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Abstract

Cancer and healthy cells have distinct distributions of molecular properties and thus respond differently to drugs. Cancer
drugs ideally kill cancer cells while limiting harm to healthy cells. However, the inherent variance among cells in both cancer
and healthy cell populations increases the difficulty of selective drug action. Here we formalize a classification framework
based on the idea that an ideal cancer drug should maximally discriminate between cancer and healthy cells. More
specifically, this discrimination should be performed on the basis of measurable cell markers. We divide the problem into
three parts which we explore with examples. First, molecular markers should discriminate cancer cells from healthy cells at
the single-cell level. Second, the effects of drugs should be statistically predicted by these molecular markers. Third, drugs
should be optimized for classification performance. We find that expression levels of a handful of genes suffice to
discriminate well between individual cells in cancer and healthy tissue. We also find that gene expression predicts the
efficacy of some cancer drugs, suggesting that these cancer drugs act as suboptimal classifiers using gene profiles. Finally,
we formulate a framework that defines an optimal drug, and predicts drug cocktails that may target cancer more accurately
than the individual drugs alone. Conceptualizing cancer drugs as solving a discrimination problem in the high-dimensional
space of molecular markers promises to inform the design of new cancer drugs and drug cocktails.
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Introduction

The central objective of treating cancer is to kill cancerous tissue

while leaving healthy tissue intact. Effective cancer drugs must

therefore distinguish between cancer cells and healthy cells.

Additionally, optimal cancer treatment should also be robust to

biological variability such as tumor and healthy cell heterogeneity

[1]. Combining these ideas, we can frame the cancer problem in a

way that balances the potential overlap of healthy and cancer cell

properties with the need to kill aggressive cancer cell variants

(Fig. 1). While the need to separate cancer from healthy cells

underlies current cancer treatment, to our knowledge it has not

been mathematically formalized. Developing a mathematical

framework opens the possibility of translating insights from

computational science into new approaches for cancer treatment.

Cancer drugs should thus be conceived of as performing a

computation on cells. For example, for toxic drugs, cellular targets

lead to a single outcome (kill or do not kill) during treatment.

Mathematically, we can say that the effect of a drug is a mapping

from a set of properties (targets of the cell) onto a stochastic, binary

outcome (the cell lives or dies) - this is exactly the definition of a

classifier in the fields of statistics and machine learning [2]. In that

sense, any cancer drug is actually a classifier (Fig. 2). However, the

application of the word ‘‘classifier’’ to this selective killing is not

just semantic. Instead it relates to a formal mathematical approach

and toolbox derived from machine learning, which can contribute

to drug development.

Many computer algorithms have been developed to solve

classification problems, and a rich literature exists in the fields of

statistics and machine learning regarding effective methods for

classification [2]. These computational fields offer a broad range of

approaches including quantitative performance metrics, efficient

algorithms for large datasets, and methods for improving

classifiers. For example, much research has addressed how to

combine weak classifiers in order to build better classifiers,

suggesting that these methods can be adapted to drug combination

(Fig. 2). Machine learning, in defining the search for classifiers as

optimizers, offers a clean way of describing a goal-directed search.

This paper is meant to clarify the equivalency of the search for

classifiers and the search for cancer drugs.

Data from newly developed Omics approaches enable the

application of classifier theory to drug optimization. Microarray

and sequencing technology, for example, allow us to simulta-

neously collect information about thousands of cellular markers –

measurements that characterize the state or phenotype of the cell

such as gene expression. Some of these markers should distinguish

cancer cells from healthy cells, aiding in accurate classification and
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cancer targeting. Importantly, however, not all markers are

molecular drug targets. Molecular targets are molecules that

cancer drugs actually use to alter cells. But buried in the thousands

of measurable markers is a subset of markers that reflect or
correlate with the molecular targets of drugs. For example,

expression of genes that are downstream of a drug target may

correlate well with that drug’s efficacy. Emerging biotechnology

allows us to measure these cellular markers and analyze them by

statistical tools like machine learning to more fully understand

cancer.

Although cancer drugs have not been formally characterized as

classifiers, machine learning has been extensively applied to many

aspects of cancer biology. One group has estimated breast cancer

outcome by using machine learning to create a 70 gene prediction

algorithm [3] while we and others have used machine learning, in

combination with discrete signaling pathways, to predict metas-

tasis-free survival [4]. Others have attempted to distinguish

between different types of cancer using many types of algorithms

including Support Vector Machines (SVM) [5,6], Principal

Component Analysis [7,8] and Artificial Neural Networks [9].

Yet others predict chemosensitivity on the basis of gene expression

[10,11] and signaling networks [12]. However, while all these

approaches have made impressive strides and are useful in clinical

practice, these ideas have not been combined to produce a

principles-based approach to cancer drug design.

Here we propose a framework for designing cancer treatments

that extends existing ideas using the classifier conceptualization.

