
Fast GPU-Based CT Reconstruction using the
Common Unified Device Architecture (CUDA)

Holger Scherl, Benjamin Keck, Markus Kowarschik, and Joachim Hornegger

Abstract—The Common Unified Device Architecture (CUDA)
is a fundamentally new programming approach making use of
the unified shader design of the most current Graphics Processing
Units (GPUs) from NVIDIA. The programming interface allows
to implement an algorithm using standard C language and a few
extensions without any knowledge about graphics programming
using OpenGL, DirectX, and shading languages.

We apply this revolutionary new technology to the
FDK method, which solves the three-dimensional reconstruction
task in cone-beam CT. The computational complexity of this
algorithm prohibits its use for many medical applications without
hardware acceleration. Today’s GPUs with their high level of
parallelism are cost-efficient processors for performing the FDK
reconstruction according to medical requirements.

In this paper, we present an innovative implementation of the
most time-consuming parts of the FDK algorithm: filtering and
back-projection. We also explain the required transformations
to parallelize the algorithm for the CUDA architecture. Our
implementation approach further allows to do an on-the-fly-
reconstruction, which means that the reconstruction is completed
right after the end of data acquisition. This enables us to
present the reconstructed volume to the physician in real-time,
immediately after the last projection image has been acquired
by the scanning device.

Finally, we compare our results to our highly optimized
FDK implementation on the Cell Broadband Engine Architec-
ture (CBEA), both with respect to reconstruction speed and
implementation effort.

I. I NTRODUCTION

The FDK method is used in most of today’s cone-beam
CT scanners as the standard reconstruction approach. The
typical medical workflow requires high-speed reconstructions
in order to avoid an interruption of patient treatment during
surgery. Current GPUs offer massively parallel processing
capability that can handle the computational complexity of
three-dimensional cone-beam reconstruction. In comparison to
the nine-way coherent Cell Broadband Engine Architecture,
for which we have previously demonstrated a substantial
reconstruction speed [1], the NVIDIA GeForce 8800 GTX
architecture uses 128 Stream Processors in parallel. This
GPU (345.6 Gflops1, 128 stream processors, 1.35 GHz,
one multiply-add operation per clock cycle per Stream Pro-
cessor) is theoretically capable of sustaining almost twice the

H. Scherl, B. Keck and J. Hornegger are with the Friedrich-Alexander-
Universität Erlangen-Nürnberg, Department of ComputerScience, Institute of
Pattern Recognition (LME), Martensstr. 3, D-91058 Erlangen, Germany.

M. Kowarschik is with Siemens Medical Solutions, CO Division, Medical
Electronics, Imaging, and IT Solutions, P.O.Box 3260, D-91050 Erlangen,
Germany.

The trademarks within this publication are those of the respective owners.
11 Gflops = 1 Giga floating point operations per second

performance of the CBEA (208.4 Gflops, eight processing ele-
ments (SPE), 3.2 GHz, four multiply-add operations per clock
cycle per SPE). Due to the fact that NVIDIA develops a funda-
mentally new easy-to-use computing architecture for solving
complex computational problems on the GPU (CUDA), this
speed-up factor should influence the high-speed reconstruction
performance significantly.

CUDA offers a unified hardware and software solution
for parallel computing on CUDA-enabled NVIDIA GPUs
supporting the standard C programming language together
with high performance computing numerical libraries2.

This unveils the access to the processing power of graphics
cards even for programmers that are not specialists in computer
graphics. The implementation of the reconstruction task can
now be done without knowing every trick how to (ab)use
the existing Application Programming Interfaces (API), e.g.
OpenGL, DirectX, or the Brook language, for general-purpose
programming.

In this paper we detail the necessary steps for unveiling the
reconstruction performance using this programming paradigm
for commodity graphics hardware.

II. RELATED WORK

Up to now, the reconstruction performance on graphics
accelerators was evaluated only using graphics-based im-
plementation approaches using OpenGL and shading lan-
guages [2], [3]. In comparison to the traditional graphics-based
implementation methods, our CUDA-based implementation
of cone-beam reconstruction has even a slightly improved
reconstruction speed.

Despite of our optimized Cell-based back-projection imple-
mentation [1], another group also demonstrated cone-beam
back-projection on the Cell processor [4]. The results are
comparable to the performance of our back-projection module.
The most time consuming operation in the inner loop of
reconstruction is the ratio computation due to the perspective
projection model. Our Cell-based approach avoids image rec-
tification as suggested [4] that leads to the elimination of the
homogeneous division [5] but introduces an additional low-
pass operation on the projection.

III. M ETHOD

The FDK method can be divided into three steps: generate
weighted projection data (cosine weighting and short-scan
weighting), ramp filter the projection images row-wise, and

2http://developer.nvidia.com/object/cuda.html



back-project the filtered projection data into the volume [6].
Because of deviations due to mechanical inaccuracies of real
cone-beam CT systems such as C-arm scanners, the mapping
between volume and projection image positions is described
by a3×4 projection matrixPi for each X-ray source positioni
along the trajectory. In a calibration step the projection matri-
ces are determined when the C-arm device is installed [7]. In
this paper we concentrate on the two most compute-intensive
tasks: filtering and back-projection.

