Markus Roth

Markus Roth
Technische Universität Darmstadt | TU · Institute of Nuclear Physics

About

633
Publications
87,003
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
22,100
Citations
Citations since 2017
115 Research Items
7748 Citations
201720182019202020212022202302004006008001,0001,200
201720182019202020212022202302004006008001,0001,200
201720182019202020212022202302004006008001,0001,200
201720182019202020212022202302004006008001,0001,200
Additional affiliations
January 2010 - December 2011
January 2004 - present
January 2000 - February 2001
École Polytechnique

Publications

Publications (633)
Article
Strong electromagnetic pulses (EMPs) are generated from intense laser interactions with solid-density targets and can be guided by the target geometry, specifically through conductive connections to the ground. We present an experimental characterization by time- and spatial-resolved proton deflectometry of guided electromagnetic discharge pulses a...
Article
Full-text available
In this article, we report on the latest investigations and achievements in proton beam shaping with our laser-driven ion beamline at GSI Helmholtzzentrum für Schwerionenforschung GmbH. This beamline was realized within the framework of the Laser Ion Generation, Handling, and Transport (LIGHT) collaboration to study the combination of laser-driven...
Article
The present white paper is submitted as part of the “Snowmass” process to help inform the long-term plans of the United States Department of Energy and the National Science Foundation for high-energy physics. It summarizes the science questions driving the Ultra-High-Energy Cosmic-Ray (UHECR) community and provides recommendations on the strategy t...
Article
A strong quasistationary magnetic field is generated in hollow targets with curved internal surface under the action of a relativistically intense picosecond laser pulse. Experimental data evidence the formation of quasistationary strongly magnetized plasma structures decaying on a hundred picoseconds timescale, with the magnetic field strength of...
Article
Full-text available
Laser-driven ion beams have gained considerable attention for their potential use in multidisciplinary research and technology. Preclinical studies into their radiobiological effectiveness have established the prospect of using laser-driven ion beams for radiotherapy. In particular, research into the beneficial effects of ultrahigh instantaneous do...
Article
Premature relativistic transparency of ultrathin, laser-irradiated targets is recognized as an obstacle to achieving a stable radiation pressure acceleration in the “light sail” (LS) mode. Experimental data, corroborated by 2D PIC simulations, show that a few-nm thick overcoat surface layer of high Z material significantly improves ion bunching at...
Preprint
Full-text available
Strong electromagnetic pulses (EMP) are generated from intense laser interactions with solid-density targets, and can be guided by the target geometry, specifically through conductive connections to the ground. We present an experimental characterization, by time- and spatial-resolved proton deflectometry, of guided electromagnetic discharge pulses...
Preprint
The LOPES experiment was a radio interferometer built at the existing air shower array KASCADE-Grande in Karlsruhe, Germany. The last configuration of LOPES was called LOPES 3D and consisted of ten tripole antennas. Each of these antennas consisted of three crossed dipoles east-west, north-south, and vertically aligned. With this, LOPES 3D had the...
Preprint
KASCADE and its extension array of KASCADE-Grande were devoted to measure individual air showers of cosmic rays in the primary energy range of 100 TeV to 1 EeV. The experiment has substantially contributed to investigate the energy spectrum and mass composition of cosmic rays in the transition region from galactic to extragalactic origin of cosmic...
Article
We demonstrate high repetition-rate deuteron acceleration by irradiating a continuously flowing, ambient temperature liquid heavy water jet with the high-intensity ALEPH laser. The laser delivered up to 5.5 J (120 TW, 1.2 x 10^21 W/cm2) laser energy on target at 0.5 Hz. A high repetition-rate Thomson parabola spectrometer measured the deuteron beam...
Article
Laser-accelerated proton beams are applicable to several research areas within high-energy density science, including warm dense matter generation, proton radiography, and inertial confinement fusion, which all involve transport of the beam through matter. We report on experimental measurements of intense proton beam transport through plastic foam...
Preprint
Full-text available
The present white paper is submitted as part of the "Snowmass" process to help inform the long-term plans of the United States Department of Energy and the National Science Foundation for high-energy physics. It summarizes the science questions driving the Ultra-High-Energy Cosmic-Ray (UHECR) community and provides recommendations on the strategy t...