We first outline the approach, and then, as a practical example,

carry out an analysis of experimental data to show how this can be

done in principle. The overall approach is summarized below:

A Framework for Treating Cancer
Formalizing cancer drugs as classifiers should inform how we

treat cancer. There are three essential parts of this approach that

we first summarize at a high level, and then demonstrate using

currently available experimental data: 1) Specifically define the

objective to be achieved by classification - namely, which cells to

kill, which cells to leave, and how to tell the difference between the

two; 2) Understand the treatment tools at our disposal; and 3)

Optimally use these treatment tools to accomplish the defined

classification objective. We have summarized definitions and

assumptions related to this framework in Table 1.

Defining the objective (Part I)
The first step is to discriminate between cancerous and healthy

cells. Because this is the goal of cancer treatment, it is important to

concretely specify this goal. To do this, we use the mathematics of

classification algorithms in conjunction with measurements of cell

markers. The classifier answers the following questions: how much

do cancer cells differ from healthy cells, and which biological

markers can distinguish them? It asks this question while explicitly

considering the heterogeneity of both populations. The markers

could include gene expression, surface proteins, etc. Because

distinguishing between cancer and healthy cells requires taking

into account the heterogeneity in each population, we have

focused on markers for single cells rather than cell populations

where possible.

Classifying algorithms in this context are designed to give the

maximal separation of cancer cells from healthy cells in terms of

these distinguishing markers. As such, we can say that the results of

classification describe what a hypothetical ‘‘optimal’’ drug acting

Figure 2. The idea of a classifier. This illustrates how one can
combine information from two cellular markers to construct a classifier
that separates the two populations (cancerous and healthy cells) better
than either marker alone.
doi:10.1371/journal.pone.0106444.g002

Figure 1. Cancer drugs solve a discrimination problem. Ideally,
cancer drugs perform a computation on cells: kill (if cancerous) or no-kill
(if healthy).
doi:10.1371/journal.pone.0106444.g001
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upon these markers could achieve. Part I of the Results

demonstrates how one could define this optimality objective using

gene expression in single cells and explores how many markers and

cells are required to achieve this goal.

Understanding the treatment tools at our disposal
(Part II)

The next step is to understand how the available treatment tools

allow us to utilize the distinguishing markers of cancer cells. We

should strive to approximate the optimal drug by designing new

drugs or combining existing drugs. Here we focus on the second.

Drugs should ideally target distinguishing properties of cancer,

but most drugs used in the clinic do not do this perfectly.

Furthermore, their mechanisms of action differ. Thus, it may be

possible to predict how existing drugs should be combined to

produce more desirable results. Actually making this prediction

would hinge on relating the drug actions to the distinguishing

properties of cancer. For example, if cancer cells differ from

healthy cells primarily via three distinct markers, three drugs

known to separately utilize each single marker as a classifier could

theoretically be combined. Part II of Results demonstrates this

idea by exploring the relation between drug action and molecular

properties (gene expression).

Optimally using treatment tools (Part III)
The last step is to use the mathematics of classification to ask

how our available tools (e.g. drugs) allow us to accomplish our

objective. From the first part, we know how to distinguish cancer

cells from healthy cells. From the second, we know how our drugs

relate to molecular markers. Now we can use these two ideas to

optimize treatment by matching the classifying abilities of our

drugs to the specified classification objective.

Here we will again focus on optimizing drug combinations. One

approach would be to predict drug combinations that discriminate

between cancer and healthy cells better than either drug alone.

Part III of Results demonstrates one approach that, under ideal

conditions, might achieve this goal.

One limitation of this study is that the data currently available

for such analyses are limited and not ideal. Therefore, in order to

illustrate the three parts of the classification framework using data

from real biological samples, we have substituted or redefined cell

phenotypes when the desired cell data is lacking.

Results

Part I: Defining the classification objective with molecular
measurements

If cancer drugs act as classifiers that use measurable markers as

input, we can use standard classification algorithms to explore the

possibility of solving the cancer versus healthy cell classification

problem. It is theoretically possible that there is an optimal drug

(or drug combination) that achieves this goal in practice. This

would imply that such a drug would kill cancer cells while leaving

healthy cells alone to the greatest extent possible. We will use this

notion of an optimal drug as a guide to analyzing treatment. In

practice, actual drugs or drug combinations should be chosen to

resemble the optimal drug. We recognize that every tumor is

different, but our goal here is to illustrate an approach for

distinguishing cancerous from non-cancerous tissue in one context.

This approach can also be applied to other cancer types.

To determine if it is theoretically possible to solve this problem,

we need a dataset of cells with both known cancer state and

measured markers. We used single-cell transcriptional data

derived from the colon [13]. This dataset included both a limited

number of markers (45 genes), and a limited number of colon

tissue subtypes and cells (,200 cells). Thus, we focused on

distinguishing between healthy and cancerous cells of one tissue

subtype: stem-like cells. Because these cells are so similar – as

pointed out in the original publication – this choice served to make

the classification problem more challenging. This dataset thus

allowed us to test the power of the classification approach.

Can this classification problem be solved? In other words, can

the single-cell transcription data predict cell state (cancerous or

not)? To answer this question we used a standard classification

algorithm, the regularized GLM [14,15]. Testing how well such

classifying algorithms work allows us to give an upper bound on

how well an actual drug could work if it used gene expression

alone.

