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Introduction

In the last decades, the cure rates for childhood acute lym-
phoblastic leukemia (ALL) have increased dramatically and
are now approaching 90%.1 Adults with ALL, on the other
hand, still have a very poor prognosis; the long-term survival
rate for adult cases is a mere 30-40% and decreases with
age.2,3 Studies have shown that younger adults treated on
pediatric protocols have an increased overall survival com-
pared with those on adult protocols.4,5 However, it should be
emphasized that adult ALL differs significantly from pediatric
ALL as regards complete remission rates, minimal residual
disease response level and risk group assignments, even when
treated on pediatric protocols.4,6 The reasons for this are man-
ifold, and include a larger proportion of T-cell ALL in adults
and age-related genetic differences in B-cell precursor (BCP)
ALL. For example, high hyperdiploidy (51-67 chromosomes)
and t(12;21)(p13;q22)/ETV6-RUNX1, both of which are asso-
ciated with a favorable outcome, are much more common in
pediatric ALL, whereas t(4;11)(q21;q23)/MLL-AFF1,
t(9;22)(q34;q11)/BCR-ABL1 and low hypodiploidy (30-39
chromosomes), conferring a negative prognosis, are more fre-
quently seen in adult ALL.4,7,8 Whether the pattern of
microdeletions, as ascertained by single nucleotide polymor-
phism (SNP) array analysis, also differs between childhood
and adult BCP ALL is less well clarified because most analyses

of ALL have been performed on pediatric cases.9,10 In fact, SNP
array findings in adult ALL have so far been reported in only
three larger series,11-13 one of which focused solely on IKZF1
deletions.13 The two other studies11,12 identified similar gene
deletions to those found in pediatric cases, namely losses of
CDKN2A, PAX5, IKZF1, ETV6, RB1, EBF1 and LEF1.
However, these results were based on quite small cohorts of
patients, comprising 45 and 75 adult ALL patients, respective-
ly. In the present study, we performed SNP array analysis on
a consecutive series of 126 adults with ALL at diagnosis, the
largest series to date, and identified several novel gene targets
that may be explored as therapeutic targets.

Methods

Patients
The study comprised a consecutive series of 205 cases of adult ALL

(≥18 years) that were cytogenetically analyzed between 1985 and
2012 at the Department of Clinical Genetics, University and Regional
Laboratories, Region Skåne, Lund, Sweden, as part of clinical routine.
SNP array analysis results from these cases have not been previously
published. The basic clinical, immunophenotypic and genetic features
are given in Online Supplementary Table S1. The median age was 48
years (range, 18-85 years) and the male/female ratio was 1.12. The
immunophenotypic features could be ascertained in 153 (75%) cases,
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of which 125 (82%) had BCP ALL and 28 (18%) had T-ALL.
Genetically, 51/205 cases (25%) were positive for
t(9;22)(q34;q11)/BCR-ABL, 19 (9%) for 11q23/MLL rearrange-
ments and four (2%) for t(1;19)(q23;p13)/TCF3-PBX1. In addition,
high hyperdiploidy was present in 13 cases (6.3%) and low
hypodiploidy in two cases (1.0%) based on G-banding. The inves-
tigation was approved by the Research Ethics Committee of Lund
University, and informed consent was provided according to the
Declaration of Helsinki.  

Single nucleotide polymorphism array analysis
Samples from the time of diagnosis were available from 156