IV. I MPLEMENTATION

Using theReconstruction Toolkit (RTK) [8], we have imple-
mented the basic processing chain as a pipeline architecture.
One pipeline stage is responsible for loading the projections
form the hard disk or over the network. As soon as a
projection is available, the subsequent pipeline stages perform
the filtering and back-projection, respectively. The pipeline
stages for filtering and back-projection share the same thread
of execution in order to make use of the CUDA-enabled GPU.

First, the projection image has to be transferred to the device
memory of the graphics card. We used theCUFFT library of
the CUDA package to implement the convolution with the
given filter kernel. This library only supports the calculation
of complex fast Fourier transforms (FFT). Therefore, we
simultaneously convolve two image rows of a projection with
the given filter kernel, where one image row defines the real
input and the other one the imaginary input. The convolution
is computed by a complex 1-D FFT followed by the point-
wise multiplication of the discrete Fourier transform (DFT)
of the filter kernel and the computation of the inverse FFT of
the respective point-wise product. The necessary computations
are mapped to several successive CUDA kernel executions:
Data rearrangement to complex format, zero-padding, batched
FFT, multiplication with the DFT of the filter kernel, batched
IFFT, and data rearrangement to the original format. Each
CUDA kernel computes all rows of a complete projection
image simultaneously in order to make efficient use of the
multiprocessors on the graphics card.

In the next step we perform the voxel-based back-projection,
which requires the calculation of a matrix-vector product for
each voxel in order to determine the corresponding projection
value. Then we invoke our back-projection kernel on the
graphics device. Each thread of the kernel computes the back-
projection of a certain column and volume slice (see Figure 1).
This allows to save six multiply-add operations by increment-
ing the homogeneous coordinates with the appropriate column
of Pi for neighboring voxels iny-direction. This approach also
reduces the register usage (see Figure 2).

In this regard, a rectification-based approach has theo-
retically the potential to further improve the reconstruction
speed [5]. During our experiments we, however, observed
that this is not true for the used graphics hardware. This
optimization method, actually, degrades the reconstruction
speed when compared to the approach described above.

Finally, we experimentally chose an efficient grid configu-
ration (see Figure 3).

After all projections have been processed the volume is
transferred to the host system memory. Our projection-based

z

y

x

v

u

X-ray
source

detector

volume

Fig. 1. Perspective geometry of the C-arm device (thev-axis andz-axis
are not necessarily parallel) together with the parallelization strategy of our
back-projection implementation on the GPU using CUDA (thex-z plane is
divided in several blocks to specify a grid configuration, and each thread of
a corresponding block processes all voxels iny-direction).

0

6

12

18

24

0 4 8 12 16 20 24 28 32

Registers per thread

M
u

lt
ip

ro
c

e
s

s
o

r

w
a

rp
o

c
c

u
p

a
n

c
y

Fig. 2. Dependency of the multiprocessor warp occupancy on the register
usage. Our CUDA implementation uses only 10 registers.

8.20

7.65

7.09
7.06

7.14

7.06

6.40

6.60

6.80

7.00

7.20

7.40

7.60

7.80

8.00

8.20

8.40

32x8 64x1 64x2 64x4 128x1 128x2

Grid configuration

B
a
c
k
-p

ro
je

c
ti

o
n

ti
m

e
[s

]

Fig. 3. Execution time for different grid configurations.



Time [s] pps fps

Filtering
NVIDIA GeForce 8800 GTX (CUDA) 3.00 138.00
Cell processor 3.2 GHz (CBEA) 0.82 503.03

Back-projection
NVIDIA GeForce 8800 GTX (CUDA, NN/LI) 7.06 58.64 72.52
Cell processor 3.2 GHz (CBEA, NN) 11.85 34.94 43.21
Cell processor 3.2 GHz (CBEA, LI) 20.99 19.73 24.40

Data transfer (load projections / store volume)
NVIDIA GeForce 8800 GTX (CUDA) 1.07 / 0.89
Cell processor 3.2 GHz (CBEA) 0.00 / 0.00

Overall execution (filtering, back-projection and data transfer)
NVIDIA GeForce 8800 GTX (CUDA, NN/LI) 12.02 34.44 42.60
Cell processor 3.2 GHz (CBEA, NN) 13.60 30.44 37.64
Cell processor 3.2 GHz (CBEA, LI) 24.04 17.22 21.30

TABLE I
PERFORMANCE RESULTS OF FILTERING AND BACK-PROJECTION IN

NEAREST NEIGHBOR INTERPOLATION(NN) AND BI -LINEAR (LI)
INTERPOLATION MODE.

approach allows to do an on-the-fly reconstruction while
projection data are still being acquired.

