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Abstract
Purpose – Research on international marketing usually involves comparing different groups of
respondents. When using structural equation modeling (SEM), group comparisons can be misleading
unless researchers establish the invariance of their measures. While methods have been proposed to
analyze measurement invariance in common factor models, research lacks an approach in respect of
composite models. The purpose of this paper is to present a novel three-step procedure to analyze the
measurement invariance of composite models (MICOM) when using variance-based SEM, such as
partial least squares (PLS) path modeling.
Design/methodology/approach – A simulation study allows us to assess the suitability of the
MICOM procedure to analyze the measurement invariance in PLS applications.
Findings – TheMICOM procedure appropriately identifies no, partial, and full measurement invariance.
Research limitations/implications – The statistical power of the proposed tests requires further
research, and researchers using the MICOM procedure should take potential type-II errors into account.
Originality/value – The research presents a novel procedure to assess the measurement invariance
in the context of composite models. Researchers in international marketing and other disciplines need
to conduct this kind of assessment before undertaking multigroup analyses. They can use MICOM
procedure as a standard means to assess the measurement invariance.
Keywords Methodology, Structural equation modelling, Measurement, Measurement invariance,
Partial least squares, MICOM, Multigroup, Variance-based SEM, Composite models, Permutation test,
Path modelling
Paper type Research paper

Introduction
Variance-based structural equation modeling (SEM) using the partial least squares
(PLS) method is a key multivariate statistical technique to estimate cause-effect
relationships between constructs in international marketing research (Hair et al., 2012b;
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Henseler et al., 2009). Many studies using PLS engage in comparisons of model
estimation results across different groups of respondents (Okazaki et al., 2007).
For example, Brettel et al. (2008) compare antecedents of market orientation across
three countries. Similarly, Singh et al. (2006) analyze international consumers’
acceptance and use of websites designed specifically for different countries. Such
multigroup comparisons require establishing measurement invariance to ensure the
validity of outcomes and conclusions (Millsap, 2011).

Over the last decades, research suggested a wide array of methods to assess various
aspects of measurement invariance (e.g. Jong et al., 2007; Meade and Lautenschlager,
2004; Morris and Pavett, 1992; Raju et al., 2002; Raykov and Calantone, 2014; Salzberger
and Sinkovics, 2006). While these methods have undisputed value for assessing
measurement invariance in international marketing research and related fields, their
applicability is limited to common factor models as implied by reflective measurement.
However, researchers frequently follow a different philosophy of measurement referred
to as composite models. Composite models are the dominant measurement model of
variance-based SEM (Henseler et al., 2014; Sarstedt et al., 2014). Unfortunately, the
well-established measurement invariance techniques for common factor models cannot
be readily transferred to composite models. This issue leaves researchers in
international marketing without a procedure to assess the measurement invariance of
composite models (MICOM). Since variance-based SEM, especially using PLS (Hair
et al., 2017; Lohmöller, 1989; Wold, 1982), recently experienced widespread
dissemination in international marketing (Henseler et al., 2009), marketing in general
(Hair et al., 2017), and different management disciplines (e.g. Hair et al., 2012a; Ringle
et al., 2012; Sarstedt et al., 2014), this gap in prior research needs urgent attention.

Building on recent literature on the nature of composite models generally (Henseler,
2012; Hwang and Takane, 2004) and PLS specifically (Henseler et al., 2014; Rigdon,
2014), this paper introduces a novel procedure to measurement invariance assessment
in composite modeling, which contrasts group-specific measurement model estimates
with those obtained from a model estimation using pooled data. We introduce a
three-step procedure that consists of the following elements: configural invariance;
compositional invariance; and the equality of composite mean values and variances.
Using simulated and empirical data, we illustrate the procedure’s efficacy for
invariance assessment in the context of PLS.

The remainder of the paper is organized as follows: we first characterize the
distinction between common factors and composites before addressing the need to
assess the composite model’s measurement invariance when conducting a multigroup
analysis. In light of the shortcomings of existing approaches, we develop a novel
procedure for assessing measurement invariance in the context of composite models.
Next, we reveal the capabilities of the MICOM procedure by running a simulation
study. After this validation of MICOM’s performance, we apply the procedure in an
empirical example. The paper closes with our conclusions and an overview of possible
future research opportunities.

Three types of measurement models: common factors, composites, and
causal indicators
When researchers aim to measure latent variables using multiple indicators, they have
several options. In the context of SEM, particularly three types of measurement models
are discussed (Bollen, 2011): common factor models (reflective measurement), causal
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indicator models (formative measurement), and composite models. Figure 1 is a
schematic representation of the three models.

Reflective measurement models are based on the assumption that a latent variable
equals the common factor underlying a set of observed variables (indicators).
Common factors in SEM entail a causality direction from construct to its measure (Bollen,
1989). The indicators of a reflective measurement model are considered to be error-prone
manifestations of a latent (unobserved) variable. The relationship between an observed
and an unobserved variable is usually modeled as expressed in the following equation:

x ¼ lUxþe; (1)

where x is the observed indicator variable; ξ is the latent variable, the loading λ is a
regression coefficient quantifying the strength of the relationship between x and ξ; and ε
represents the random measurement error. One expects correlated indicators, and the
common factor represents the shared variance of the indicators. Dropping one of multiple
indicators in a reflective measurement model would not alter the meaning of the common
factor ( Jarvis et al., 2003). Consistent versions of variance-based SEM are required to
obtain consistent estimates for reflective measurement models (Dijkstra, 2014; Dijkstra
and Henseler, 2015a, b).

