
Marta Coma- PhD
- Fellow at University of Bath
Marta Coma
- PhD
- Fellow at University of Bath
About
57
Publications
18,769
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,421
Citations
Introduction
Marta Coma is currently a visiting fellow at the Department of Chemistry, University of Bath. Marta does research in Biotechnology, Environmental Chemistry and Environmental Engineering. Their most recent publication is 'Organic waste as a sustainable feedstock for platform chemicals.'
Current institution
Additional affiliations
October 2015 - present
November 2012 - September 2015
September 2005 - September 2012
Publications
Publications (57)
Acidogenic fermentation is attractive for food waste valorisation. A better understanding is required on how operation affects product selectivity. This study demonstrated that the hydraulic retention time (HRT) and organic loading rate (OLR) selected fermentation pathways in a single-stage, semi-continuous stirred tank reactor. Three combinations...
This dataset includes the results summary and data overview from a lab-scale bioreactor experiment as discussed in the research paper "Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters", published in Waste Management.
The study comprised three sets of operating conditions tested in dupli...
This dataset includes the results summary from a lab-scale bioreactor experiment as discussed in the research paper with the same name, published at Processes MDPI (De Groof, V.; Coma, M.; Arnot, T.C.; Leak, D.J.; Lanham, A.B. Adjusting Organic Load as a Strategy to Direct Single-Stage Food Waste Fermentation from Anaerobic Digestion to Chain Elong...
Production of medium chain carboxylic acids (MCCA) as renewable feedstock bio-chemicals, from food waste (FW), requires complicated reactor configurations and supplementation of chemicals to achieve product selectivity. This study evaluated the manipulation of organic loading rate in an un-supplemented, single stage stirred tank reactor to steer an...
The giant panda is known worldwide for having successfully moved to a diet almost exclusively based on bamboo. Provided that no lignocellulose-degrading enzyme was detected in panda’s genome, bamboo digestion is believed to depend on its gut microbiome. However, pandas retain the digestive system of a carnivore, with retention times of maximum 12 h...
Environmental pressures caused by population growth and consumerism require the development of resource recovery from waste, hence a circular economy approach. The production of chemicals and fuels from organic waste using mixed microbial cultures (MMC) has become promising. MMC use the synergy of bio-catalytic activities from different microorgani...
This dataset was created as a compilation of experimental data in the literature on the production of medium chain carboxylic acids (MCCAs) by microbial mixed cultures (MMC) fermentation. The intention was to provide a dataset as comprehensive as possible that includes the majority of experimental results available in this research area to the best...
Biorefineries have been established since 1980s for biofuel production, switching lately from first to second generation feedstocks in order to avoid the food versus fuel dilemma. In a lesser extent, many opportunities have been investigated to produce chemicals from biomass using by-products of present biorefineries, simple waste streams. Current...
A microbial community is engaged in a complex economy of cooperation and competition for carbon and energy. In engineered systems such as anaerobic digestion and fermentation, these relationships are exploited for conversion of a broad range of substrates into products, such as biogas, ethanol, and carboxylic acids. Medium chain fatty acids (MCFAs)...
Domestic wastewater represents a considerable feedstock for organics but the high dilution makes their recovery typically unsuccessful. Here we investigated three routes to 10-fold concentrate the organics using Forward Osmosis (FO) (Draw solution (DS) 2.2 M MgCl2): directly on domestic wastewater, A-sludge, or secondary sludge, with the end goal o...
Lactic acid is a high-in-demand chemical, which can be produced through fermentation of lignocellulosic feedstock. However, fermentation of complex substrate produces a mixture of products at efficiencies too low to justify a production process. We hypothesized that the background acetic acid concentration plays a critical role in lactic acid yield...
Acetate and ethanol can be converted to caproic acid by microorganisms through reverse β -oxidation. There is limited insight into the versatility of chain elongation in view of different starting substrates, including even and odd carbon carboxylates and alcohols other than ethanol. Thermodynamic analyses show that most elongation pathways are ene...
Biorefinery wastewaters are often treated by means of anaerobic digestion to produce biogas. Alternatively, these wastewaters can be fermented, leading to the formation of carboxylates. Here, we investigated how lab-scale upflow anaerobic sludge blanket reactors could be shifted to fermentation by changing organic loading rate, hydraulic retention...
Biofilms are used in wastewater treatment and in the production of valuable compounds. Bioelectrochemical system (BES) technology represents one practical application of biofilms. In these systems, bioelectrogenic biofilms are a bacterial consortium capable of performing electron transfer to the conductive material on which they are grown. This cap...
Volatile fatty acids (VFA) are building blocks for the chemical industry. Sustainable, biological production is constrained by production and recovery costs, including the need for intensive pH correction. Membrane electrolysis has been developed as an in situ extraction technology tailored to the direct recovery of VFA from fermentation while stab...
Integrated processes to reduce in situ the sludge production in wastewater treatment plants are gaining attention in order to facilitate excess sludge management. In contrast to post-treatments, such as anaerobic digestion which is placed between the activated sludge system and dewatering processes, integrated technologies are placed in the sludge...