First, we wanted to measure the potential accuracy of this

classification. In classification there are different kinds of errors

that one can make. For example, it is easy to produce a drug that

kills all cancer cells but also kills all healthy cells. This drug would

have 100% true positives (killed cancer cells), but also 100% false

positives (killed healthy cells). Thus, to fully characterize a

classification strategy we should analyze the relation of the two

types of errors. The standard measure of classification accuracy is

the receiver operating characteristic (ROC) plot. In this plot the

proportion of true positives is plotted as a function of the

Table 1.

Definitions

Molecular marker A measurable cellular quantity. E.g., gene expression, protein expression, epigenetic markers.

Molecular target A cellular entity allowing or causing drug action on the cell.

Optimal drug Hypothetical drug that would perfectly discriminate between cancer and healthy cells. I.e., would kill all cancer cells while leaving all
healthy cells alone. Used as a guide for designing treatment.

Assumptions

Linearity of drug combinations If two drugs are administered together, their respective mechanisms will be roughly unchanged by the presence of the other drug.
Allows prediction of drug combination effects from individual drug effects.

Simplifications

Single cells vs cell lines Ideally, we would approach cancer treatment from single-cell perspective. We use single-cell data where possible, and use cell lines
as substitutes as necessary for demonstration purposes.

doi:10.1371/journal.pone.0106444.t001
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proportion of false positives (Fig. 3) to quantify both sensitivity and

specificity. The area under this curve (AUC) gives an overall

measure of classification performance with a maximum value of 1

for a perfect test. The AUC for our classification algorithm was

,0.9, indicating that healthy and cancerous cells can be well

classified. Therefore it is theoretically possible to solve this

particular cancer versus healthy classification problem for single

cells with high accuracy using expression levels for just a small set

(,45) of genes.

Next we asked how many cellular markers an optimal drug

would need to classify cells accurately. In other words, what is the

minimum number of markers an optimal drug must consider to

tell the difference between healthy and cancer cells? We found that

a relatively small number of genes - approximately the best 10

(ranked by magnitude of fit parameter) - sufficed to classify a cell as

cancerous or healthy with high accuracy (Figs. 3, 4). The

predictive power of the classifier saturated soon after the best 10

genes were included. Thus, only a small number of cellular

markers provide the majority of the information used to classify a

cell as cancerous or healthy.

The ability to measure gene expression from single cells raises

the question of whether it is more important to measure more cells

or more genes. To answer this, we quantified the relative

importance of increasing the number of measured cells versus

the number of measured genes per cell. We trained the classifier

with numbers of cells ranging from two total (one healthy, one

tumor cell) to 180 total cells (95% of cells). As above, we measured

the classifier’s performance, except that we did so for each training

scenario. We again found that the performance saturated after a

small number of genes for each training scenario. Importantly, we

also found that performance continued to improve with increasing

numbers of training cells until approximately 80 were used (Fig. 4).

Thus, measurements from at least tens of cells are required to

account for variance in a simplified population of tumor and

healthy cells.

In this section, we have demonstrated how to carry out an

analysis that would define what optimal treatment – the ‘‘ideal

drug’’ – could accomplish. With one experimental dataset we

showed that it is possible to accurately solve the cancer

classification problem. This type of analysis could also identify

the markers that distinguish cancer from healthy cells. For the

limited dataset that we chose, it appeared that solving the

classification problem was possible with approximately 10 markers

and 80 cells. However, these numbers will vary by tumor cell

population as well as the particular markers analyzed.

Part II: Classification by real cancer drugs
In the first part of Results we have explored the possibility of an

optimal cancer drug that distinguishes between healthy and cancer

cells. In this second part of the study, we will demonstrate whether
and how the tools at our disposal (in this example, actual drugs)

can classify cells. This will help us understand how to use actual

drugs to approach the performance of the optimal drug.

Specifically, in the following example, we ask how cancer drugs

actually relate to molecular markers. To answer this question, we

would ideally use single cells. This is difficult with single cells,

however, because treatment and marker measurement both

potentially destroy the cell. A possible solution is to enable limited

replication of single cells in order to analyze marker status for one

set of daughter cells while simultaneously determining drug

efficacy using other daughter cells. However, even these two sets

will exhibit heterogeneity with time. Since gene expression data for

such populations that have been treated with drugs are not

presently available, the closest substitute is established cell lines

that have a clonal origin and are largely genetically homogeneous.

Therefore we used cell lines as stand-ins for single cells to ask how

drugs relate to molecular markers.

Because our previous results suggest that we need tens of cells to

solve the classification problem, we chose to analyze a type of

tissue with many established cell lines. We therefore used 45

luminal and basal-like breast cancer cell lines characterized by

Gray and colleagues [12]. They measured approximately 19,000

genes in these breast cancer lines using microarrays, as well as the

chemotherapeutic responses of those lines to each of 74 drugs.