Not all concepts are operationalized using reflective indicators. Specifically, a latent
variable can also be operationalized using relationships from the indicators to the latent
variable (Figure 1). Blalock (1964) was the first to introduce the distinction between
what he called the effect (i.e. reflective) and the causal indicators to social science
research. This distinction was later adopted in the marketing discipline under the
similar, yet different, formative indicators concept. Fornell and Bookstein (1982,
p. 442) characterize the formative indicator concept as follows: “In contrast, when
constructs are conceived as explanatory combinations of indicators (such as
‘population change’ or ‘marketing mix’) which are determined by a combination of
variables, their indicators should be formative.” Diamantopoulos and Winklhofer
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(2001) and Diamantopoulos et al. (2008) introduce formative measurement models in
detail to SEM (also see Jarvis et al., 2003). Besides the causality direction from the
indicator to the construct, they do not require correlated indicators. If researchers
dropped an indicator from a formative measurement model, they would remove
content, which would change the meaning of the construct. Causal indicators in
formative measurement models do not form the latent variable, as the name might
imply, but “cause” it. Consequently, causal indicators must correspond to a theoretical
definition of the concept under investigation. Therefore, latent variables measured with
causal indicators have an error term (Figure 1) that captures all the other causes of the
latent variable not included in the model (Diamantopoulos, 2006). Equation 2 represents
a measurement model comprising causal indicators, where wi indicates the contribution
of xi (i¼ 1,…, I ) to ξ, and δ is an error term:

x ¼
XI

i¼1

wiUxiþd: (2)

Composite models strongly resemble formative measurement models, except for a
small detail. In contrast to formative measurement models, composite models do not
contain an error term on the level of the latent variable (Figure 1). This subtle
distinction has important implications for the characterization of composite models
(Henseler et al., 2014). First, formative indicators operate as contributors to a composite
variable. They form the composite fully by means of linear combinations, thereby
ensuring that the composite has no error term. Psychometric literature thus refers to
composite rather than formative indicators (Bollen, 2011; Bollen and Bauldry, 2011).
The resulting composite variable may be a proxy for a latent concept (Rigdon, 2012),
but the indicators do not necessarily need to be conceptually united. There are several
ways to interpret composite models (i.e. models with composite variables). Some authors
regard composite models as a useful tool to create new entities, which allow for capturing
systems, compounds, and other constructs comprising various components (Rigdon,
2014). Others understand these models as a prescription for dimension reduction, where
the aim is to condense the data so that it reflects a concept’s salient features adequately
(Dijkstra and Henseler, 2011). Equation 3 illustrates a measurement model with
composite indicators, where C is a linear combination of indicators xi (i= 1,…, I ), each
weighted by an indicator weight wi (i= 1,…, I ) (Rigdon, 2012):

C ¼
XI

i¼1

wiUxi: (3)

All variance-based SEM techniques model latent variables as composites; that is, they
create proxies as linear combinations of indicator variables. In particular, no matter
which outer weighting scheme is used in PLS (Mode A or Mode B), the resulting latent
variable is always modeled as a composite (Henseler, 2010).

Scholars have started questioning the default application of reflective common
factor models in SEM (e.g. Jarvis et al., 2003). They emphasize that the composite model
perspective offers a more general and potentially more realistic measurement approach,
especially when considering formative measurement (Rigdon, 2012, 2014). The
composite model relaxes the strong assumption that a common factor explains all the
covariation between a block of indicators (i.e. there is no reason that researchers need to
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expect correlated indicators). Hence, the composite model does not impose any
restrictions on the covariances between the same construct indicators. Linear
combinations with predefined or estimated weights determine the composite that
results from its underlying indicators. These linear combinations serve as proxies for
the scientific concept under investigation (Henseler et al., 2014). Consequently, dropping
an indicator from the measurement model usually alters the meaning of the composite.
Moreover, measures of internal consistency reliability only make sense if the composite
approximates a reflective construct. Table I summarizes the conceptual differences
between reflective, composite, and causal indicators.

On the need of a procedure for measurement invariance assessment of
composite models
Measurement invariance is a crucial issue that researchers must address in multigroup
SEM analyses. Measurement invariance refers to “whether or not, under different
conditions of observing and studying phenomena, measurement operations yield
measures of the same attribute” (Horn and McArdle, 1992, p. 117). By establishing
measurement invariance, researchers ensure that dissimilar group-specific model
estimations do not result from distinctive content and the meanings of the latent
variables across groups. For example, variations in the structural relationships
between latent variables could stem from different meanings that the alternative
groups’ respondents attribute to the phenomena, rather than the true differences in the
structural relations. Similarly, cross-national differences might emerge from culture-
specific response styles (e.g. Johnson et al., 2005), such as acquiescence (i.e. different
tendencies regarding agreeing with questions regardless of the question’s content;
Sarstedt and Mooi, 2014). Summarizing these and similar concerns, Hult et al. (2008,
p. 1028) conclude that “failure to establish data equivalence is a potential source of
measurement error (i.e. discrepancies of what is intended to be measured and what is
actually measured), which accentuates the precision of estimators, reduces the power of
statistical tests of hypotheses, and provides misleading results.” A lack of evidence of
measurement invariance casts doubt on any conclusions based on the corresponding
measures. Measurement invariance is a necessary but not sufficient requirement for
multigroup SEM analyses. Ensuring the validity of latent variables, for instance, by
content, criterion, construct, convergent, and discriminant validity assessments in SEM
(e.g. Bollen, 1989), remains a requirement for all group-specific model estimations.

Over the last decades, for common factor models in SEM, researchers suggested a
wide array of methods to assess various aspects of measurement invariance (e.g. Jong
et al., 2007; Meade and Lautenschlager, 2004; Meredith, 1993; Millsap, 2011; Morris and
Pavett, 1992; Raju et al., 2002; Raykov and Calantone, 2014; Salzberger and Sinkovics,
2006). Multigroup confirmatory factor analysis (CFA) is by far the most common

Characteristic
Common factor

model
Composite
model

Causal indicators
model

Error term on the indicator level Yes No No
Error term on the latent variable
level

No No Yes

Indicators fully form the composite No Yes No

Table I.
Overview of
conceptual

differences between
three types of

measurement models
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approach to invariance assessment, as evidenced by the scientific impact of the guiding
articles on invariance assessment by Steenkamp and Baumgartner (1998) and
Vandenberg and Lance (2000). Hence, for many researchers, invariance assessment is
equivalent to running a series of model comparisons with increasingly restrictive
constraints within a CFA-based framework. Studies that conduct multigroup SEM
analysis (e.g. in an international and cross-cultural context) usually distinguish
between the following invariance levels (for more details about the levels, see, e.g.
Steenkamp and Baumgartner, 1998; Steinmetz et al., 2009; Vandenberg and Lance,
2000): first, configural invariance, which requires that the same basic factor structure
exists in all the groups (in terms of number of constructs and items associated with
each construct); second, metric invariance to ensure that item loadings are invariant
across groups; third, scalar invariance to safeguard the equality of measurement
intercepts (i.e. intercepts of like items’ regressions on the construct); and fourth, error
variance invariance, which tests the amount of the items’ measurement error and the
extent to which measurement errors are equivalent across groups.