Short-chain carboxylates such as acetate are easily produced through mixed culture fermentation of many biological waste streams, although routinely digested to biogas and combusted rather than harvested. We developed a pipeline to extract and upgrade short-chain carboxylates to esters via membrane electrolysis and biphasic esterification. Carboxyl...
Aerobic granulation from floccular sludge is difficult to detect in first stages with the naked eye. This work proposes a combination of multi-way principal components and case-based reasoning to predict the granulation state of a sequencing batch reactor, based solely on the on-line registered profiles of common sensors (i.e. pH, dissolved oxygen...
BACKGROUND
Groundwater quality is threatened by nitrate accumulation in several regions around the world. Nitrate must be removed from contaminated groundwater to use it as drinking water. Microbial fuel cells (MFCs) can be used for autotrophic denitrification. Thus, the use of MFCs is a potential alternative to using traditional methods for treati...
Background
The main goal of wastewater treatment is to obtain high quality effluent. This study proposes a methodology to estimate in real-time the effluent quality in a biological nutrient removal (BNR) sequencing batch reactor (SBR) process. ResultsThis is achieved by: (i) detecting the batch quality; and (ii) predicting the classification of the...
Water contamination is a worldwide environmental challenge. Consumption of water containing high nitrate, sulphate or Chlorinated Aliphatic Hydrocarbons (CAHs) levels as drinking water can cause many diseases (i.e. cancer, skin irritation, an increased risk of respiratory tract infections and goiter development in children). Both the Water Framewor...
Sulphate reduction in a biological cathode and physically separated from biological organic matter oxidation has been studied in this paper. The bioelectrochemical system was operated as microbial fuel cell (for bioelectricity production) to microbial electrolysis cell (with applied voltage). Sulphate reduction was not observed without applied volt...
This study evaluates the application of an anoxic side-stream reactor in the sludge return line of a conventional activated sludge system for the reduction of biomass production. The oxidation-reduction potential was maintained at -150mV while the applied sludge loading rate was modified by changing the percentage of return sludge treated in this r...
The presence of elevated concentrations of nitrates in drinking water has become a serious concern worldwide. The use of autotrophic denitrification in microbial fuel cells (MFCs) for waters with low ionic strengths (i.e., 1000 μS·cm(-1)) has not been considered previously. This study evaluated the feasibility of MFC technology for water denitifica...
This study focuses on the enhancement of aerobic granulation and biological nutrient removal maintenance treating domestic wastewater. Two sequencing batch reactors (SBRs) were inoculated with either only floccular sludge (100%-floc SBR) or supplemented with 10% crushed granules (90%-floc SBR). Granules developed in both reactors. The 100%-floc SBR...
Microbial fuel cells (MFCS) can be used in wastewater treatment and to simultaneously produce electricity (renewable energy). MFC technology has already been applied successfully in lab-scale studies to treat domestic wastewater, focussing on organic matter removal and energy production. However, domestic wastewater also contains nitrogen that need...
The aim of this work was to study the effect of pH on electricity production and contaminant dynamics using microbial fuel cells (MFCs). To investigate these effects, an air-cathode MFC was used to treat urban wastewater by adjusting the pH between 6 and 10. The short-term tests showed that the highest power production (0.66 W.m(-3)) was at pH 9.5....
Granular sludge has recently come under study as an efficient technology in wastewater treatment. Different microorganisms coexisting within the granules allow simultaneous nitrification, denitrification and phosphorus removal (SNDPR). However, the behaviour of the process varies when nitrogen and phosphorus removal are coupled. The purpose of this...
The feasibility of using microbial fuel cells (MFCs) in landfill leachate treatment and electricity production was assessed under high levels of nitrogen concentration (6033 mg NL(-1)) and conductivity (73,588 μS cm(-1)). An air-cathode MFC was used over a period of 155 days to treat urban landfill leachate. Up to 8.5 kg COD m(-3)d(-1) of biodegrad...
The destabilization of a microbial population is sometimes hard to solve when different biological reactions are coupled in the same reactor as in sequencing batch reactors (SBRs). This paper will try to guide through practical experiences the recovery of simultaneous nitrogen and phosphorus removal in an SBR after increasing the demand of wastewat...
Landfill leachate is a concern in the wastewater field due to its toxicity, high ammonium and low biodegradable organic matter concentrations. The aim of this paper is to study the reliability of landfill leachate treatment using Sequencing Batch Reactor (SBR) technology for biological nitrogen removal. During the study the SBR pilot plant treated...
The purpose of this paper is to provide a basis for selecting alcohols (i.e. ethanol and methanol) or short-chain volatile fatty acids (VFAs) (i.e. acetate and propionate) as the external carbon sources for enhanced biological phosphorus removal (EBPR) from wastewaters in adapted or unadapted activated sludge. When ethanol is used in an unacclimate...
BACKGROUND: When organic matter is limiting for biological nutrient removal (BNR) from wastewater, external organic carbon can be added to a wastewater treatment plant (WWTP). This increases the overall treatment cost, so the choice of substrate is critical. The effect of using ethanol as the carbon source for BNR is investigated.
RESULTS: The resu...