cases (76%) (Online Supplementary Table S1). In addition, relapse
samples could be investigated in 25 patients, of whom seven did
not have a corresponding diagnostic sample. Remission samples
were available as comparison for 47 cases. DNA was extracted
using standard methods from bone marrow or peripheral blood
cells that had been stored at -80°C or in fixative at -20°C. SNP
array analysis was performed using the Illumina
HumanOmniExpress BeadChip platform, containing >715,000
markers, the Illumina HumanOmni1-Quad BeadChip platform,
containing ~1.1 million markers, or the Illumina HumanOmni5-
Quad BeadChip platform, containing ~5 million markers
(Illumina, San Diego, CA, USA) (Online Supplementary Table S1).
The analyses were done according to the manufacturer’s instruc-
tions and the data were analyzed using Genome studio v2011.1
software, extracting probe positions from the GRCh37 genome
build. Aberrations were identified by visual inspection of log2
ratios and B allele frequencies. Copy number changes had to
involve at least seven informative markers, giving an approximate
resolution of >20 kb for the HumanOmniExpress BeadChip plat-
form, >10 kb for the HumanOmni1-Quad BeadChip platform and
>5 kb for the HumanOmni5-Quad BeadChip platform depending
on the marker density in the region. Uniparental isodisomies
(UPID) were included if they comprised at least 4 Mb. To exclude
constitutional copy number variants, remission samples were
investigated in the 47 cases in which such material was available.
For the remaining cases, all copy number changes <1 Mb were
compared with copy number polymorphisms listed in the
Database of Genomic Variants (http://projects.tcag.ca/variation/) and
excluded from further analysis if there was substantial overlap. In
addition, deletions most likely corresponding to somatic
rearrangements of the T-cell receptor and immunoglobulin loci
were excluded from the results.  

Statistical analyses
The PASW Statistics 22 software for Windows (SPSS Inc.,

Chicago, IL, USA) was used for all analyses. The significance limit
for two-sided P values was set at <0.05. The immunophenotypic
features, sex, age and white blood cell (WBC) counts were com-
pared between cases with and without deletions of CDKN2A,
PAX5, IKZF1, ETV6, RB1, EBF1, BCAT1, SERP2, NR3C1, PIK3API
and BTLA at the time of diagnosis using the Wilcoxon signed-rank
and two-tailed Fisher exact probability tests. Whether IKZF1 dele-
tions were more common in BCR/ABL1-positive cases was inves-
tigated using a two-tailed Fisher exact probability test. 

Results 

Large copy number changes and uniparental
isodisomies  

The SNP array analysis was successful in 126 diagnostic
cases (64%); the remaining cases could not be investigated

because of failed SNP arrays (12%) or lack of material
(24%). 
A total of 238 regions of gains were identified; all of

which were larger than 5 Mb. Whole chromosome gains
were detected in 37 cases with chromosomes X/Y (57%),
21 (27%), 6 (24%), and 4 (19%) being the most common-
ly gained chromosomes (Figure 1). The SNP array analysis
detected three additional high hyperdiploid cases, making
a total of nine (7.1%) high hyperdiploid cases that did not
have concurrent BCR/ABL1 fusion or MLL rearrangement
among the 126 cases that were investigated with SNP
array analysis (Online Supplementary Table S1). In those,
+X, +4, +10, +17, +18 and +21 were seen in at least 50%
of cases. Furthermore, the SNP array analysis identified
1q gains in eight cases (6.3%), 17q gains in four cases
(3.2%), 6q deletions in two cases (1.6%) and isochromo-
some 7q in two cases (1.6%). The SNP array analysis
detected five additional low hypodiploid cases, making a
total of six cases (4.8%) among the 126 cases (Online
Supplementary Table S1). Among those, chromosomes X,
1, 6, 10, 19 and 21 were always retained in a heterodis-
omic state and chromosomes 3, 4, 7, 9, 13, 17 and 20 were
lost in all cases. Excluding the chromosomal loss seen in
low hypodiploid cases, whole chromosomal loss was
detected in eight cases (6.3%) involving chromosomes 3,
4, 7, 9, 16 and X/Y. In addition, 381 hemizygous deletions
and 73 homozygous microdeletions were identified
(Figure 1). UPID were detected in 39 regions; the acquired
UPID comprised whole chromosome UPID (13%) and
partial UPID (87%) (Figure 1). UPID9p was always asso-
ciated with deletion of CDKN2A (Figure 2). One case har-
bored a region with uniparental trisomy, involving chro-
mosome 9 (133,702,121 Mb-qter). Subclonal genetic
changes were identified in 63 regions, with extra copies
of chromosomes 8, 9, 10 and 12 being most frequent
(Figure 1). 