Once configural invariance has been established, further measurement invariance
assessments focus primarily on the systematic error of the measures. Such systematic
errors might result from group-specific response styles (e.g. extreme response styles,
acquiescence) and come in two forms. First, indicator loadings might differ across the
groups, which implies that the constructs have different meanings in each group. Only
if loadings of like items are invariant across the groups (i.e. metric invariance is being
established), can differences in the item scores be meaningfully compared in that they
are indicative of similar group differences in the underlying construct (Steenkamp and
Baumgartner, 1998). Second, measurement intercepts may differ across the groups,
which contradicts mean comparisons across them. Such comparisons are only
meaningful if the scalar invariance of the items holds. Scalar invariance implies that
group differences in the mean values of the observed items are due to differences in
those of the underlying construct (Steenkamp and Baumgartner, 1998). Finally, the
invariance assessment may also focus on the random error. Most types of measurement
and structural model comparisons do not require establishing the error variance
invariance, which is therefore generally neglected in SEM (Hair et al., 2010).

If the analyses and tests on different required levels do not support full
measurement invariance, applied research typically focusses on the at least partial
fulfillment of measurement invariance (Hair et al., 2010). In case of partial metric and/or
scalar measurement invariance, at least two indicators of a construct must have equal
loadings and/or intercepts across groups (e.g. Steenkamp and Baumgartner, 1998).
Partial metric and/or scalar measurement invariance allows researchers to at least
compare the group-specific (standardized) coefficients of the relationships in the
structural model. Otherwise, when less than two items per latent variable have equal
loadings and/or intercepts, multigroup comparisons in SEM may be problematic.

When conducting multigroup comparisons in international marketing research and
related fields, assessing measurement invariance usually builds on the step-wise
analyses previously described. These analyses have been solely proposed for common
factor models in SEM. Since composite models are conceptually different, existing
measurement invariance assessment procedures do not apply to composite models
(similarly, reflective measurement model assessment criteria do not apply to formative
measurement models; Diamantopoulos and Winklhofer, 2001). Researchers have
overlooked this important aspect for a long time, despite the increasing popularity of
variance-based SEM using composite models.
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Although there is a requirement to develop approaches to assess the measurement
invariance of composites, extant advances in this direction must be regarded as limited or
incomplete at best. In an initial approach, Hsieh et al. (2008) aimed at ensuring that the
way a composite was formed in two groups does not influence the multigroup comparison
of variance-based SEM results. For this purpose, the authors used the first group’s weight
estimates to compute the composite scores of the second, and vice versa. They
demonstrated that the choice of weights hardly affected the structural results in their
application, which is a typical phenomenon for composites (Dijkstra and Henseler, 2011).
Hsieh et al.’s (2008) approach assists researchers in gaining additional confidence that a
lack of measurement invariance does not confound their multigroup comparisons in
variance-based SEM. However, they only address the issue of compositional invariance,
while other sources of measurement invariance may also be relevant for composite
models (e.g. configural invariance). Moreover, they do not present a statistical test, which
researchers require to draw their conclusions. In contrast, Ringle et al. (2011) used PLS in
combination with the bootstrap method (Davison and Hinkley, 1997; Hair et al., 2017) to
obtain inference statistics for the correlations between constructs and indicators. Relying
on the bootstrap confidence intervals, Ringle et al. (2011) conducted a series of tests, which
provided an assessment of the measurement invariance. An obvious caveat against this
approach is the potential multiple testing error. The more indicators a composite has, the
larger this risk becomes. Moreover, this approach ignores the role of different inter-item
correlations, and it is only indirectly linked to the composite’s formation. Money et al.
(2012) implemented a combination of both approaches, using PLS and the bootstrap
method to infer whether two composites using the same indicators, but different weights,
have a correlation of less than one. Their approach’s disadvantage is that it is limited to
equal-sized groups. Apart from these conceptual concerns, none of these approaches have
yet formally demonstrated (e.g. by means of simulated data) that they hold. Moreover,
none of these approaches can be regarded as a complete framework comparable in rigor
to those developed for common factor models.

In a wider context, Diamantopoulos and Papadopoulos (2010) introduced guidelines
for assessing the measurement invariance in causal indicator models. The authors
propose assessing three types of invariance for SEM with causal indicators[1]. First,
structure invariance refers to the extent to which the same pattern of salient (non-zero)
indicator weights defines the structure of the formative measure in different groups. In
respect of this type – the weakest form of invariance – Diamantopoulos and
Papadopoulos (2010, p. 362) note, “the absence of structure invariance essentially
means that the very nature of the construct is different across countries.” Second, slope
invariance refers to the extent to which each indicator’s contribution is equal across the
groups. This kind of invariance implies that a certain indicator influences
the composite variable equally in each group. Third, residual invariance refers to the
extent to which the variance of the error term is similar across the groups.

Diamantopoulos and Papadopoulos’s (2010) procedure requires estimating a baseline
multiple-indicators-multiple-causes model ( Jöreskog and Goldberger, 1975) to ensure that
the formative measurement model is identified, after which a set of equality constraints is
introduced. As such, their approach – analogous to classic CFA-based approaches –
follows the common factor model logic. As composite models are subject to different
conceptual characteristics, Diamantopoulos and Papadopoulos’s (2010) approach to
invariance assessment cannot be universally transferred to composite models.
For example, the concept of residual invariance is not applicable to composite models,
as the composite variable has, by definition, no error term. In addition, since composite
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indicators do not correspond to a predefined concept, but define it, the comparison of the
indicator weights must go beyond the assessment of the slope invariance. More
specifically, the invariance assessment should ensure that the way the composite is
formed does not differ across the groups. In this regard, two issues may negatively affect
composite models’ measurement invariance (see Equation (3)). First, the composite
constituents can differ. Composite indicators can have different meanings and/or
different magnitudes, as expressed, for instance, by the location and the dispersion
parameters. Second, analogous to the slope invariance of causal indicators, the set of
weights can differ across the groups. If the composites are formed differently across the
groups, the interpretation of multigroup comparisons becomes blurred.

For these reasons, the measurement invariance assessment of composite models
requires its own procedure. In line with prior research (e.g. Steenkamp and Baumgartner,
1998; Steinmetz et al., 2009; Vandenberg and Lance, 2000), this procedure needs to address
elements (or levels) that are relevant for establishing measurement invariance. At the same
time, the procedure must fit the conceptual characteristics of the composite model. Hence,
we develop the three-step MICOM procedure that involves the assessment of configural
invariance (i.e. equal parameterization and way of estimation), compositional invariance
(i.e. equal indicator weights), and the equality of a composite’s mean value and variance
across groups. In the next section, we introduce the MICOM procedure in detail assure
measurement invariance of composites.

