Markus SchoelerDedrone · Video Analysis
Markus Schoeler
Master of Science (Physics), PhD (Computer Science)
About
13
Publications
7,548
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,009
Citations
Introduction
Markus Schoeler studied physics at the University of Würzburg, Germany. He received his M.Sc. in physics for his research at the IOF-Fraunhofer Institute from the University of Jena in 2010. Currently he is pursuing his Ph.D. degree in Computer Vision at the University of Göttingen in Florentin Wörgötter's group. Among his research interests are bottom-up object and scene partitioning, top-down object classification, and object cognition.
Additional affiliations
Publications
Publications (13)
In this work we address the problem of indoor scene understanding from RGB-D
images. Specifically, we propose to find instances of common furniture classes,
their spatial extent, and their pose with respect to generalized class models.
To accomplish this, we use a deep, wide, multi-output convolutional neural
network (CNN) that predicts class, pose...
While humans can easily separate unknown objects into meaningful parts, recent segmentation methods can only achieve similar partitionings by training on human-annotated ground-truth data. Here we introduce a bottom-up method for segmenting 3D point clouds into functional parts which does not require supervision and achieves equally good results. O...
In this paper we propose a novel spatially stratified sampling technique for evaluating the likelihood function in particle filters. In particular, we show that in the case where the measurement function uses spatial correspondence, we can greatly reduce computational cost by exploiting spatial structure to avoid redundant computations. We present...
Image based object classification requires clean training data sets. Gathering such sets is usually done manually by humans, which is time-consuming and laborious. On the other hand, directly using images from search engines creates very noisy data due to ambiguous noun-focused indexing. However, in daily speech nouns and verbs are always coupled....
This study shows how understanding of object functionality arises by analyzing objects at the level of their parts where we focus here on primary tools. First, we create a set of primary tool functionalities, which we speculate is related to the possible functions of the human hand. The function of a tool is found by comparing it to this set. For t...
The proposed framework addresses the problem of implementing a high level 'psychological' learning mechanism at the level of machines. The learning framework is bootstrapped with the semantic relations (SECs) between observed manipulations without using any prior knowledge about actions or objects while being fully grounded at the sensory level (im...
Object recognition plays an important role in robotics, since objects/tools first have to be identified in the scene before they can be manipulated/used. The performance of object recognition largely depends on the training dataset. Usually such training sets are gathered manually by a human operator, a tedious procedure, which ultimately limits th...
The problem of how to arrive at an appropriate 3D-segmentation of a scene remains difficult. While current state-of-the-art methods continue to gradually improve in benchmark performance, they also grow more and more complex, for example by incorporating chains of classifiers, which require training on large manually annotated data-sets. As an alte...
The idea that connected convex surfaces, separated by concave boundaries, play an important role for the perception of objects and their decomposition into parts has been discussed for a long time. Based on this idea, we present a new bottom-up approach for the segmentation of 3D point clouds into object parts. The algorithm approximates a scene us...
Today most recognition pipelines are trained at an off-line stage, providing systems with pre-segmented images and predefined objects, or at an on-line stage, which requires a human supervisor to tediously control the learning. Self-Supervised on-line training of recognition pipelines without human intervention is a highly desirable goal, as it all...
Unsupervised over-segmentation of an image into regions of perceptually similar pixels, known as super pixels, is a widely used preprocessing step in segmentation algorithms. Super pixel methods reduce the number of regions that must be considered later by more computationally expensive algorithms, with a minimal loss of information. Nevertheless,...