data. Our analysis led to the identification of several genes that may contribute to different image traits or p...
Article
High-throughput screening (HTS) of cell-based assays has recently emerged as an important tool of drug discovery. The analysis and modeling of HTS microscopy neuron images, however, is particularly challenging. In this paper we present a novel algorithm for extraction and quantification of neurite segments from HTS neuron images. The algorithm is d...
Article
Full-text available
Autophagy has been recently proposed to be a component of the innate cellular immune response against several types of intracellular microorganisms. However, other intracellular bacteria including Listeria monocytogenes have been thought to evade the autophagic cellular surveillance. Here, we show that cellular infection by L. monocytogenes induces...
Article
High throughput neuron image processing is an important method for drug screening and quantitative neurobiological studies. The method usually includes detection of neurite structures, feature extraction, quantification, and statistical analysis. In this paper, we present a new algorithm for fast and automatic extraction of neurite structures in mi...
Article
Under normal physiological conditions, most cell types in our body obtain their energy from nutrients that are present in abundance in the extracellular environment. The availability of these nutrients to each cell is “rationed” by the limited amount of trophic factors that control nutrient uptake. Only a few select cell types, such as oocytes, are...
Article
The retinoblastoma tumor suppressor and the closely related p107 and p130 proteins play important roles in the regulation of both tumorigenesis and tissue-specific differentiation. To determine the role of Rb in development more precisely, we analyzed chimeric embryos and adults made with marked Rb-/- cells. We demonstrated that although brains of...
Article
Abnormal protein aggregation is a hallmark of many neurodegenerative diseases. However, the mechanism by which protein aggregates induce neurodegneration remains controversial. Recently proposed mechanisms of neuronal death in polyglutamine expansion diseases include activation of caspases and associated cell death pathways, interference with trans...
Article
Neurons may die as a normal physiological process during development or as a pathological process in diseases. The best-understood mechanism of neuronal cell death is apoptosis, which is regulated by an evolutionarily conserved cellular pathway that consists of the caspase family, the Bcl-2 family, and the adaptor protein Apaf-1. Apoptosis, however...
Article
Full-text available
The retinoblastoma tumor suppressor (RB) plays an important role in the regulation of cell cycle progression and terminal differentiation of many cell types. Rb(-/-) mouse embryos die at midgestation with defects in cell cycle regulation, control of apoptosis and terminal differentiation. However, chimeric mice composed of wild-type and Rb-deficien...
Article
Full-text available
The retinoblastoma (Rb) tumor suppressor gene and its close relatives p107 and p130 are best known for their function in the control of cell cycle progression. In recent years, however, a new role for these proteins has been emerging as they have been linked with regulation of terminal differentiation of many tissues and cell types. In fact, Rb and...

Network

Cited By