Markus Räsänen

Markus Räsänen
Wihuri Research Institute | wri

About

30
Publications
4,747
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,466
Citations
Additional affiliations
February 2013 - present
University of Helsinki
Position
  • PhD Student

Publications

Publications (30)
Article
Cardiac muscle utilizes multiple sources of energy including glucose and fatty acid (FA). The heart cannot synthesize FA and relies on obtaining it from other sources, with lipoprotein lipase (LPL) breakdown of lipoproteins suggested to be a key source of FA for cardiac use. Recent work has indicated that cardiac vascular endothelial growth factor...
Article
Background: Recent discoveries have indicated that, in the developing heart, sinus venosus and endocardium provide major sources of endothelium for coronary vessel growth that supports the expanding myocardium. Here we set out to study the origin of the coronary vessels that develop in response to vascular endothelial growth factor B (VEGF-B) in th...
Article
Full-text available
Activin A and myostatin, members of the transforming growth factor (TGF)-β superfamily of secreted factors, are potent negative regulators of muscle growth, but their contribution to myocardial ischemia-reperfusion (IR) injury is not known. The aim of this study was to investigate if activin 2B (ACVR2B) receptor ligands contribute to myocardial IR...
Article
Full-text available
Vascular diseases are major causes of death, yet our understanding of the cellular constituents of blood vessels, including how differences in their gene expression profiles create diversity in vascular structure and function, is limited. In this paper, we describe a single-cell RNA sequencing (scRNA-seq) dataset that defines vascular and vessel-as...
Article
Full-text available
In Fig. 1b of this Article, 'Csf1r' was misspelt 'Csfr1'. In addition, in Extended Data Fig. 11b, owing to an error during figure formatting, the genes listed in the first column shifted down three rows below the first gene on the list, causing a mismatch between the gene names and their characteristics. These errors have been corrected online, and...
Data
Figure S1. (A) Cardiomyocyte size at 2 weeks, (B) Redd1 (Ddit4) mRNA acutely, (C) fibrosis at 4 weeks, and (d) ki67 at 2 weeks (both tissues, left panel) and acutely (right panel) in the heart after single doxorubicin and sACVR2B‐Fc injection. In Figure 1C, representative images of stained transverse heart section and tibialis anterior muscle of di...
Article
Full-text available
Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain...
Article
Full-text available
Background: Toxicity of chemotherapy on skeletal muscles and the heart may significantly contribute to cancer cachexia, mortality, and decreased quality of life. Doxorubicin (DOX) is an effective cytostatic agent, which unfortunately has toxic effects on many healthy tissues. Blocking of activin receptor type IIB (ACVR2B) ligands is an often used...
Article
Congestive heart failure is one of the leading causes of disability in long-term survivors of cancer. The anthracycline antibiotic doxorubicin (DOX) is used to treat a variety of cancers, but its utility is limited by its cumulative cardiotoxicity. As advances in cancer treatment have decreased cancer mortality, DOX-induced cardiomyopathy has becom...
Article
Full-text available
Doxorubicin is a widely used and effective chemotherapy drug. However, cardiac and skeletal muscle toxicity of doxorubicin limits its use. Inhibiting myostatin/activin signalling can prevent muscle atrophy, but its effects in chemotherapy-induced muscle wasting are unknown. In the present study we investigated the effects of doxorubicin administrat...
Article
Full-text available
Cardiac hypertrophy accompanies many forms of heart disease, including ischemic disease, hypertension, heart failure, and valvular disease, and it is a strong predictor of increased cardiovascular morbidity and mortality. Deletion of bone marrow kinase in chromosome X (Bmx), an arterial nonreceptor tyrosine kinase, has been shown to inhibit cardiac...
Article
Full-text available
Angiogenic growth factors have recently been linked to tissue metabolism. We have used genetic gain- and loss-of function models to elucidate the effects and mechanisms of action of vascular endothelial growth factor-B (VEGF-B) in the heart. A cardiomyocyte-specific VEGF-B transgene induced an expanded coronary arterial tree and reprogramming of ca...

Network

Cited By