Markus Landthaler

Markus Landthaler
Max-Delbrück-Centrum für Molekulare Medizin | MDC · Berlin Institute for Medical Systems Biology

Dr. rer. nat.

About

144
Publications
26,281
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
24,111
Citations
Introduction
Markus Landthaler currently works at the Berlin Institute for Medical Systems Biology at the Max-Delbrück-Center for Molecular Medicine in Berlin, Germay. His laboratory is interested in the discovery and function of RNA-binding proteins.
Additional affiliations
March 2009 - present
Max-Delbrück-Centrum für Molekulare Medizin
Position
  • Group Leader
March 2003 - February 2009
The Rockefeller University
Position
  • PostDoc Position
January 2002 - February 2003
Wadsworth Center, NYS Department of Health
Position
  • PostDoc Position
Education
November 1990 - December 1996
University of Wuerzburg
Field of study
  • Biology

Publications

Publications (144)
Article
Background SARS-CoV-2 utilizes the ACE2 transmembrane peptidase as cellular entry receptor. However, whether SARS-CoV-2 in the alveolar compartment is strictly ACE2-dependent and to what extent virus-induced tissue damage and/or direct immune activation determines early pathogenesis is still elusive. Methods Spectral microscopy, single-cell/-nucle...
Article
Phosphoproteomics routinely quantifies changes in the levels of thousands of phosphorylation sites, but functional analysis of such data remains a major challenge. While databases like PhosphoSitePlus contain information about many phosphorylation sites, the vast majority of known sites is not assigned to any protein kinase. Assigning changes in th...
Article
Full-text available
The biological role of RNA-binding proteins in the secretory pathway is not well established. Here, we describe that human HDLBP/Vigilin directly interacts with more than 80% of ER-localized mRNAs. PAR-CLIP analysis reveals that these transcripts represent high affinity HDLBP substrates and are specifically bound in their coding sequences (CDS), in...
Preprint
Full-text available
Vaccines are a cornerstone in COVID-19 pandemic management. Here, we compare immune responses to and preclinical efficacy of the mRNA vaccine BNT162b2, an adenovirus-vectored spike vaccine, and the live-attenuated-virus vaccine candidate sCPD9 after single and double vaccination in Syrian hamsters. All regimens containing sCPD9 showed superior effi...
Preprint
Full-text available
The use of RNA sequencing from wastewater samples is a valuable way for estimating infection dynamics and circulating lineages of SARS-CoV-2. This approach is independent from testing individuals and can therefore become the key tool to monitor this and potentially other viruses. However, it is equally important to develop easily accessible and sca...
Article
Full-text available
For COVID-19, effective and well-understood treatment options are still scarce. Since vaccine efficacy is challenged by novel variants, short-lasting immunity and vaccine hesitancy, understanding and optimizing therapeutic options remains essential. We aimed at better understanding the effects of two standard-of-care drugs, dexamethasone and anti-S...
Preprint
Full-text available
Phosphoproteomics routinely quantifies changes in the levels of thousands of phosphorylation sites, but functional analysis of such data remains a major challenge. While databases like PhosphoSitePlus contain information about many phosphorylation sites, the vast majority of known sites are not assigned to any protein kinase. Assigning changes in t...
Preprint
Full-text available
Since December 2019, the novel human coronavirus SARS-CoV-2 has spread globally, causing millions of deaths. Unprecedented efforts have enabled development and authorization of a range of vaccines, which reduce transmission rates and confer protection against the associated disease COVID-19. These vaccines are conceptually diverse, including e.g. c...
Preprint
Full-text available
Rationale: In face of the ongoing SARS-CoV-2 pandemic, effective and well-understood treatment options are still scarce. While vaccines have proven instrumental in fighting SARS-CoV-2, their efficacy is challenged by vaccine hesitancy, novel variants and short-lasting immunity. Therefore, understanding and optimization of therapeutic options remain...