A three-step procedure to assess measurement invariance of composites
Overview
We designed the MICOM procedure to comply fully with the nature of composite models,
as well as resemble extant procedures as far as possible. Since variance-based SEM
techniques typically do not make distributional assumptions (Hair et al., 2017; Lohmöller,
1989; Wold, 1982), our procedure builds on non-parametric tests. The MICOM procedure
comprises three steps: (1) configural invariance, (2) compositional invariance, and (3) the
equality of composite mean values and variances. The three steps are hierarchically
interrelated, as displayed in Figure 2. Research should only continue with the next step,
if the previous step’s analyses support measurement invariance.

Configural invariance is a precondition for compositional invariance, which is again
a precondition for meaningfully assessing the equality of composite mean values and
variances. Researchers must establish the configural (Step 1) and compositional (Step 2)

Step 1:
Configural
invariance?

No measurement invariance:
The composite does not exist in all groups;
the multigroup analysis is not meaningful.

No

Step 2:
Compositional

invariance?

No measurement invariance:
The composite is formed differently across groups;

the multigroup analysis is not meaningful.

No

Step 3:
Equal mean values

and variances?

Partial measurement invariance:
The standardized coefficients of the structural model

can be compared across groups

Yes

Yes

Full measurement invariance:
The data of the different groups can be pooled.

Yes 

No

Figure 2.
The MICOM
procedure
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invariance in order to appropriately compare the standardized path coefficient
estimates of the structural relationships between the composites across the groups.
If configural and compositional invariance are established, we can speak of partial
measurement invariance; otherwise, no measurement invariance is established.

If partial measurement invariance is established and the composites have equal
mean values and variances (Step 3) across the groups, we can speak of full
measurement invariance. In that case, researchers can pool the data of different groups,
but they must still take into account possible structural model differences. Pooling the
data into one larger dataset is an attractive option, because it can increase the statistical
power and generalizability of the model in question. For instance, it can very well be
that a structural relationship between two composites does not turn out to be
significant if analyzed separately per group, but it does become significant when the
pooled dataset is analyzed. Even though pooling the data is advantageous from a
statistical power perspective, researchers who analyze the data on the aggregate level
must not disregard potential (observed or unobserved) heterogeneity in the structural
model (see Becker et al., 2013; Jedidi et al., 1997). When using pooled data, researchers
can account for potential structural heterogeneity by including interaction effects that
serve as moderators (Henseler and Fassott, 2010). In the following subsections, we
present each of the three steps in detail.

Step 1: configural invariance
Configural invariance entails that a composite, which has been specified equally for all
the groups, emerges as a unidimensional entity in the same nomological net across
all the groups. The assessment of configural invariance must therefore consist of a
qualitative assessment of the composites’ specification across all the groups.
Specifically, the following criteria must be fulfilled:

• Identical indicators per measurement model: each measurement model must
employ the same indicators across the groups. Checking if exactly the same
indicators apply to all the groups seems rather simple. However, in cross-cultural
research, the application of good empirical research practices (e.g. translation and
back-translation) is of the utmost importance to establish the indicators’
equivalence. In this context, an assessment of the face and/or expert validity (see
Hair et al., 2017) can help verify whether the researcher used the same set of
indicators across the groups. At this stage, the significance of the indicator
weights is irrelevant, because differences in their significance
(an indicator may be significant in one group, but not in another) do not imply
that the coefficients differ significantly (Gelman and Stern, 2006).

• Identical data treatment: the indicators’ data treatment must be identical across
all the groups, which includes the coding (e.g. dummy coding), reverse coding,
and other forms of re-coding, as well as the data handling (e.g. standardization or
missing value treatment). Outliers should be detected and treated similarly.

• Identical algorithm settings or optimization criteria: variance-based model
estimation methods, such as PLS consist of many variants with different target
functions and algorithm settings (e.g. choice of initial outer weights and the inner
model weighting scheme; Hair et al., 2012b; Henseler et al., 2009). Researchers
must ensure that differences in the group-specific model estimations do not result
from dissimilar algorithm settings.
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Configural invariance is a necessary but not sufficient condition for drawing valid
conclusions from multigroup analyses. Researchers also must ensure that differences in
structural coefficients do not result from differences in the way the composite is
formed. The next step, compositional invariance, therefore focusses on analyzing
whether a composite is formed equally across the groups.

Step 2: compositional invariance
Compositional invariance means that the prescription for condensing the indicator
variables into composites is the same for all groups (for dimension reduction, see
Dijkstra and Henseler, 2011). This invariance type is established when a composite’s
scores are created equally across groups. A simple way to achieve compositional
invariance is to use fixed indicator weights, for instance unit weights resulting in sum
scores. In this case, compositional invariance is ensured by design. In other cases, when
the indicator weights are estimated per group, it is indispensable to ensure that –
despite possible differences in the weights – the scores of a composite remain the same.

Let c be the correlation between the composite scores using the weights as obtained
from the first group (ξ(1)) and the composite scores using the weights as obtained from
the second group (ξ(2)):

c ¼ cor x 1ð Þ; x 2ð Þ! "
¼ cor Xw 1ð Þ;Xw 2ð Þ! "

: (4)

In this equation, ξ(k) are the composite scores using the indicator weight vectors w(k) as
obtained from group k, and X is the matrix of pooled indicator data. Compositional
invariance requires that c equals one. Accordingly, we postulate the following
hypothesis:

H1. c¼ 1.

If c is significantly different from one, we must reject the hypothesis and conclude that
there is no compositional invariance. In the opposite case, which supports
compositional invariance, we can assume that the composite has been established
similarly across the groups.

In order to statistically test for compositional invariance, we propose a permutation
test over the correlation c. Just like the bootstrap, permutation tests are non-parametric.
Permutation tests have already been proposed and applied for PLS multigroup
comparisons (Chin and Dibbern, 2010), but their potential for assessing measurement
invariance has been unrecognized. Based on the principles Edgington and Onghena
(2007) described, the permutation test of compositional invariance builds on the
random assignment of the observations to groups. For two groups with n(1) and n(2)

observations, respectively, the procedure is as follows:

(1) The indicator weights are estimated for each group, using the PLS algorithm.
We obtain the indicator weight vectors w(1) and w(2).

(2) We compute c, the correlation between the composite scores using w(1) and w(2)

according to Equation (4).