These lines are a good representation of the range of cell

phenotypes found in breast cancer and thus represent more

Figure 3. Discriminability of healthy versus cancer cells as a
function of the number of genes considered. When measuring
accuracy of cell classification as cancerous or healthy, one should
consider both types of errors: false positives and false negatives (or
more conventionally, true positives). This is illustrated by the Receiver
Operating Characteristic (ROC) Curve. Lines indicate mean values, and
error bars indicate bootstrapped 95% confidence intervals. Accuracy
was measured using cross-validation; and chance value was determined
using shuffle control.
doi:10.1371/journal.pone.0106444.g003

Figure 4. Discriminability of healthy versus cancer cells as a
function of the number of cells and genes measured.
Classification performance was measured as area under the curve
(AUC) of the ROC curve. A perfect classifier would achieve an AUC of 1,
whereas a random classifier would achieve an AUC of.5. Each colored
line represents a different number of cells used to train the classifier,
showing that performance improves as more cells are used. Lines
indicate mean values, and shaded areas indicate bootstrapped 95%
confidence intervals. Accuracy was measured using cross-validation;
and chance value was determined using shuffle control.
doi:10.1371/journal.pone.0106444.g004
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variance than an actual tumor. Nonetheless, these cell lines

allowed us to ask how cell markers related to drug sensitivity.

We used an algorithm to predict if cancer drugs will kill cells of a

specific cell line on the basis of its markers. In particular, we

estimated the drug sensitivities of these cell lines. Indeed, some

aspects of the drug responses were predictable. For example, we

predicted the chemotherapeutic response to the drug Lapatinib, a

tyrosine kinase inhibitor that blocks signaling by both the EGF

receptor and HER2/neu. We obtained an R2 value of ,0.5.

However, the low R2 value shows that our prediction of drug

behavior was not strong. This could be due to the small size of the

dataset, but may also imply that not all relevant markers were

measured, or alternatively that the relationship is nonlinear and

not captured by linear machine learning methods. While

molecular markers such as gene expression do not capture all

variability, they do appear to play a role in predicting the drug

response. Therefore, cellular markers predict some degree of drug

behavior when treated as inputs to a classifier.

We also wanted to know how many genes suffice to predict

actual drug behavior. To do this, we measured the drug’s behavior

as a function of the number of genes. Lapatinib needed only a

small number of genes (,5) to reach its peak accuracy (Fig. 5).

Thus, a small number of cellular markers predict whether or not

actual drugs kill a cell. This is important because it shows that we

do not necessarily need to consider many thousands of genes when

designing therapies.

If drugs act as classifiers using a small number of properties,

then a drug can be characterized by plotting its effect as a function

of the properties. We thus selected the two genes (SLC5A8 and

PERLD1) that were jointly best at predicting Lapatinib’s effect

across cell lines. Using simple grid interpolation and extrapolation

routines we plotted the drug’s effect as a heatmap (Fig. 6). This

type of visualization shows that even two genes can capture the

complex behavior of a cancer drug.

We analyze drug activity as it relates to molecular markers (i.e.,

phenotypic characteristics of a cell), but such markers are not

necessarily molecular targets (i.e., cell components such as proteins

whose functions are altered by a drug). Ideally, experimental data

would also include measurements of markers more likely to

actually constitute drug targets such as the tyrosine kinase

receptors that are targeted by Lapatinib. Although the gene

transcripts we analyze are not the direct targets of the classifying

drug, they still predict drug response and are therefore useful.

Thus, this approach could be used with any type of molecular

marker or targets.

In this section, we have demonstrated how to understand the

behavior of actual drugs within our framework. In our example,

we related drug efficacy to molecular markers which, in theory,

allows one to ask how actual drugs relate to the distinguishing

markers of cancer cells. This will be important for the next section

in which we ask how to optimally combine drugs. In this dataset,

however, we find that the measured markers suboptimally predict

the drug response. In the future, data collected from many more

cell populations and a variety of marker types will be needed to

make clinically plausible predictions.

Part III: Optimizing cancer treatment
In the previous two sections we have shown how an optimal

cancer drug could classify cells as cancerous or not, and that

cellular markers predict to some extent how an actual drug

behaves. In this section, we combine these two ideas to outline a

possible approach to optimizing cancer treatment. We look for

pairs of drugs that classify cancer cells better when combined than

either drug alone.

We demonstrate this approach conceptually using gene

expression data and drug sensitivity measurements from the same

panel of breast cancer cell lines [12]. Unfortunately, we were not

able to obtain similar data for noncancerous cell lines. Therefore

we made two adjustments to show that these types of analyses are

possible in principle: 1) we again treated each clonal cell line as a

stand-in for a single cell; and 2) we used the ability to discriminate

between two subclasses of tissue as the classification objective

rather than distinguishing healthy from cancer cells. In particular,

we used the basal-like and luminal subtypes of breast cancer,

which roughly correspond to aggressive (more metastatic) and less

Figure 5. Drug response prediction as a function of the number
of genes considered. Drug response was predicted using molecular
markers (gene expression). Accuracy of chemosensitivity prediction,
measured as R2, which represents the amount of variation explained.
Shaded areas indicate bootstrapped 95% confidence intervals. Accuracy
was measured using cross-validation.
doi:10.1371/journal.pone.0106444.g005

Figure 6. Drug sensitivity heatmap as a function of the two
most important genes. Drug activity is to some extent predictable
using molecular markers.
doi:10.1371/journal.pone.0106444.g006
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aggressive (less metastatic) cancer. We are aware that the real

situation is more complex than this simplification; however this

distinction is ultimately arbitrary and simply serves to demonstrate

our approach using a real phenotypic difference. Given this

definition and these data, we asked if it was possible to find two

drugs that discriminate between the luminal and basal-like breast

cancer subtypes better than either drug alone.