Preprint
Full-text available
Background Acute kidney injury (AKI) occurs frequently in critically ill patients and is associated with adverse outcomes. Cellular mechanisms underlying AKI and kidney cell responses to injury remain incompletely understood. Methods We performed single-nuclei transcriptomics, bulk transcriptomics, molecular imaging studies, and conventional histo...
Article
Full-text available
Derailed cytokine and immune cell networks account for organ damage and clinical severity of COVID-191–4. Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and accompanied by a senesc...
Article
Full-text available
Infection by (re-)emerging RNA arboviruses including Chikungunya virus (CHIKV) and Mayaro virus primarily cause acute febrile disease and transient polyarthralgia. However, in a significant subset of infected individuals, debilitating arthralgia persists for weeks over months up to years. The underlying immunopathogenesis of chronification of arthr...
Article
COVID-19-induced ‘acute respiratory distress syndrome’ (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyzed pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single cell genomi...
Preprint
Full-text available
The Roborovski dwarf hamster Phodopus roborovskii belongs to the Phodopus genus, one of seven within Cricetinae subfamily. Like other rodents such as mice, rats or ferrets, hamsters can be important animal models for a range of diseases. Whereas the Syrian hamster from the genus Mesocricetus is now widely used as a model for mild to moderate COVID-...
Article
Full-text available
In colorectal cancer, oncogenic mutations transform a hierarchically organized and homeostatic epithelium into invasive cancer tissue lacking visible organization. We sought to define transcriptional states of colorectal cancer cells and signals controlling their development by performing single-cell transcriptome analysis of tumors and matched non...
Article
Full-text available
In COVID-19, immune responses are key in determining disease severity. However, cellular mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly involving endothelial cells, remain ill-defined. Using Syrian hamsters as a model for moderate COVID-19, we conduct a detailed longitudinal analysis of systemic and pulmon...
Preprint
Full-text available
Translation modulates the timing and amplification of gene expression after transcription. Development of the brain’s neocortex requires precisely timed and spatially targeted gene expression, but the relationship between mRNA vs. protein synthesis throughout the genome is unknown. We perform a comprehensive analysis of the reactants, synthesis, an...
Article
Full-text available
Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction...
Preprint
Full-text available
Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathogenesis, and it remains unclear if T cells also contribute to disease pathology. Here, we combined single-cell transcriptomics and proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated,...
Article
Full-text available
Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of...
Article
Full-text available
Interferon-stimulated gene products (ISGs) play a crucial role in early infection control. The ISG zinc finger CCCH-type antiviral protein 1 (ZAP/ZC3HAV1) antagonizes several RNA viruses by binding to CG-rich RNA sequences, whereas its effect on DNA viruses is less well understood. Here, we decipher the role of ZAP in the context of human cytomegal...
Article
Full-text available
The SARS-CoV-2 virus is the causative agent of the global COVID-19 infectious disease outbreak, which can lead to acute respiratory distress syndrome (ARDS). However, it is still unclear how the virus interferes with immune cell and metabolic functions in the human body. In this study, we investigated the immune response in acute or convalescent CO...
Preprint
Full-text available
DUX4 is a transcription factor and a master regulator of embryonic genome activation (EGA). During early embryogenesis, EGA is crucial for maternal to zygotic transition at the 8-cell stage in order to overcome silencing of genes and enable transcription from the zygotic genome. In adult somatic cells, DUX4 expression is largely silenced. Activatio...
Preprint
Full-text available
Herpes simplex virus type 1 (HSV-1) infection of the nervous system may lead to brain damage, including neurodegeneration. However, lack of suitable experimental models hinders understanding molecular mechanisms and cell-type-specific responses triggered by HSV-1. Here, we infected human brain organoids with HSV-1. Known features of HSV-1 infection...
Article
Full-text available
Detailed knowledge of the molecular biology of SARS-CoV-2 infection is crucial for understanding of viral replication, host responses and disease progression. Here, we report gene expression profiles of three SARS-CoV and SARS-CoV-2 infected human cell lines. SARS-CoV-2 elicited an approximately two-fold higher stimulation of the innate immune resp...