(3) The data are randomly permuted a number of times, meaning that the
observations are randomly assigned to the groups. In formal terms, n(1)

observations are drawn without replacement from the pooled dataset and
assigned to Group 1. The remaining observations are assigned to Group 2.
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Thus, in each permutation run u (u∈{1,…,U }), the group-specific sample size
remains constant. In accordance with rules of thumb for non-parametric tests
(e.g. Hair et al., 2012b), we recommend a minimum of 5,000 permutation runs.

(4) For each permutation run u, the indicator weights are estimated for each group
using the PLS path modeling algorithm, resulting in the indicator weight
vectors w 1ð Þ

u and w 2ð Þ
u .

(5) For each permutation run u, we compute cu, the correlation between the
composite scores using the weights as obtained from the first group and the
composite scores using the weights as obtained from the second group of run
u: cu ¼ cor Xw 1ð Þ

u ;Xw 2ð Þ
u

! "
.

(6) We test the null hypothesis that c equals one. If c is smaller than the five
percent-quantile of the empirical distribution of cu, we must reject the
hypothesis of compositional invariance, because the deviation from one is
unlikely to stem from sampling variation.

Figure 3 depicts an example of the empirical distribution of cu. If the value of c exceeds
the five percent-quantile (dark filled area to the right), we assume compositional
invariance. Notably, the position of the quantile depends – among other things – on the
sample size of both groups. For very small sample sizes, a low value of c would still
imply compositional invariance. If the study involves small sample sizes, then
researchers should consider using fixed weights or apply Hsieh et al.’s (2008) procedure.

Step 3: equality of composite mean values and variances
While using a multigroup analysis requires establishing configural and compositional
invariance, running analyses on the pooled data-level necessitates establishing the
equality of the composites’ mean values and variances (Step 3).

95%

5%

Correlation Between Scores
0.97 0.98 0.99 1.00

D
en

si
ty

Empirical Distribution of Correlation Between Scores

Figure 3.
Example of an

empirical
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Again, we rely on permutation as the statistical workhorse. First, we apply PLS to
obtain construct scores, using the pooled data. We then examine whether the mean
values and variances between the construct scores of the observations of the first group
and the construct scores of the observations of the second group differ from each other.
Full measurement invariance would imply that both differences equal zero (or are at
least non-significant). Hence, we simply calculate the difference between the average
construct scores of the observations of the first group ðx

1ð Þ
pooledÞ and the average

construct scores of the observations of the second group ðx
2ð Þ
pooledÞ. In accordance, for the

mean values, we postulate the following hypothesis:

H2. x
1ð Þ
pooled%x

2ð Þ
pooled ¼ 0:

Analyzing the equivalence of variances requires determining the logarithm of the
variance ratio of the construct scores of the first group’s observations and the variance of
the construct scores of the second group’s observations. If the logarithm of this ratio is
zero (or at least non-significant), we conclude that a composite’s variances across groups
are equal. In line with these considerations, we formulate the following hypothesis:

H3. log varx 1ð Þ
pooled=varx

2ð Þ
pooled

# $
¼ log varx 1ð Þ

pooled

# $
%log varx 2ð Þ

pooled

# $
¼ 0.

To test H2 and H3, we then permute the observations’ group membership many times,
and generate the empirical distributions of the differences in mean values and
logarithms of variances. If the confidence intervals of differences in mean values and
logarithms of variances between the construct scores of the first and second group
include zero, the researcher can assume that the composite mean values and variances
are equal. In this case, full measurement invariance has been established, which
facilitates the analysis on the pooled data level. In contrast, if the differences in mean
values or logarithms of variances between the construct scores of the first and second
are significantly different from zero, researchers must acknowledge that full
measurement invariance cannot be established, and they should not pool the data.

If full measurement invariance has been established, it is in principle admissible to
pool the data and benefit from the increase in statistical power. At this stage,
researchers should pay attention to the structural invariance of their model.
If multigroup analysis did not reveal any structural differences between the groups,
researchers can pool the data right away. In contrast, if multigroup analysis provided
evidence of structural differences between the groups, the model must be extended by
including additional interaction terms that account for structural differences in the
corresponding model relationships (e.g. Henseler and Fassott, 2010). That is,
researchers must run a moderation analysis. Neglecting observed (or unobserved)
heterogeneity in the structural model will negatively affect the validity of the path
coefficients estimated by using the pooled data (Becker et al., 2013).

MICOM illustration with simulated data
Motivation and setup
In variance-based SEM, simulation studies are well established to study the
performance of algorithms (e.g. Reinartz et al., 2009), segmentation techniques (e.g.
Ringle et al., 2014), segment retention criteria (e.g. Sarstedt et al., 2011b), moderator
analysis methods (e.g. Henseler and Chin, 2010), discriminant validity assessment
procedures (e.g. Henseler et al., 2015), and other purposes (e.g. Chin et al., 2012; Goodhue
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et al., 2012; Lu et al., 2011). These simulation studies build on artificially generated data
for a priori determined levels of relevant parameters. When using this data, the
researcher can compare the model estimation results with the expected outcomes to
assess the efficacy of a certain method.

In this initial assessment of the MICOM procedure, we use a simple population
model and keep the number of factors (and their levels) as small as possible, but large
enough to facilitate an illustration of how the procedure performs in different
situations. The model, as shown in Figure 4, consists of an exogenous composite
variable ξ1 with two indicators, x1 and x2, and an endogenous construct ξ2 with a single
indicator y. For this model, we generate normally distributed data for two groups, with
100 (Group 1) and 300 (Group 2) observations, respectively[2].

The structural model coefficient β (for the relationship from ξ1 to ξ2) always has a
pre-specified value of 0.6 in both groups. The correlation φ of the indicators x1 and x2 is
fixed at 0.3125. In total, we generate data for seven multigroup analysis situations
(Table II). While we identically create the data of Group 1 across the analyzed
situations, we alter the outer weights, the mean value, and the standard deviation of the
indicators x1 and x2 when generating the data for Group 2.

