Markus Grosch

Markus Grosch
Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | HZM

About

16
Publications
2,732
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
523
Citations
Additional affiliations
September 2015 - June 2020
Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Position
  • PhD Student
November 2014 - August 2015
New York University
Position
  • Research Associate
Education
September 2009 - March 2015

Publications

Publications (16)
Article
Full-text available
Despite their fundamental role in assessing (patho)physiological cell states, conventional gene reporters can follow gene expression but leave scars on the proteins or substantially alter the mature messenger RNA. Multi-time-point measurements of non-coding RNAs are currently impossible without modifying their nucleotide sequence, which can alter t...
Article
Full-text available
Membrane-free intracellular biocondensates are enclosures of proteins and nucleic acids that form by phase separation. Extensive ensembles of nuclear “membraneless organelles” indicate their involvement in genome regulation. Indeed, nuclear bodies have been linked to regulation of gene expression by formation of condensates made of chromatin and RN...
Article
mRNAs enriched in membraneless condensates provide functional compartmentalization within cells. The mechanisms that recruit transcripts to condensates are under intense study; however, how mRNAs organize once they reach a granule remains poorly understood. Here, we report on a self-sorting mechanism by which multiple mRNAs derived from the same ge...
Article
Full-text available
Background: Many long noncoding RNAs (lncRNAs) have been implicated in general and cell type-specific molecular regulation. Here, we asked what underlies the fundamental basis for the seemingly random appearance of nuclear lncRNA condensates in cells, and we sought compounds that can promote the disintegration of lncRNA condensates in vivo. Resul...
Article
Full-text available
RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are key regulators of gene expression, but their joint functions in coordinating cell fate decisions are poorly understood. Here we show that the expression and activity of the RBP TDP-43 and the long isoform of the lncRNA Neat1, the scaffold of the nuclear compartment "paraspeckles," a...
Article
The GGGGCC (G4C2) repeat expansion mutation in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Transcription of the repeat and formation of nuclear RNA foci, which sequester specific RNA-binding proteins, is one of the possible pathological mechanisms. Here, we show that (G...
Article
Germ granules, specialized ribonucleoprotein particles, are a hallmark of all germ cells. In Drosophila , an estimated 200 mRNAs are enriched in the germ plasm, and some of these have important, often conserved roles in germ cell formation, specification, survival and migration. How mRNAs are spatially distributed within a germ granule and whether...
Article
Full-text available
Hematopoietic Stem Cells (HSCs) generate blood and immune cells through a hierarchical process of differentiation. Genes that regulate this process are of great interest for understanding normal and also malignant hematopoiesis. Surprisingly, however, very little is known about long-non-coding RNAs (lncRNA) in HSCs. Neat1 is a lncRNA that plays a m...
Article
Full-text available
Inherited mtDNA mutations cause severe human disease. In most species, mitochondria are inherited maternally through mechanisms that are poorly understood. Genes that specifically control the inheritance of mitochondria in the germline are unknown. Here, we show that the long isoform of the protein Oskar regulates the maternal inheritance of mitoch...
Article
Full-text available
Germ granules, specialized ribonucleoprotein particles, are a hallmark of all germ cells. In Drosophila, an estimated 200 mRNAs are enriched in the germ plasm, and some of these have important, often conserved roles in germ cell formation, specification, survival and migration. How mRNAs are spatially distributed within a germ granule and whether t...
Data
A 3D model of the VasaGFP granule with localized cycB, nos, pgc and gcl determined by triangulation of the VasaGFP:mRNA and mRNA:mRNA distances (Methods). Each point in the plot represents the center of the VasaGFP granule or cycB, nos, pgc and gcl mRNA cluster. The extent of each cloud of points reflects the most likely position of each VasaGFP ce...
Data
Supplementary Figures 1-6, Supplementary Tables 1-13 and Supplementary References
Data
A 3D model of the VasaGFP granule with localized cycB, nos, pgc and gcl determined by triangulation of the VasaGFP:mRNA and mRNA:mRNA distances (Methods, Supplementary Movie 2). The model is similar to the one shown in the Supplementary Movie 1 but differs from it in its chirality.

Network

Cited By