Real drugs do not perfectly discriminate between healthy and

cancerous cells. However, we can use machine learning to describe

how to combine drugs in order to better approximate the optimal

drug. This is inspired by the well-known approach in machine

learning called boosting [16], in which additional features are

added to a classifier to enable progressively better performance.

More specifically, given the classification objective (optimal drug)

from Part I and drugs’ actual behavior from Part II, we can

determine which pair of drugs best approximate the optimal drug.

To do this, we again use the GLM framework to frame the desired

treatment as a combination of drugs. We then iterate through

possible two-drug combinations to determine which pair performs

best. This idea allows us to determine the best drug combination

for classification.

We found several drug combinations that approximated the

optimal drug. One particular combination included the drugs

Lestaurtinib and GSK461364 (Fig. 7; compare Fig. 2). These

drugs together provide a better classification than either drug

alone (Fig. 8). Thus our method provides a mechanism for

choosing additional drugs in a way that should allow us to target

cancer cells more effectively. These results assume that the drugs

act both independently and prior to an adaptive response to the

treatment. Other strategies for addressing this issue are presented

in the discussion.

Figure 7. Cancer treatment optimization. Better discrimination between cell populations is achieved by including an additional drug. The
classification threshold line shown, in reality, represents a gradient related to ‘‘probability of cell death’’ which is indicated by shading. See text for full
description.
doi:10.1371/journal.pone.0106444.g007

Figure 8. Classification accuracy showing the improvements
achieved by using an additional drug. Accuracy (AUC) achieved by
both drugs together is better than either drug alone.
doi:10.1371/journal.pone.0106444.g008

Conceptualizing Cancer Drugs as Classifiers

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e106444



In this section we have demonstrated how to optimize treatment

using the classification framework. We emphasize again that we

are using suboptimal biological data as examples to clarify the

nature of our approach, not to produce clinically relevant

predictions. Larger and more exhaustive datasets will be needed

to make this possible. Furthermore, we have made simplifications

unlikely to generalize to clinical practice. Thus, these results

should not be taken as a clinical recommendation. Nevertheless,

this analysis shows that using the classification framework to

optimize treatment takes into account the inherent variation in

phenotypes and could influence choice of a treatment to

discriminate between cancerous and healthy cells.

Discussion

The approach for treating cancer
In this study, we have argued that employing cancer drugs as

classifiers provides a conceptual framework for devising optimal

treatment strategies for cancer. Optimal drugs use molecular

targets to kill cancer cells while minimizing harm to healthy cells.

We considered this problem as one that could be addressed with

tools from machine learning and demonstrate how this could

inform a strategy for treating cancer. We demonstrate that one

class of molecular markers, gene expression, was sufficient to solve

this optimization problem quite well using the data sets examined.

We also showed how to incorporate intrinsic cell variation into the

analysis and recognize actual drugs as suboptimal classifiers.

Finally, we suggested ways of using the classification framework to

derive drug development strategies that perform as closely as

possible to an optimal drug.

Optimizing cancer treatment by combining drugs according to

classification principles is relatively straightforward if combined

drugs do not affect one another. For example, it may be that a

second drug does not significantly interfere with the molecular

mechanism of the first, and vice versa when administered

simultaneously. If the effects of the individual drugs are additive,

the ability of a particular drug to classify cancer cells would not be

affected by another drug. Thus the compound classifier – the drug

combination – would classify cancer cells more accurately than

either drug alone. It is also possible that weak nonlinear

interactions between drugs could still yield a superior compound

classifier than either drug alone. Assuming linearity places an

upper bound on how well drug combinations could work.

What if we find a second drug that should improve classification

but is not additive with the first drug? This nonlinear dependency

is very likely to be important. One solution would be to iteratively

use the next-most-optimal drug until we find one that does not

significantly interact with the first drug. Thus, choosing the best

additional drug for a combination may require theoretical and

empirical considerations. This method cannot guarantee that a

given combination of drugs will work but instead proposes a more

efficient way to select drug cocktails for testing. Another way to

address this problem is to consider sequential as opposed to

simultaneous drug treatment. Initial molecular marker profiles can

be used to identify drug A as the optimal single drug. After

exposure to drug A, the marker profiles of these cells will likely

change as a result of the treatment. One could then utilize the

altered marker profiles in cells that have been treated with drug A

to identify the next optimal drug, B. In this regimen, the two drug

treatments are by definition independent. Interestingly, a recent

study by Yaffe and colleagues showed that the killing of aggressive,

triple-negative breast cancer cells was more effective when two

drugs of interest were applied sequentially rather than in

combination [17]. By approximating the optimal treatment

strategy using sequential drug administration, one may avoid the

potential complications of drug interactions.