V. RESULTS

The filtering and back-projection code has been executed
both on an Intel Xeon processor running at 2.8 GHz and
equipped with an NVIDIA GeForce 8800 GTX graphics card,
and on a Cell Blade server board with two Cell processors run-
ning at 3.2 GHz each and 1 GB of main memory split across
the two chips. Only one Cell processor has been used during
our measurements. The performance has been evaluated using
a data set consisting of 414 projections of1024× 1024 pixels
each and using a volume consisting of512×512×512 voxels.
We have chosen a voxel size of0.26

3 mm3 in order to ensure
that all voxels lie inside the field-of-view. In Table I we show
the timing measurements for the filtering, back-projection, and
also for the overall execution. We also give the numbers of
projections that can be back-projected per second (pps) andthe
numbers of512×512 volume slices, that can be reconstructed
in one second (fps = frames per second).

As far as the filtering step is concerned, the Cell processor
outperforms the GPU significantly. Although we assume that
in this early CUDA release the FFT performance is not yet
optimal, the Cell architecture could be used more efficiently,
involving a very time-consuming hand optimization. Looking
at the back-projection, the GPU clearly benefits from its theo-
retical advantage in processing power over the Cell processor.
In addition, on the GPU the bilinear interpolation is nearlyfor
free due to additional hardwired circuits on the device for fast
texture access. The measured overall execution time allows
to compute the FDK reconstruction on-the-fly (>30 fps) with
either one GPU or two Cell processors.

VI. CONCLUSIONS

We have presented an optimized CUDA-based implementa-
tion of the FDK method. The resulting performance leverages
cone-beam CT reconstructions on-the-fly, which means that
we can hide all required computations behind the scan-time

of the used acquisition device. Due to the exclusive use of
off-the-shelf hardware components the physician can now
run retrospective reconstructions with varying reconstruction
parameters, e.g. different filter kernels, using a standardPC.

In contrast to traditional implementation approaches using
OpenGL and shading languages, for example, the CUDA
architecture enables the ”non-graphics” programmer to im-
plement efficient GPU code for general-purpose computations
in a more simplified and appropriate way. With respect to
the implementation of the FDK algorithm the CUDA-based
approach required much less implementation effort than an
optimized CBEA-based implementation.

We conclude that the CUDA-enabled GPU is well suited for
delivering high-speed reconstructions in flat-panel cone-beam
CT (e.g., C-arm devices).

ACKNOWLEDGMENTS

This work was supported by Siemens Medical Solutions,
CO Division, Medical Electronics, Imaging, and IT Solutions.

REFERENCES

[1] H. Scherl, M. Koerner, H. Hofmann, W. Eckert, M. Kowarschik, and
J. Hornegger, “Implementation of the FDK algorithm for cone-beam
CT on the Cell Broadband Engine Architecture,” inProceedings of
SPIE Medical Imaging 2007: Physics of Medical Imaging, J. Hsieh and
M. Flynn, Eds., vol. 6510, San Diego, February 2007, p. 651058.

[2] K. Mueller, F. Xu, and N. Neophytou, “Why do commodity graphics
hardware boards (GPUs) work so well for acceleration of computed
tomography?” inSPIE Electronic Imaging Conference, San Diego, 2007,
(Keynote, Computational Imaging V).

[3] M. Churchill, “Hardware-accelerated cone-beam reconstruction on a
mobile C-arm,” inProceedings of SPIE, J. Hsieh and M. Flynn, Eds.,
vol. 6510, 2007.

[4] M. Kachelrieß, M. Knaup, and O. Bockenbach, “Hyperfast perspective
cone-beam backprojection,” inIEEE Nuclear Science Symposium and
Medical Imaging Conference, San Diego, 2006, m01-7.

[5] C. Riddell and Y. Trousset, “Rectification for cone-beamprojection and
backprojection,”IEEE Transactions on Medical Imaging, vol. 25, no. 7,
pp. 950–962, 2006.

[6] H. Turbell, “Cone-beam reconstruction using filtered backprojection,”
Ph.D. dissertation, Linköping University, Sweden, SE-581 83 Linköping,
Sweden, February 2001, dissertation No. 672, ISBN 91-7219-919-9.

[7] K. Wiesent, K. Barth, N. Navab, P. Durlak, T. Brunner, O. Schuetz, and
W. Seissler, “Enhanced 3-D-reconstruction algorithm for C-arm systems
suitable for interventional procedures,”IEEE Transactions on Medical
Imaging, vol. 19, no. 5, pp. 391–403, 2000.

[8] H. Scherl, S. Hoppe, M. Kowarschik, and J. Hornegger, “Design and
implementation of the software architecture for a 3-D reconstruction sys-
tem in medical imaging,” Leipzig, 2008, submitted to IEEE International
Conference on Software Engineering.