Deletions of characteristic genes 
Several recurrent deletions of known leukemia-associat-

ed genes were identified by the SNP array analysis.
CDKN2A was deleted in 39 cases (31%), with 26 cases
(67%) harboring homozygous deletions, five cases (13%)
harboring focal hemizygous deletions and eight cases
(20%) harboring larger hemizygous deletions on 9p
including CDKN2A. The cases with homozygous
CDKN2A deletions were either flanked by larger hemizy-
gously deleted regions (77%) or were in regions of UPID
(23%). Other well-known genes targeted by recurrent
focal or non-focal hemizygous and homozygous deletions
included IKZF1 in 32 cases (25%), PAX5 in 18 cases (14%),
ETV6 in 12 cases (10%), BTG1 in 11 cases (9%), RB1 in
nine cases (7%), EBF1 in seven cases (6%), LEF1 in three
cases (2%) and NF1 in three cases (2%) (Online
Supplementary Table S2). 

Recurrent novel gene targets in adult acute lym-
phoblastic leukemia detected by single nucleotide
polymorphism array analysis 
A total of five deleted regions that have not been report-

ed to be recurrently targeted in adult ALL before were
detected, as identified by focal deletion in at least one
case. These comprised BCAT1 in seven cases (6%), SERP2
in six cases (5%), BTLA/CD200 in four cases (3%), NR3C1
in four cases (3%) and PIK3AP1 in two cases (2%). All
deletions encompassing these genes are shown in Online

S. Safavi et al.

56 haematologica | 2015; 100(1)



Genomic profiling of adult ALL

haematologica | 2015; 100(1) 57

Figure 1. Overview of all genetic aberrations found with SNP array analysis of 126 cases of adult ALL (excluding whole chromosome changes
in low hypodiploid cases, n=8). Minimally involved regions are shown to the right of each chromosome. For each type of aberration, each line
represents a different case. (A) Green lines represent cases with hemizygous deletions and red lines represent cases with homozygous dele-
tions. (B) Orange lines represent cases with gains. (C) Uniparental isodisomies are shown by purple lines, with one case (blue) displaying a
region with uniparental trisomy. (D) Blue lines represent cases with subclonal gains and dark blue represents cases with subclonal loss. This
figure was made using the GREVE, Genome-Wide Viewer software,39 freely available at http://www.well.ox.ac.uk/~jcazier/GWA_View.html.
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Table 1. Genomic aberrations that differed between the 18 paired diagnostic and relapse samples.
Case N.                Genomic imbalances/gene targets seen only at diagnosis or relapse                                                                              Genetic
                            Position (bp)                                                                                                                                                                  relationship