Preprint
Full-text available
In COVID-19, immune responses are key in determining disease severity. However, cellular mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly involving endothelial cells, remain ill-defined. Using Syrian hamsters as model for moderate COVID-19, we conducted a detailed longitudinal analysis of systemic and pulmon...
Preprint
Full-text available
In COVID-19, the immune response largely determines disease severity and is key to therapeutic strategies. Cellular mechanisms contributing to inflammatory lung injury and tissue repair in SARS-CoV-2 infection, particularly endothelial cell involvement, remain ill-defined. We performed detailed spatiotemporal analyses of cellular and molecular proc...
Article
Protein synthesis must be finely tuned in the developing nervous system as the final essential step of gene expression. This study investigates the architecture of ribosomes from the neocortex during neurogenesis, revealing Ebp1 as a high-occupancy 60S peptide tunnel exit (TE) factor during protein synthesis at near-atomic resolution by cryoelectro...
Preprint
Full-text available
Early stages of embryogenesis depend heavily on subcellular localization and transport of maternally deposited mRNA. However, systematic analysis of these processes is currently hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combined spatially-resolved transcriptomics and single-cell RNA labeling to study...
Article
Full-text available
Current models of mRNA turnover indicate that cytoplasmic degradation is coupled with translation. However, our understanding of the molecular events that coordinate ribosome transit with the mRNA decay machinery is still limited. Here, we show that 4EHP-GIGYF1/2 complexes trigger co-translational mRNA decay. Human cells lacking these proteins accu...
Preprint
Interferon-stimulated gene products (ISGs) play a crucial role in early infection control. The ISG zinc finger CCCH-type antiviral protein 1 (ZAP/ZC3HAV1) antagonises several RNA viruses by binding to CG-rich RNA sequences, whereas its effect on DNA viruses is largely unknown. Here, we decipher the role of ZAP in the context of human cytomegaloviru...
Article
Coronavirus Disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progresses to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19, associated with increased neutrophil counts and dysregulated immune responses, remains...
Preprint
Full-text available
The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global health threat with more than two million infected people since its emergence in late 2019. Detailed knowledge of the molecular biology of the infection is indispensable for understanding of the vir...
Preprint
Shock-and-kill is one of the conceptually most advanced strategy towards establishment of an HIV-1 cure. Treatment with latency-reversing agents (LRAs), including histone deacetylase inhibitors with chromatin-remodeling capabilities, combined with anti-retroviral therapy, reactivates HIV-1 transcription in vivo. However, LRA treatment fails to sign...
Article
Full-text available
The ribosome is an RNA-protein complex that is essential for translation in all domains of life. The structural and catalytic core of the ribosome is its ribosomal RNA (rRNA). While mutations in ribosomal protein (RP) genes are known drivers of oncogenesis, oncogenic rRNA variants have remained elusive. We identify a cancer-specific single-nucleoti...
Article
Full-text available
The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including al...
Article
Full-text available
Recruitment of the human ribonucleolytic RNA exosome to nuclear polyadenylated (pA+) RNA is facilitated by the Poly(A) Tail eXosome Targeting (PAXT) connection. Besides its core dimer, formed by the exosome co-factor MTR4 and the ZFC3H1 protein, the PAXT connection remains poorly defined. By characterizing nuclear pA+-RNA bound proteomes as well as...
Preprint
Full-text available
The ribosome is an RNA-protein complex essential for translation in all domains of life. The structural and catalytic core of the ribosome is its ribosomal RNA (rRNA). While mutations in ribosomal protein (RP) gene are known drivers of oncogenesis, oncogenic rRNA variants have remained elusive. We discovered a cancer-specific single nucleotide vari...