We used the PLS method (Hair et al., 2017; Lohmöller, 1989; Wold, 1982) as
implemented in the semPLS package (Monecke and Leisch, 2012) of the statistical
software R (R Core Team, 2014) for the model estimations. PLS is regarded as the
“most fully developed and general system” (McDonald, 1996, p. 240) of all
variance-based SEM techniques and, as such, recently experienced widespread

x1

%
&

"1 "2 y

x2

1

w1

w2

Figure 4.
Population model of

the simulation

Situation 1 All indicators have a mean value of 0, a standard deviation of 1, and indicator weights w1
and w2 of 0.4 and 0.8, respectively. Thereby, the creation of composite ξ is equal in both
groups

Situation 2 As in situation 1, but the mean value of indicator x2 is increased by one unit in Group 2.
This implies an inequality of composite means

Situation 3 As in situation 1, but the mean value of indicator x2 is increased by one unit and the mean
value of indicator x1 is increased to 0.7027 in Group 2. The choice of these values is
motivated by the fact that they imply an inequality of composite means without harming
the compositional invariance

Situation 4 As in situation 1, but the standard deviation of indicator x2 is doubled in Group 2. This
implies an inequality of composite variances

Situation 5 As in situation 1, but the standard deviations of indicators x1 and x2 are doubled in
Group 2. This implies an inequality of composite variances without harming the
compositional invariance

Situation 6 As in situation 1, but the indicator weights are flipped; that is, the indicator weights
become 0.8 and 0.4, respectively in Group 2. Essentially, the composite is created
differently across groups, which implies a lack of compositional invariance

Situation 7 As in situation 6, but the standard deviation of indicator x1 is decreased to a value of
0.9022. Despite the different indicator variances, we anticipate equal composite variances
and means in combination with a lack of compositional invariance

Table II.
Different situations

considered by
the MICOM

simulation study
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dissemination in (international) marketing (Hair et al., 2012b; Henseler et al., 2009,
2012) and other. It fully supports the estimation of composite models (Henseler
et al., 2014).

Assessment of results
We created the model in such a way that it warrants configural invariance if
researchers apply Step 1 of the three-step MICOM procedure. The assessment therefore
focusses on answering the question whether the estimates satisfy the requirements of
compositional invariance (Step 2) and equal composite mean values and variances
(Step 3). Table III shows the results of our analyses. The first five columns summarize
the data specifications of the seven situations considered. Thereafter, the table displays
the results of the composite variable’s ξ1 measurement invariance assessment. The
rightmost column contains the estimated value of the path coefficient β if pooled data
were used.

A closer look at the results of each situation allows us to expose a more detailed
picture. In Situation 1, besides the given establishment of the configural invariance
(Step 1), the compositional invariance (Step 2), and the equality of the composite mean
values and variances have been established (Step 3). We can therefore assume full
measurement invariance of the composite across groups. Not surprisingly, pooling the
data before conducting the analysis yields the pre-specified β value of 0.60; this value
does not differ from the group-wise model estimations. Pooling the data in this situation
allows establishing more general findings and conclusions.

In contrast, in Situation 2, the change of x2’s location parameter results in inequality
of the composite’s mean values across groups. Since the analysis meets MICOM’s
requirements of Step 2, researchers face a situation of at least partial measurement
invariance, which permits multigroup comparison. However, the analysis of Step 3a
reveals correctly that there are differences in mean values, which implies that full
measurement invariance cannot be stablished. Estimating model parameters based on
pooled data confirms this notion. The rightmost column demonstrates that if the data
were pooled, one would obtain a slightly downward biased estimate of 0.5925 that
deviates from the group-specific estimates of 0.60.

If, in Group 2, the location parameters of both indicators are changed to one
(Situation 3), Step 3 in MICOM reveals that the composite’s mean values are unequal
across groups. In this situation, compositional invariance has been confirmed again,
which means that we can assume partial measurement invariance. Therefore,
researchers can carry out meaningful multigroup analyses by comparing the
standardized coefficients in the structural model. The biased estimate in the rightmost
column (0.5330 instead of 0.60) reinforces the notion that partial measurement
invariance is not a sufficient criterion for pooling the data.

In Situation 4, the change in one indicator’s dispersion parameter implies that the
equality of the composite variances (Step 3) no longer hold. Here, the consequence
equals that of Situation 3: partial measurement invariance can be established, which
means that one can carry out multigroup analyses, whereas the data should not be
pooled for analysis.

Also if the dispersion parameters of both indicators change equally in Group 2
(Situation 5), we substantiate the inequality of a composite’s variances across the
groups (Step 3). As in the partial measurement invariance of Situation 3, researchers
can conduct meaningful multigroup analyses by comparing the standardized
coefficients in the structural model, but they cannot pool the data.
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The analysis of Situation 6 shows that the lack of compositional invariance implies that
the scores obtained through group-specific model estimations differ from the scores
resulting from the pooled data (no measurement invariance established). Researchers
should only analyze and interpret the group-specific model estimations separately.

Finally, applying the MICOM procedure to Situation 7 allows researchers to come to
an identical conclusion as in the previous situation (no measurement invariance
established). The procedure correctly detects the lack of compositional invariance
(Step 2).

In summary, our PLS multigroup analyses using artificially generated data for
different measurement invariance situations empirically substantiates the efficacy of
our three-step MICOM procedure. The configural and compositional invariance are
prerequisites for assessing the equality of the composite mean values and the
variances. The assessment of the equality of the composite mean values and the
variances is irrelevant if compositional invariance has not been established. Finally, we
can see that pooling the data is only admissible if all the MICOM criteria have been
fulfilled (Situation 1) and structural heterogeneity – if present – has been dealt with.

Empirical example
We use the corporate reputation model (Schwaiger, 2004), as shown with its latent
variables in Figure 5, to provide a MICOM example with empirical data. In the
corporate reputation model, the quality (QUAL), performance (PERF), corporate social
responsibility (CSOR) and attractiveness (ATTR) explain the corporate reputation
dimensions likability (LIKE) and competence (COMP), which themselves explain
customer satisfaction (CUSA) and customer loyalty (CUSL). While the exogenous latent
variables (i.e. QUAL, PERF, CSOR, ATTR) represent composites that build on a
formative measurement model (Mode B), the endogenous latent variables (i.e. LIKE,
COMP, CUSL) are composites with a reflective measurement model (Mode A); CUSA is
a single-item composite. The book on PLS-SEM by Hair et al. (2017) explains in detail
the cooperate reputation model with its latent variables and indicators as well as the
data of a mobile phone provider used for model estimation[3]. These authors use the
PLS method (Lohmöller, 1989; Wold, 1982) for the model estimation.

CUSLCUSA

LIKE

COMP

QUAL

PERF

CSOR

ATTR

Figure 5.
Corporate
reputation model

420

IMR
33,3



Hair et al. (2017) also present a PLS multigroup analysis for this corporate reputation
model example from the mobile phone industry (see also Sarstedt and Ringle, 2010).
They compare PLS-SEM results of customers with a contract plan (Group 1) to those
with a prepaid plan (Group 2), without, however, establishing measurement invariance
first. This analysis reveals significantly different group-specific PLS-SEM results for
the relationship from the reputation dimension LIKE to CUSA and the relationship
from CUSA to CUSL in the structural model (Hair et al., 2017). Extending Hair et al.
(2017), we apply the MICOM procedure to the corporate reputation model example and
its multigroup analysis for two groups of customers.