7D                            +X
7R                            dup(chr1:36,637,708-226,363,155)[subclonal only], del(chr1:227,356,925-qter), dup(chr 2:59,991,047-60,597,565)              Ancestral clone
                                 [subclonal only], dup(chr 8:pter - 22,604,740), dup(chrX:pter-cen)
10D                          +1, +2, +10, +11,+12, +18, +21
10R                          UPID2, UPID10, dup(chr11:cen-qter), del(chr12:76,900,956-91,479,154)[subclonal only], UPID18,                                        Ancestral clone
                                 del(chr22:33,176,834-qter), dup(chrX:5,172,908-26,061,628)                                                                                                                             
11D                          UPID(chr1:cen-qter)
11R                          dup(chr1:cen-qter)                                                                                                                                                                                      Ancestral clone
17D                          None
17R                          None                                                                                                                                                                                                                Identical clones
25D                          None 
25R                          del(chr5:150,080,623-157,655,044)                                                                                                                                                             Clonal evolution
27D                          None 
27R                          del(chr2:238,964,462-qter), del(chr3:41,591,887-54,701,001), del(chr6:16,448,637-16,661,599)                                                  Clonal evolution 
34D                          +21
34R                          del(chr6:69,741,916-73,536,171), del(chr9:pter-10,367,523), del(chr9:15,007,699-19,511,096),                                                   Ancestral clone
                                 del(chr9:20,754,419-24,619,194), del(chr9:30,130,213-30,647,534), del(chr9:35,968,663-39,158,211), 
                                 del(chr12:18,507,318-20,274,936), del(chr12:25,205,241-28,763,628), del(chr12:29,404,236-30,377,630), 
                                 del(chr12:42,189,272-43,014,321), del(chr12:44,032,653-48,755,642), del(chr12: 67,845,462-70,216,959), 
                                 del(chr12: 74,854,750-75,377,172), del(chr12:79,311,449-84,322,342), +14                                                                                                     
35D                          None
35R                          None                                                                                                                                                                                                                Identical clones
37D                          None
37R                          None                                                                                                                                                                                                                Identical clones
41D                          None
41R                          None                                                                                                                                                                                                                Identical clones
42D                          None
42R                          None                                                                                                                                                                                                                Identical clones
53D                          del(chr7:pter-qter), del(chr11:111,221,554-117,762,288), del(chr20:41,989,275-55,920,141), 
                                  dup(chr21:38,674,544-41,020,324)
53R                          dup(chr7:72,861,849-98,902,213), del(chr7:98,902,213-qter), +8                                                                                                       Ancestral clone
58D                          pUPID(chr9:pter-36,805,874), del(chr9:21,093,083-23,518,799),+12
58R                          dup(chr9:pter-21,067,592), dup(chr9:23,488,018-cen)                                                                                                                          Ancestral clone
70D                          +6
70R                          dup(chr6:75,383,825-qter), dup(chr13: 63,095,674-qter), del(chr17:28,058,946-35,605,294)                                                       Ancestral clone
78D                          None
78R                          del(chr2:21,449,098-23,988,899)[subclonal only], del(chr2:73,547,613-75,808,132) [subclonal only],                                     Clonal evolution 
                                  del(chr2:127,560,722-132,061,877)[subclonal only],+9,del(chr15:75,251,302-qter)[subclonal only]
85D                          del(chr2:112,927,348-113,228,788), del(chr2:232,461,078-237,751,372), del(chr2:238,510,514-242,999,159),
                                  del(chr6:40,609,391-41,321,232),+9, del(chr12:5,293,941-24,932,017), del(chr12:102,267,479-106,156,001), 
                                  del(chr13:49,858,213-52,382,868), del(chr19:3,174,338-3,582,479)
85R                          dup(chr5: pter-98,936,840-98) [subclonal only], del(chr8:pter-cen),  dup(chr8:cen-qter)                                                       Ancestral clone
88D                          dup(chr5:pter-cen)[subclonal only], del(chr5:52,348,256-58,560,717) [subclonal only], 
                                  del(chr5: 66,447,913-qter)[subclonal only], del(chr9:94,631,730-128,625,923)[subclonal only], 
                                  +21 [subclonal only]
88R                          +X [subclonal only]                                                                                                                                                                                     Ancestral clone
101D                        None
101R                        pUPID(chr3:pter-61,712,041), del(chr10:62,960,805-64,745,589), del(chr18:62,339,224-62,871,749)                                          Clonal evolution
bp: base pairs; cen: centromere; chr, chromosome; D: diagnostic sample; del: deletion; dup: duplication; pter: p-terminal; qter: q-terminal; R: relapse sample; UPID: uniparental isodisomy.

Supplementary Table S3. In cases in which only the relapse
sample was available for analysis, two additional genes
were found recurrently deleted in two cases each; TOX
and RASSF3 (Online Supplementary Tables S2 and S3). 