Preprint
Full-text available
Laser-driven ion beams have gained considerable attention for their potential use in multidisciplinary research and technology. Pre-clinical studies into their radiobiological effectiveness have established the prospect of using laser-driven ion beams for radiotherapy. In particular, research into the beneficial effects of ultra-high instantaneous...
Article
Image plates (IPs) are a popular detector in the field of laser driven ion acceleration, owing to their high dynamic range and reusability. An absolute calibration of these detectors to laser-driven protons in the routinely produced tens of MeV energy range is, therefore, essential. In this paper, the response of Fujifilm BAS-TR IPs to 1-40 MeV pro...
Article
Full-text available
Neutrons are a valuable tool for non-destructive material investigation as their interaction cross sections with matter are isotope sensitive and can be used complementary to x-rays. So far, most neutron applications have been limited to large-scale facilities such as nuclear research reactors, spallation sources, and accelerator-driven neutron sou...
Preprint
Full-text available
High power lasers have proven being capable to produce high energy gamma rays, charged particles and neutrons to induce all kinds of nuclear reactions. At ELI, the studies with high power lasers will enter for the first time into new domains of power and intensities.
Article
We present the usage of two-layer targets with laser-illuminated front-side microstructures for x-ray backlighter applications. The targets consisted of a silicon front layer and copper back side layer. The structured layer was irradiated by the 500-fs PHELIX laser with an intensity above 1020Wcm−2. The total emission and one-dimensional extent of...
Article
Full-text available
High-flux, high-repetition-rate neutron sources are of interest in studying neutron-induced damage processes in materials relevant to fusion, ultimately guiding designs for future fusion reactors. Existing and upcoming petawatt laser systems show great potential to fulfill this need. Here, we present a platform for producing laser-driven neutron be...
Article
Numerous experiments on laser-driven proton acceleration in the MeV range have been performed with a large variety of laser parameters since its discovery around the year 2000. Both experiments and simulations have revealed that protons are accelerated up to a maximum cut-off energy during this process. Several attempts have been made to find a uni...
Preprint
KASCADE-Grande and its original array of KASCADE were dedicated to measure individual air showers of cosmic rays with great detail in the primary energy range of 100 TeV up to 1 EeV. The experiment has significantly contributed to investigations of the energy spectrum and chemical composition of cosmic rays in the transition region from galactic to...
Article
Laser-based particle accelerators have been an active field of research for over two decades moving from laser systems capable of one shot every hour to systems able to deliver repetition rates in the Hz regime. Based on the advancements in laser technology, the corresponding detection methods need to develop from single to multiple use with high r...
Preprint
Full-text available
The underground muon detector of the Pierre Auger Observatory is aimed at attaining direct measurements of the muonic component of extensive air showers produced by cosmic rays with energy from $10^{16.5}$ eV up to the region of the ankle (around $10^{18.7}$ eV). It consists of two nested triangular grids of underground scintillators with 433 m, an...
Preprint
Full-text available
LOPES, the LOFAR prototype station, was an antenna array for cosmic-ray air showers operating from 2003 - 2013 within the KASCADE-Grande experiment. Meanwhile, the analysis is finished and the data of air-shower events measured by LOPES are available with open access in the KASCADE Cosmic Ray Data Center (KCDC). This article intends to provide a su...
Article
Full-text available
LOPES, the LOFAR prototype station, was an antenna array for cosmic-ray air showers operating from 2003 to 2013 within the KASCADE-Grande experiment. Meanwhile, the analysis is finished and the data of air-shower events measured by LOPES are available with open access in the KASCADE Cosmic Ray Data Center (KCDC). This article intends to provide a s...
Article
Full-text available
Targets with microstructured front surfaces have shown great potential in improving high-intensity laser–matter interaction. We present cone-shaped microstructures made out of silicon and titanium created by ultrashort laser pulse processing with different characteristics. In addition, we illustrate a process chain based on moulding to recreate the...
Preprint
Full-text available
We demonstrate laser-driven Helium ion acceleration with cut-off energies above 25 MeV and peaked ion number above $10^8$ /MeV for 22(2) MeV projectiles from near-critical density gas jet targets. We employed shock gas jet nozzles at the high-repetition-rate (HRR) VEGA-2 laser system with 3 J in pulses of 30 fs focused down to intensities in the ra...