While we have defined the objective of a cancer drug as killing

cancer cells, we realize that the goal of anticancer treatment may

be more nuanced. In reality, drugs will kill cells with a certain

probability (see Fig. 7). The goals of treatment may be controlling

tumors rather than killing per se. For example, one may aim to

prevent metastasis, or to slow or stop tumor growth. Although the

treatment goal will ultimately depend on the clinical scenario,

effective treatment strategies hinge on achieving a differential

response between healthy and cancerous cells. Classification

principles could aid in suggesting possible drug combinations to

achieve other desired differential outcomes in addition to cell

death.

Limitations
This study also highlights the limitations of experimental data

currently available. First and foremost, data collected from many

more cell populations and a greater variety of molecular markers

will be needed to make clinically relevant predictions. In this study,

in order to examine both single cell as well as treatment data, we

analyze data from two different organs. The first section uses a

dataset from intestinal tissues whereas the second and third

sections use a dataset from breast cell lines. While these choices

prevented direct comparison of molecular markers across sections

of this study, they were sufficient to demonstrate the application of

the conceptual framework we propose. It should be noted that

luminal breast and colon cancers are generally considered more

treatable than other types (such as pancreatic cancer), raising the

possibility that our proposed scheme may be more effective in

some contexts than others. However, some properties of cancer

are likely to be true regardless of the particular organ system [18].

If cancer drugs behave as classifiers for colon cancers, they will

likely behave as classifiers in other organs. Analyzing cells

originating from different tissues is therefore not likely to affect

the principle of this study.

Another limitation of this study is that we measured markers in

different tissue contexts. Unlike the Quake dataset (Part I), the

Gray dataset (Parts II and III) measured expression of cultured cell

lines rather than expression levels in primary single cells.

Additionally, because this dataset did not include healthy cells,

we had to demonstrate our approach by targeting one subtype of

breast cancer versus another, rather than cancerous versus healthy

cells. More rigorous analyses based upon treatment of single-cell or

minimally amplified clones as well as relevant classification

analyses will have to wait for more extensive experimental data

to become available.

An important question that this study highlights is whether

experiments with tumor cell populations capture as much relevant

information as experiments with individual cells. Cell line gene

expression levels reflect a population average rather than the

expression of individual cells. It is possible that small numbers of

drug-resistant cells with distinct marker profiles may not be

detectable when the whole tumor cell population is analyzed

together. For example, small populations of cells within a tumor

have been shown to drive the evolution and drug resistance of

some types of cancer [1,19–21]. But although single cell data is

preferable, it presents challenges of its own. Even genetically

identical single cells can differ phenotypically in a number of ways

including epigenetic state, protein and gene expression and

morphologic state, and these states can change with time [22–

24]. Thus, nongenetic heterogeneity across single cells may

complicate classification analyses. These factors underscore the
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need to measure a diverse set of markers from single cells in order

to target cancer effectively.

Relation to previous work
Our statistical analyses have some similarity to other cancer

studies that used statistical approaches in conjunction with large

datasets. The Friend group, for example, used machine learning to

predict prognosis and phenotypes in breast cancer [3]. This

resembles our strategy in that they use gene expression to make

predictions about cancer. Other groups have used machine

learning to distinguish between sub-types of cancer [5]. They

typically combine microarray data with such algorithms [6,25] to

distinguish between types of cancer. This resembles our strategy to

optimally discriminate between cancer sub-types. The Golub

group used machine learning to classify cell lines as belonging to a

drug-resistant or drug-sensitive class based upon gene expression

[10] whereas the Gray group related certain signaling networks to

drug response [12]. More recently, a large consortium predicted

cancer drug sensitivity using gene expression [11]. These studies

have a similar goal of modeling drug responses. The Nowak group

outlined a way to design drug cocktails that are robust to genetic

mutation [26], while the Lauffenburger group designed them to

minimize heterogeneity [27]. These studies likewise used cell

populations as a source of phenotypic data; by contrast, we

emphasize the need to ultimately consider single cells. These

studies also stop short of using quantitative approaches to suggest a

framework in which cancer drugs themselves are classifiers.
In contrast to these lines of research, we highlight a process by

which potential targets for drug optimization can be identified by
defining discriminability as the drug’s objective. We use this

property as a rationale for drug combinations that should optimize

drug efficacy. We also demonstrate that one can design optimal

drug classifiers using single-cell data that reflects normal and

tumor cell heterogeneity. Conceptualizing drugs as classifiers is not

only meaningful for cancer treatments. Any drug that should

produce a binary outcome could be modeled using the same

framework. This framework should generalize to drugs that are

supposed to attack pathogens such as malaria, or undesirable cells,

such as those responsible for asthma attacks [28].

Moving cancer treatment forward
Thinking of drugs as classifiers should enable new advances in

the treatment of cancer. For example, it may ultimately be possible

to design extremely specific drugs based on targeting particular

markers of interest. In essence, one would design a drug that

requires cells to meet multiple conditions before being destroyed

[29]. For example, these conditions could simply correspond to the

expression levels of the ten genes most predictive of cancer. Many

cells would likely meet one or two of the conditions but

exceedingly few would meet all of them, ensuring that the drug

only destroyed the cells it was designed to destroy. Although no

such drug has yet been created, designing or screening for drugs

that effectively perform classification could yield treatments that

far surpass the abilities of current drugs and with fewer side effects.