Patterns of genetic evolution in paired
diagnostic/relapse samples
A total of 18 paired diagnostic and relapse samples could

successfully be compared (Table 1). These displayed iden-



tical genetic changes at diagnosis and relapse in five cases
(27%), clonal evolution with additional imbalances seen at
relapse in four cases (22%), or lastly, evidence of evolution
from ancestral clones in nine cases (50%), with some aber-
rations present at diagnosis lacking at relapse; the relapse
clones sometimes also harbored other abnormalities. 

Clinical correlations 
There were no statistically significant differences in

immunophenotypic features, gender, age or WBC count
between cases in which SNP array analysis could be per-
formed and cases in which samples were missing or the
SNP array analysis failed (data not shown). Deletions of RB1
were significantly associated with women (15% of women
versus 0% of men; P=0.001). IKZF1 deletions were signifi-
cantly correlated with BCP ALL (32% of BCP ALL versus
6% of T-ALL; P=0.036) and with higher WBC counts (medi-
an 65x109/L; range, 4.1-729x109/L versus median 9.8x109/L;
range, 0.7-904x109/L; P=0.005). There were no statistically
significant immunophenotypic-, gender-, age-, or WBC
count-related differences for the remaining genes. IKZF1
deletions were significantly more common in BCR/ABL1-
positive cases (51% versus 15%; P<0.001).

Discussion

We present here the largest SNP array analysis to date
on adult ALL, comprising a consecutive series of 126 cases.
The immunophenotypic features, median age and WBC
counts agree well with those in previous studies of adult
ALL.8,14 Thus, we believe that the present cohort of
patients is representative of adult ALL in general. The SNP
array analysis revealed more deletions than gains, agreeing
well with previous reports that losses are more common
than gains in both childhood and adult ALL.9,12,13,15
The SNP array analysis identified three additional high

hyperdiploid and five additional low hypodiploid cases,
showing that this method is frequently more sensitive for
detection of aneuploidy than conventional cytogenetic
analysis. In line with high hyperdiploid childhood ALL
and a recent cytogenetic study on high hyperdiploid adult
cases,16,17 the cases in this study showed frequent gains of
chromosomes X, 4, 10, 17, 18 and 21, although the pattern
of chromosomal gains was less specific than in pediatric
ALL. All low hypodiploid cases had retained heterodis-
omy for chromosomes X and 21 and lost chromosomes 7

and 17, in line with previous reports.18-20 Furthermore, the
study included one 41-year old patient (#114) with Down
syndrome, being the second oldest such individual with
ALL published to date.21 The only acquired aberration
detected in this case was a trisomy X, a common finding
in Down syndrome-associated ALL.22
The most common aberration detected by the SNP array

analysis was deletion of CDKN2A in 30% of patients, in
line with ALL in general.9,12,13,15 Characteristic gene deletions
in pediatric ALL, including IKZF1 (25%), PAX5 (14%),
ETV6 (10%), BTG1 (9%), RB1 (7%), EBF1 (6%), LEF1 (2%)
and NF1 (2%), were also found in our adult cases, confirm-
ing the results from previous studies of adult cases.12,13,23
IKZF1 deletions were more common in BCP ALL (P=0.036)
and in BCR/ABL1-positive cases (P<0.001), as has been pre-
viously reported in both childhood and adult ALL.11,13,24 In
pediatric ALL and BCR/ABL1-positive adult ALL, IKZF1
deletions have been shown to be associated with a poor
prognosis.10,25-27 The heterogeneous treatment regimes used
in our cohort prevented survival analyses, but patients with
IKZF1 deletions had higher WBC counts, indirectly suggest-
ing a more aggressive disease. We also detected a higher
incidence of RB1 deletions in women (P=0.001); in fact, all
cases with such deletions were women. This is in contrast
to the findings of previous studies of adult and childhood
ALL,11,13,24 in which no gender-related differences in the fre-
quency of RB1 deletions were detected. 
The SNP array analysis also identified gene deletions