Article
Full-text available
A measurement of charged hadron pair correlations in two-dimensional $$\Delta \eta \Delta \phi $$ Δ η Δ ϕ space is presented. The analysis is based on total 30 million central Be + Be collisions observed in the NA61/SHINE detector at the CERN SPS for incident beam momenta of 19 A , 30 A , 40 A , 75 A , and 150 A $$\text {Ge} \text {V}/c$$ Ge / c ....
Article
Full-text available
The production of Ξ(1321)- and Ξ¯(1321)+ hyperons in inelastic p+p interactions is studied in a fixed target experiment at a beam momentum of 158 Ge/c. Double differential distributions in rapidity y and transverse momentum pT are obtained from a sample of 33M inelastic events. They allow to extrapolate the spectra to full phase space and to determ...
Article
In a LIGHT project experiment at GSI, the effect of space charge on the quality of proton beam profile and focal line of permanent magnet quadrupole (PMQ) was investigated experimentally and numerically. In our experiment, the tracking of the real beam (electrons and protons) and pure proton beam (electrons blocked close to the source by a Cu foil)...
Article
Full-text available
The gas and ice giants in our solar system can be seen as a natural laboratory for the physics of highly compressed matter at temperatures up to thousands of kelvins. In turn, our understanding of their structure and evolution depends critically on our ability to model such matter. One key aspect is the miscibility of the elements in their interior...
Article
Full-text available
The Facility for Antiproton and Ion Research (FAIR) will employ the World's highest intensity relativistic beams of heavy nuclei to uniquely create and investigate macroscopic (millimeter-sized) quantities of highly energetic and dense states of matter. Four principal themes of research have been identified: properties of materials driven to extrem...
Article
The production of intense x-ray and particle sources is one of the most remarkable aspects of high energy laser interaction with a solid target. Wide application of these laser-driven secondary sources requires a high yield, which is partially limited by the amount of laser energy absorbed by the target. Here, we report on the enhancement of laser...
Article
Full-text available
With the phasing out of many research reactors over the upcoming years, a shortcoming of small and medium sized neutron sources is to be expected. Laser-driven neutron sources have the potential to fill this void, with enormous progress being made in laser technology over the past years. Upcoming petawatt lasers with high repetition rates up to 10...
Article
Full-text available
Neutron production with laser-driven neutron sources was demonstrated. We outline the basics of laser-driven neutron sources, highlight some fundamental advantages, and quantitatively compare the neutron production at the TRIDENT laser sources with the well-established LANSCE pulsed neutron spallation source. Ongoing efforts by our team to continue...
Preprint
Full-text available
Pentaquark states have been extensively investigated theoretically in the context of the constituent quark model. In this paper experimental searches in the $Xi^{-}\pi^{-}$, $Xi^{-}\pi^{+}$, $Xi^{+}\pi^{-}$ and $Xi^{+}\pi^{+}$ invariant mass spectra in proton-proton interactions at $\sqrt{s}$=17.3 GeV are presented. Previous possible evidence from...
Preprint
Full-text available
The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been...
Preprint
Over the past 20 years, KASCADE and its extension KASCADE-Grande were dedicated to measure high-energy cosmic rays with primary energies of 100 TeV to 1 EeV. The data accumulation was fully completed and all experimental components were dismantled, though the analysis of the high-quality data is still continued. E.g., we investigated the validity o...
Article
Methods for postirradiation characterization of bulk (cm³) irradiated materials or even spent nuclear fuels are sparse due to their extremely radioactive nature. While several methods exist to characterize smaller volumes (< 1 mm³) of such samples, selecting these volumes from larger samples is challenging. X-ray-based methods are prohibitive due t...
Article
Full-text available
Laguerre–Gaussian-like laser beams have been proposed for driving experiments with high-intensity lasers. They carry orbital angular momentum and exhibit a ring-shaped intensity distribution in the far field which make them particularly attractive for various applications. We show experimentally and numerically that this donut-like shape is extreme...
Article
Full-text available
In order to develop a laser-driven spin-polarized ^3He-ion beam source available for nuclear-physics experiments as well as for the investigation of polarized nuclear fusion, several challenges have to be overcome. Apart from the provision of a properly polarized ^3He gas-jet target, one of the biggest milestones is the demonstration of the general...
Article
In this paper, we propose a study of the picosecond temporal contrast degradation of ultrashort laser pulses by surface defects in pulse stretchers. In a chirped-pulse-amplification stretcher or compressor, dust and damages on the surface of an optical element lead to a spectral amplitude modulation. Furthermore, surface figure errors of optical el...