This framework for cancer therapy may also extend to more

complicated treatment scenarios. Although we have analyzed

static molecular markers, real-world cells changes dynamically

over time and in response to treatment [30]. It may be possible in

the future to design treatment schedules based upon classification

principles, better allowing us to combat or prevent drug resistance,

for example. Furthermore, advances in experimental technologies

will make it possible to measure a wider array of molecular

markers, especially from single cells, enabling a better under-

standing of drug treatment. Our work thus represents only a first

step and an extensible platform for thinking about cancer.

Ultimately, collecting and analyzing the right types of datasets

will continue to pose a challenge moving forward, and we believe

that this study represents a useful way of framing both the

questions and challenges associated with these fields.

Methods

In this paper, we frame cancer drugs as solving a classification

problem. As such, we approach this problem with the tools of

machine learning, a field that routinely addresses these types of

questions. Here we apply the Generalized Linear Model (GLM)

framework, a machine learning algorithm, to explore the behavior

of cancer using two gene expression data sets.

Data
We used one dataset to explore how cancerous and normal

tissue differ [13]. It was collected by Dalerba et al and provided by

the Quake lab. They measured gene expression by performing

PCR on single cells isolated from healthy intestine, primary

intestinal tumor, and a xenograft derived from primary intestinal

tumor tissue. Because their technology allowed them to measure

the expression of only a relatively small number of genes (,50),

they chose these genes related to their goal of distinguishing

between three subtypes of intestinal tissue (stem cells, and two

differentiated cell types). More specifically, they chose the markers

on the basis of a) reported association with tissue subtypes in the

literature and b) an iterative method that distinguished between

these subtypes. This means that the genes were optimized to

distinguish stem-cells from non-stem cells, and not cancer from

non-cancer cells, making our machine learning problem more

difficult.

Because differences between healthy and cancerous tissues may

be subtle, we sought to explore differences between the most

similar groups of cells we could find in the data set. The original

study used principal component analysis to identify sub-popula-

tions within the healthy, primary tumor, and xenograft tissues. We

chose one particular sub-population that existed in both healthy

and primary tumor tissues: stem-like cells. We then tested whether

we could use a GLM to reliably identify which cells belonged to

the healthy tissue and which belonged to tumor tissue, and how

many markers were needed to do so.

We used another dataset to ask if actual cancer drugs act as

classifiers and to determine how to optimize cancer treatment.

This was collected by Gray, et al. for [12]. They measured the

expression of approximately 19,000 genes in breast cancer tissues

using microarrays, and the chemotherapeutic responses of those

tissues. The breast cancer tissue came from a panel of 45 breast

cancer lines. After gene expression of each cell line was measured,

each line was treated with one of 74 drugs. They defined the

sensitivity of a cell line to a given drug as the concentration of drug

at which 50% of cell growth was inhibited (more specifically, they

took the negative log of this number). We thus have a dataset

where we know the markers (before treatment) and we know how

strongly the cells responded to a variety of drugs.

Within the Gray dataset, we also needed to target one subclass

of cell lines versus another, despite the fact that nearly all cell lines

were actually cancerous. We thus divided the 45 cell lines into

‘‘aggressive’’ and ‘‘less aggressive’’ cell lines based upon whether

they were basal-like in origin or luminal, respectively. Labeling of

cell lines as basal-like and luminal had already been done in [12]

(see Methods S1 for details). Grouping the cell lines in this way

allowed us to formalize targeting one distinct population over

another within that dataset.
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Analysis
To extract useful information from these large datasets we used

the regularized Generalized Linear Model (GLM) framework

implemented in Matlab. GLMs are a class of machine learning

algorithms that extend least-squares regression to target variable

distributions other than the normal distribution. GLMs essentially

relate a linear combination of predictor variables (like gene

expression) to the predicted variable (like probability of being a

cancerous cell) by passing the linear combination through a special

function, the inverse link function, g{1. This link function is

chosen to reflect the distribution of the predicted variable. The

variable of interest, f , is related to the predictor variables, x (e.g., a

vector of genes’ expression levels), and their weights, b (or bkfor

each kth gene), by:

f (y D b, x)~g{1 b0z
X

k

xkbk

 !

To prevent over-fitting, we implemented regularization. Reg-

ularization penalizes the algorithm for choosing a model that is too

complicated – i.e., one with too many predictive features (genes).

This forces it to choose only genes that contribute to goodness of

fit. For the single-cell analysis in Part I, we used L2 (weaker)

regularization because we expected that many of the 45 genes

could be good predictors. For the drug treatment analysis in Part

II, we used L1 (stronger) regularization because we expected that

many of the ,19,000 would not be good predictors. Regulariza-

tion helped avoid fitting noise rather than signal, thus allowing us

to capture the essential information in the data.