In Step 1, the configural invariance assessment, we ensure that the following
three aspects are identical for both groups: first, setup of the measurement models
and the structural model; second, data treatment for the model estimation using the
full set of data and each group of data; and third, algorithm settings for all model
estimations. As a result of MICOM’s Step 1, we conclude that configural invariance
has been established.

The assessment of compositional invariance is the purpose of Step 2. Compositional
invariance requires that c equals one. A permutation test reveals if the correlation c is
significantly different from one or not. The statistical software R (R Core Team, 2014),
the semPLS package (Monecke and Leisch, 2012), and our MICOM code in R allow us to
conduct the computations of Step 2 and the subsequent Step 3. Note that the MICOM
procedure has been implemented in the SmartPLS 3 software (Ringle et al., 2015).
Table IV shows the results of 5,000 permutations. With a value of 0.9608, which is very
close to one, quality has the lowest c value of all composites in the corporate reputation
model. The permutation test substantiates that none of the c values are significantly
different from one. We therefore conclude that compositional invariance has been
established for all composites in the corporate reputation model.

Having established configural and compositional invariance in Steps 1 and 2, we
could compare the path coefficients of contract plan and prepaid plan customers using
a multigroup analysis. However, if compositional invariance represented a problem for
one or more composites in the analyses – which is not the case in this example – we
could exclude those composites from the group-specific comparisons, provided theory
supports such a step.

Finally, in Step 3, we assess the composites’ equality of mean values and variances
across groups. We find that full measurement invariance is established. The
permutation test results (5,000 permutations) show that the mean value and the
variance of a composite in Group 1 do not significantly differ from the results in Group
2. This finding holds for all composites in the corporate reputation model. Therefore,
the outcomes of MICOM’s Step 3 also support measurement invariance.

All three steps of the MICOM procedure for the corporate reputation model example
and two customer groups (i.e. customers with a contract plan and customers with a
prepaid plan) support measurement invariance. We therefore conclude that full
measurement invariance has been established for the two groups of data.
Consequently, researchers could analyze the example model using the pooled data.
However, any analysis using the pooled data could be misleading if possible differences
in the structural model are not accounted for (i.e. there is a lack of structural
invariance). Group differences in the structural model should be accounted for, using
the grouping variable as a moderator. In this example, the binary variable
“servicetype”may serve as moderator for the relationships from LIKE to CUSA as well
as from CUSA to CUSL in the corporate reputation model.
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Conclusion and future research
The use of composites in variance-based SEM, such as PLS, is a particularly
important approach in international business research to model complete theories
and simultaneously estimate their cause-effect relationships (e.g. Henseler et al., 2009,
2012). These studies often require exploring structural variance by multigroup
comparisons across countries and cultures (e.g. Steenkamp and Hofstede, 2002;
Wedel and Kamakura, 2000). In order to ensure that these multigroup analyses are
meaningful and lead to proper conclusions, researchers must establish the invariance
of the composites used in their model. A lack of measurement invariance suggests
that the composites carry different meanings across the groups, which may be a
misleading source of structural coefficients’ group-specific differences. Alternatively,
if the composites in both groups are (almost) identical and entail the same coefficients
for each group in the structural model, researchers may want to pool the data.
Thereby, the findings and conclusions account for a more comprehensive sample,
which increases the generalizability of the tested theory or concepts. The increased
statistical power due to a larger sample size is another argument for pooling the data.
However, researchers must avoid validity threats to their results imposed by
heterogeneity in the structural model relationships. In case of using pooled data, they

Composite c value (¼ 1) 95% confidence
interval

Compositional
invariance?

ATTR 0.9930 [0.9440; 1.0000] Yes
COMP 0.9982 [0.9975; 1.0000] Yes
CSOR 0.9851 [0.9109; 1.0000] Yes
CUSA 1.0000 [1.0000; 1.0000] Yes
CUSL 0.9999 [0.9981; 1.0000] Yes
LIKE 0.9998 [0.9988; 1.0000] Yes
PERF 0.9795 [0.9334; 1.0000] Yes
QUAL 0.9608 [0.9386; 1.0000] Yes

Composite Difference of the composite’s mean value
(¼ 0)

95% confidence
interval

Equal mean values?

ATTR −0.0641 [−0.2196; 0.2224] Yes
COMP 0.0595 [−0.2231; 0.2266] Yes
CSOR 0.0720 [−0.2175; 0.2229] Yes
CUSA −0.0967 [−0.2146; 0.2245] Yes
CUSL −0.0597 [−0.2253; 0.2191] Yes
LIKE −0.0542 [−0.2173; 0.2147] Yes
PERF −0.0227 [−0.2240; 0.2251] Yes
QUAL −0.0098 [−0.2194; 0.2250] Yes

Composite Logarithm of the composite’s variances ratio
(¼ 0)

95% confidence
interval

Equal variances?

ATTR 0.1938 [−0.2807; 0.2687] Yes
COMP 0.1386 [−0.3012; 0.2830] Yes
CSOR −0.1025 [−0.2768; 0.2725] Yes
CUSA 0.2331 [−0.3676; 0.3638] Yes
CUSL −0.0662 [−0.3698; 0.3405] Yes
LIKE 0.0155 [−0.2645; 0.2552] Yes
PERF 0.0418 [−0.3107; 0.3069] Yes
QUAL 0.1580 [−0.2905; 0.2744] Yes

Table IV.
MICOM results
of the
corporate reputation
model example
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should account for heterogeneity in the structural model by including suitable
moderator variables where appropriate.

The three-step MICOM procedure is the first approach to assess the measurement
invariance in the context of composite models that systematically relies on inference
statistics computed by using a permutation procedure. The procedure allows for a
systematic measurement invariance assessment in a hierarchical framework and is
applicable to all forms of variance-based SEM (e.g. PLS). Researchers must follow the
hierarchy that requires safeguarding certain invariance aspects in the previous step
before continuing with the next step.

In Steps 1 and 2, researchers need to assess configural and compositional invariance.
If measurement invariance problems occur in these two steps, researchers cannot
conduct a multigroup analysis, since one or more composites differ regarding their
configuration and/or composition across the groups, which can go along with
differences in meaning (i.e. there is no measurement invariance). Thus, researchers
must estimate and interpret the models group wise by considering a composite’s
different meanings across the groups.