that have previously been reported in childhood ALL but
not in adult ALL, namely deletions involving SERP2,
BTLA/CD200, NR3C1, and TOX (Online Supplementary
Table S3). SERP2 (13q14.11) and BTLA/CD200 (3q13.2),
deleted in 5% and 3%, respectively, of our cases, have
recently been reported to be deleted in pediatric ALL cases
with Down syndrome;22 in addition, BTLA/CD200 has
also been found deleted in ETV6/RUNX1-positive ALL.28
Whereas virtually nothing is known about the function of
SERP2, BTLA encodes a glycoprotein and functions as an
inhibitory receptor expressed by T cells29 and CD200
encodes a membrane protein that regulates myeloid cell
activity.30 Deletions of NR3C1 (5q31.3), coding for a glu-
cocorticoid receptor, have previously been associated with
relapsing childhood ALL.10,31 NR3C1 plays an important
role in glucocorticoid-induced response and NR3C1 dele-
tions in pediatric relapsing ALL may influence treatment
response.10 Notably, we also found a single case harboring
deletion of the homologous NR3C2 gene in 4q31.1, coding
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Figure 2. SNP array analysis results showing a hemizgyous BCAT1 deletion (red arrows). The top panel shows B allele frequencies (BAF), which
are calculated as (signal intensity for allele B)/(signal intensities for allele A + allele B). The lower panel shows log2 ratios along the chromo-
somes; each dot represents the log2 ratio of one marker. The deletion is visible as a complete loss of heterozygosity in the BAF and a negative
log ratio. 



for a mineralocorticoid receptor. Finally, TOX was recur-
rently deleted in the relapse samples included in our study.
Previous pediatric ALL studies also identified copy num-
ber alterations of TOX (8q12.1) at relapse, suggesting that
it may be associated with relapsing ALL.31 TOX codes for
a protein containing a HMG box DNA-binding domain,
and is involved in T-cell maturation.32
The SNP array analyses revealed two new recurrent gene

targets that have not been previously implicated in child-
hood or adult ALL in the diagnostic samples, namely
BCAT1 and PIK3AP1 (Online Supplementary Table S3).
BCAT1 on 12p12.1 was deleted in 6% of cases. This gene
codes for a protein that is involved in the catabolism of
branched-chain amino acids.33 Aberrations in this gene
have not been previously reported in ALL, but up-regula-
tion of BCAT1 has been implicated in gliomas and
nasopharyngeal carcinoma.33,34 However, the deletions seen
in our study would rather be expected to result in underex-
pression of BCAT1. PIK3AP1 (10q24.1), found deleted in
2% of our cases, has previously been reported to be delet-
ed in a single case of adult ALL.12 This gene codes for an
adaptor protein functioning in the activation of phospho-
inositide 3-kinase (PI3K).35 In addition, RASSF3 (12q14.2)
was recurrently deleted in the relapse samples (Online
Supplementary Table S3). This gene belongs to the Ras-asso-
ciation domain family, and has been suggested to function
as a tumor suppressor in non-small cell lung cancer.36,37

Different evolutionary genetic patterns could be ascer-
tained from the analyses of paired diagnostic and relapse
samples, showing identical genetic changes in 27%, clonal
evolution in 22%, and ancestral clones in 50%. This is the
first investigation of the clonal relationship between diag-
nostic and relapse cases that has been reported in adult
ALL using SNP array analysis. Our findings agree well
with most, albeit not all, studies of childhood ALL and
indicate that the mechanisms of relapse may be similar in
adult and pediatric ALL.31,38
In conclusion, adult ALL shares common genetic imbal-

ances with pediatric ALL; nevertheless, as only <40% of
adult cases survive, cryptic genetic aberrations that differ
between adult and pediatric ALL may be the key force
promoting leukemogenesis. By using high-resolution SNP
array analysis, we have uncovered several recurrent gene
targets not previously reported in this disease, providing
novel insights into the intricate puzzle of adult ALL.
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