During estimation of the model parameters, regularization

penalizes choice of b in proportion to its absolute value (L1) or its

square (L2):

L1 penalty * bk k1

L2 penalty * bk k2
2

Classification
In the first part of the study, we build a GLM to classify cells as

cancer or healthy using single-cell PCR data. We use a GLM with

the Bernoulli distribution. That is, we say that a cell either came

from the healthy population (a value of 0) or from the cancerous

population (a value of 1). Given the gene expression profiles for

cells known to be healthy or cancerous, the GLM fitting returns a

weight, bk, for each kth gene according to how predictive that gene

is.

cancer state(y D b, x)~
1

1z exp ({x:b)

~
1

1z exp { b0z
X

k

xkbk

" # !

To ensure that our classifier generalized to data beyond training

data, we used cross-validation (CV). We performed two levels of

CV: 10-fold CV to determine the optimal value of the

regularization penalty parameter (within the training set only),

and 10-fold CV to test the predictions of the model. In this

approach, we used 90% of the data to train the algorithm, and

compared predictions made by that 90% to the actual values of the

remaining naive 10%. We performed this ten times total, using a

different 10% of the data for each round so that all of the data was

eventually used as both training and validation data. This allowed

us to show that our classifier worked with arbitrary data rather

than just data it had already seen.

To quantify the accuracy of the GLM’s predictions, we

constructed Receiver Operating Characteristic (ROC) curves.

An ROC curve characterizes the sensitivity and specificity of the

classifier. Another way to quantify the overall performance of the

prediction is to measure the area under the ROC curve. A perfect

predictor algorithm would achieve an ROC integral value of 1,

whereas a random predictor would achieve an ROC integral value

of 0.5. ROC curves provided a straightforward way to interpret

the accuracy of our classifier.

To measure the relative importance of measuring more markers

versus more cells, we used smaller subsets of data to train the

classifier. We did this by randomly choosing training data points

(subsampling) for each of 100 iterations, for each training set size

(2 cells through 95% of cells). For example, for a training set size of

four data points, we chose a different set of four training points

(two cancerous, two healthy) each of 100 times. Then for each set,

we calculated the ROC integral (on strictly test data) as a function

of the number of genes considered. We used a greater number of

iterations for this analysis because training with a small number of

points tends to be noisy (and generally undesirable for training

classifiers). Thus, this approach allowed us to examine which

factor contributes more to the performance of the algorithm:

measuring more cells or more properties.

Chemotherapeutic Response
In the second part of this study, we ask whether actual drugs act

as classifiers. More specifically, we predict drug sensitivity of cell

lines using gene expression data. To do this, we use the same GLM

framework but now with a normal distribution because the

original dataset defines sensitivity (-log(GI50)) as a continuous

variable. As above, the GLM parameter for each gene reflects how

well it predicts drug sensitivity. Modeling drug response as a GLM

allowed us to ask whether drugs act like classifiers by using gene

expression to determine their effects on cells.

drug response(y D b, x)~x:b~b0z
X

k

xkbk

To test how well the predictions generalized to naı̈ve data, we

again used two levels of CV as in Part I (although here we use

leave-one-out rather than 10-fold CV for measuring accuracy). We

measured the performance of the algorithm with an R2 value
rather than an ROC curve because drug sensitivity is a continuous

variable. As above, we quantified the performance of the

algorithm as a function of the number of genes considered. This

allowed us to measure to what degree actual drugs act as classifiers.

To more clearly visualize drug sensitivity’s dependence on gene

expression, we produced drug sensitivity heatmaps. We fit a model

using all of the data (rather than a subset), ranked genes based

upon the parameters returned by the GLM, chose the best two,

and then plotted drug sensitivity (‘‘heat’’) as a function of

expression of each of the two genes. To smooth the heatmap,

we used the Matlab function griddata.
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Treatment optimization
In the third part of this study we propose a method to optimize

cancer treatment using the GLM framework. This consists of

choosing two drugs that are more selective when combined than

either drug alone. To do this, we build a classifier that

discriminates between aggressive and less aggressive cancer (or

ideally, healthy and cancer). We use only two features in this

classifier: drug A’s behavior (chemosensitivity, -log(GI50)), xdrugA,

and that of another drug, xdrugB. Thus, in terms of the drug

behavior, x, and their weights, a (which are distinct from b above):

cancer class(y D a, x)~
1

1z exp ({x:a)

~
1

1z exp { a0zxdrugAadrugAzxdrugBadrugB

� �� �

Where xdrug is given by how the drug’s behavior (chemosen-

sitivity) depends on gene expression, found as in Part II.

xdrug~x:b~b0z
X

k

xkbk

We then iterated through two-drug combinations to determine

which one allowed the best discrimination (highest AUC) between

aggressive and less aggressive cancer. Because overfitting is

unlikely with two features (drug A behavior, and drug B behavior),

we used a non-regularized GLM. As in Part I, we trained and

tested the classifier with 100 rounds of subsampled data (90%

train, 10% test) because there were a small number of data points.

We estimated confidence intervals with bootstrapping. In practice,

a full analysis should also correct for multiple comparisons as there

are many possible two drug combinations. We have not performed

such a correction, as this calculation was carried for demonstration

purposes using a dataset that would not permit clinically relevant

predictions.

Supporting Information

Methods S1 Includes details related to labeling of cell
lines as basal-like or luminal as in Part III.
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