Conference Paper
Full-text available
Efficient electron heating and enhanced ion acceleration by ultra-intense laser interaction with well-controlled near-critical plasmas were predicted numerically but remained relatively unexplored owing to the difficulty of creating such type of targets. We studied this regime on the CLPU VEGA-2 200 TW laser facility (6 J, 30 fs, at 10 21 W/cm 2) w...
Presentation
Full-text available
Efficient electron heating and enhanced ion acceleration by ultra-intense laser interaction with well-controlled near-critical plasmas were predicted numerically but remained relatively unexplored owing to the difficulty of creating such type of targets. We studied this regime on the CLPU VEGA-2 200 TW laser facility (6 J, 30 fs, at 10 21 W/cm 2) w...
Preprint
Full-text available
[ Published version is https://doi.org/10.1103/PhysRevE.106.045211 ] A strong quasi-stationary magnetic field is generated in hollow targets with curved internal surface under the action of a relativistically intense picosecond laser pulse. Experimental data evidence formation of quasistationary strongly magnetized plasma structures decaying on th...
Preprint
Full-text available
We describe plans for the development of the Southern Wide-field Gamma-ray Observatory (SWGO), a next-generation instrument with sensitivity to the very-high-energy (VHE) band to be constructed in the Southern Hemisphere. SWGO will provide wide-field coverage of a large portion of the southern sky, effectively complementing current and future instr...
Article
We present experiments investigating dense carbon at pressures between 100 GPa and 200 GPa and temperatures between 5,000 K and 15,000 K. High-pressure samples with different temperatures were created by laser-driven shock compression of graphite and varying the initial density from 1.53 g/cm ³ to 2.21 g/cm ³ and the drive laser intensity from 7.1...
Article
Great progress has been made in recent years in realizing compact, laser-based neutron generators. These devices, however, were inapplicable for conducting neutron absorption spectroscopy because of the electromagnetic noise produced by the interaction of a strong laser field with matter. To overcome this limitation, we developed a novel neutron ti...
Article
Full-text available
Temporal pulse profile characterization is necessary to ensure and quantify the quality of short pulse laser systems. Yet it remains challenging to measure the temporal behavior of a pulse in all of its comprehensiveness. In this manuscript we present results which encourage to perform more ambitious pulse characterizations with optimized scanning...
Article
Full-text available
Compact, bright neutron sources are opening up several emerging applications including detection of nuclear materials for national security applications. At Los Alamos National Laboratory, we have used a short-pulse laser to accelerate deuterons in the relativistic transparency regime. These deuterons impinge on a beryllium converter to generate ne...
Article
Full-text available
We report on our latest transverse focusing results of subnanosecond proton bunches achieved with a laser-driven multi-MeV ion beamline. In the frame of the LIGHT collaboration, a target normal sheath acceleration (TNSA) source based 6 m long beamline was installed. In the past years, the laser-driven proton beam was transported and shaped by this...
Article
Full-text available
The spatial-intensity profile of light reflected during the interaction of an intense laser pulse with a microstructured target is investigated experimentally and the potential to apply this as a diagnostic of the interaction physics is explored numerically. Diffraction and speckle patterns are measured in the specularly reflected light in the case...
Conference Paper
Increasing the repetition rate of a large aperture glass amplifier requires active cooling systems. We present our cooling concept, potential coolants and simulation results achieving an increase in repetition rate by a factor of 10.
Article
Full-text available
We present a summary of recent tests and measurements of hadronic interaction properties with air showers. This report has a special focus on muon density measurements. Several experiments reported deviations between simulated and recorded muon densities in extensive air showers, while others reported no discrepancies. We combine data from eight le...
Conference Paper
Laser-based space debris removal concepts have been around for decades now. Nevertheless, practical implementation is still connected to great technological risks. Most of the concepts plan to utilize the laser ablative process at the target. To investigate this common aspect in detail and to reduce the risk of misleadingly extrapolating parameters...
Article
Full-text available
This article reports on the development of thin diamond detectors and their characterization for their application in temporal profile measurements of subnanosecond ion bunches. Two types of diamonds were used: a 20 µm thin polycrystalline (pc) chemical vapor deposited (CVD) diamond and a membrane with a thickness of (5 ± 1) µm etched out of a sing...