Article
Full-text available
Knockout of the ubiquitously expressed miRNA-17∼92 cluster in mice produces a lethal developmental lung defect, skeletal abnormalities, and blocked B lymphopoiesis. A shared target of miR-17∼92 miRNAs is the pro-apoptotic protein BIM, central to life-death decisions in mammalian cells. To clarify the contribution of miR-17∼92:Bim interactions to th...
Article
Full-text available
Herpesvirus infection initiates a range of perturbations in the host cell, which remain poorly understood at the level of individual cells. Here, we quantify the transcriptome of single human primary fibroblasts during the first hours of lytic infection with HSV-1. By applying a generalizable analysis scheme, we define a precise temporal order of e...
Article
Codon bias has been implicated as one of the major factors contributing to mRNA stability in several model organisms. However, the molecular mechanisms of codon bias on mRNA stability remain unclear in humans. Here, we show that human cells possess a mechanism to modulate RNA stability through a unique codon bias. Bioinformatics analysis showed tha...
Article
Full-text available
Amyotrophic lateral sclerosis (ALS) has been genetically linked to mutations in RNA-binding proteins (RBPs), including FUS. Here, we report the RNA interactome of wild-type and mutant FUS in human motor neurons (MNs). This analysis identified a number of RNA targets. Whereas the wild-type protein preferentially binds introns, the ALS mutation cause...
Article
Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which i...
Preprint
Full-text available
Since the genome of herpes simplex virus 1 (HSV-1) was first sequenced more than 30 years ago, its predicted 80 genes have been intensively studied. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identified a total of 201 viral t...
Preprint
Codon bias has been implicated as one of the major factors contributing to mRNA stability in yeast. However, the effects of codon-bias on mRNA stability remain unclear in humans. Here we show that human cells possess a mechanism to modulate RNA stability through a unique codon bias different from that of yeast. Bioinformatics analysis showed that c...
Preprint
Full-text available
Herpesvirus infection initiates a range of perturbations in the host cell, which remain poorly understood at the level of individual cells. Here, we quantified the transcrips of single human primary fibroblasts during the first hours of lytic infection with HSV-1. By applying a generalizable analysis scheme, we defined a precise temporal order of e...
Article
Full-text available
Maintaining a healthy proteome involves all layers of gene expression regulation. By quantifying temporal changes of the transcriptome, translatome, proteome, and RNA-protein interactome in cervical cancer cells, we systematically characterize the molecular landscape in response to proteostatic challenges. We identify shared and specific responses...
Article
Emerging evidence indicates that heterogeneity in ribosome composition can give rise to specialized functions. Until now, research mainly focused on differences in core ribosomal proteins and associated factors. The effect of posttranslational modifications has not been studied systematically. Analyzing ribosome heterogeneity is challenging because...
Preprint
Full-text available
The mammalian response to endoplasmic reticulum (ER) stress dynamically affects all layers of gene expression regulation. We quantified transcript and protein abundance along with footprints of ribosomes and non-ribosomal proteins for thousands of genes in cervical cancer cells responding to treatment with tunicamycin or hydrogen peroxide over an e...
Chapter
RNA-binding proteins are dynamic posttranscriptional regulators of gene expression. Identification of mRNA-binding proteins in a given experimental setting is thus of great importance. We describe a procedure to enrich for direct poly(A)⁺ RNA protein binders by 4-thiouridine-enhanced UV cross-linking and oligo(dT) purification. Subsequent nuclease-...
Article
Full-text available
Background Herpesviruses can infect a wide range of animal species. Herpes simplex virus 1 (HSV-1) is one of the eight herpesviruses that can infect humans and is prevalent worldwide. Herpesviruses have evolved multiple ways to adapt the infected cells to their needs, but knowledge about these transcriptional and post-transcriptional modifications...
Article
PAR-CLIP (photoactivatable ribonucleoside–enhanced crosslinking and immunoprecipitation) facilitates the identification and mapping of protein/RNA interactions. So far, it has been limited to select cell-lines as it requires efficient 4SU uptake. To increase transcriptome complexity and thus identify additional RNA-protein interaction sites we fuse...