Alternatively, if the results of MICOM’s Steps 1 and 2 (but not Step 3) indicate that
there is no lack of measurement invariance, partial measurement invariance has been
established. This result allows comparing the standardized path coefficients across the
groups by conducting a multigroup analysis. Hence, researchers are recommended to
interrupt the MICOM procedure and conduct a multigroup analysis to examine whether
the structural model is equal across groups (structural invariance) or whether some
effects differ in magnitude or even in signs across groups. Depending on the degree of
structural invariance (i.e. whether none, some, most, or all of the structural effects are
invariant across groups), pooling the data may be advantageous. Table V shows the
consequences of the assessment of structural invariance for the overall analysis and for
MICOM’s further steps. Pooling the data is only recommended if most of the structural
effects are invariant across groups. Since the equality of composite mean values and
variances is a prerequisite for pooling the data, the MICOM procedure should then be
resumed in order to assess whether full measurement invariance can
be established.

Our study reinforces the need to carefully consider data heterogeneity. If there is
heterogeneity within the sample (i.e. with regard to the location or dispersion
parameters), the overall estimates are most likely invalid (Becker et al., 2013).

Consequence for …
Result of multigroup analysis … the overall analysis … MICOM

(1) No effect is invariant across
groups in the structural model

Pooling the data leads to invalid and
meaningless results

Stop

(2) Hardly any effect is invariant
across groups in the structural
model

The added value of pooling the data
is limited

Stop

(3) Most effects are invariant across
groups (in the structural model)

Pooling the data is an option as long as the
structural differences are modeled as moderating
effects

Resume

(4) All effects are invariant
across groups in the
structural model

It would be advantageous to pool the data Resume Table V.
Proceeding after

multigroup analysis
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The reason becomes obvious if one looks at it from the measurement invariance
perspective: Only if researchers can ensure a composite’s full measurement invariance
as a result of MICOM’s Steps 1-3, they should start analyzing the pooled data. If no such
assurance is possible, they must conclude that the composite is (partially) different and
the data should be divided into groups for multigroup analyses. Researchers should
therefore not only rely on observed variables to form groups, but also to actively uncover
potential unobserved heterogeneity (Becker et al., 2013; Jedidi et al., 1997).

Various techniques allow researchers to uncover unobserved heterogeneity
(Sarstedt, 2008). In PLS, for example, the most prominent segmentation methods are
PLS-TPM (Squillacciotti, 2010), REBUS-PLS (Esposito Vinzi et al., 2007, 2008), and
FIMIX-PLS (Hahn et al., 2002; Sarstedt et al., 2011b; Sarstedt and Ringle, 2010). Two
newer approaches, PLS-GAS (Ringle et al., 2013, 2014) and PLS-POS (Becker et al.,
2013), offer superior characteristics compared to previously developed methods. After
uncovering unobserved heterogeneity by using these techniques, researchers could try
in an ex post analysis to explain groups of data by mean values of an explanatory
variable (e.g. Ringle et al., 2010). Before comparing the different group-specific path
coefficients, researchers must ensure measurement invariance in accordance with Steps
1 and 2 of the MICOM procedure. Finally, it is important to note that unobserved
heterogeneity may also affect a priori determined groups of data (e.g. different nations
or cultures). Researchers must therefore also consider assessing and uncovering within-
group heterogeneity (Rigdon et al., 2011).

As the first paper on this topic, there is scope for future research. First and foremost,
the analysis of configural invariance in Step 1 of the MICOM procedure may be
extended beyond the naïve comparison of model settings and initial estimates by
means of a more detailed testing of nomological validity, using confirmatory composite
analysis (Henseler et al., 2014). Such an analysis allows testing whether the discrepancy
between the empirical variance-covariance matrix and the variance-covariance matrix
that the composite model implies is too large to merely exist due to sampling error.
Confirmatory composite analysis has recently been proposed for PLS (Dijkstra and
Henseler, 2015a), but can, in principle, also be applied in conjunction with other
variance-based SEM techniques. Currently, confirmatory composite analysis is far less
understood than its factor-based sibling, CFA. For instance, while CFA has a whole
range of fit measures, confirmatory composite analysis is currently limited to the test of
exact model fit (Dijkstra and Henseler, 2015a) and the standardized root mean square
residual (see Henseler et al., 2014). Additional goodness-of-fit measures are desirable.

Another important question with regard to confirmatory composite analysis is its
power and type-II error: How many observations are required to render a composite
model wrong that is partially misspecified? The question of statistical power and
type-II error is not only relevant for confirmatory composite analysis, but for the whole
MICOM procedure. All hypotheses are formulated in the same way as the classical
exact test ( p-value) of SEM. As long as the tests are not significant, the researcher can
assume that a certain step of the MICOM procedure has been fulfilled. This way of
formulating hypotheses is disadvantageous, since there is hardly any control for error
probability. Specifically, if researchers conclude that measurement invariance has been
established, they cannot immediately indicate an error probability. There is no definite
answer to the question: What is the probability that there is a lack of measurement
invariance, although I believe the opposite? If researchers cannot reject the null
hypotheses and conclude that measurement invariance is not a problem, they expose
themselves to the danger that their empirical evidence may be the result of too little
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statistical power (e.g. due to a small sample size). Consequently, the statistical power of
the proposed tests requires further research, and researchers using the procedure
should take potential type-II errors into account; that is, the possibility of erroneously
assuming measurement invariance. The examination of MICOM’s type-II errors (e.g. by
simulation studies) is a promising avenue for future research.

While our illustration and assessment focussed on the two-group case, researchers
frequently need to compare composites across more than two groups of data.
Comparing multiple groups of data, however, leads to an exponential increase in
potential comparisons, inflating the familywise error rates of the corresponding tests
(e.g. Sarstedt and Mooi, 2014). To maintain the familywise error rates, researchers can,
for example, employ a Bonferroni correction on each test of PLS results (Gudergan
et al., 2008). Researchers may use the opportunity to examine the performance of the
MICOM procedure under such conditions.

Future research should also explore possibilities to simultaneously assess the
measurement invariance of both composite and common factor models in an unified
framework. In this regard, a promising point of departure are the PLSe2 (Bentler and
Huang, 2014) and consistent PLS path modeling (PLSc, see Dijkstra, 2014; Dijkstra
and Henseler, 2015b) approaches. For instance, PLSc can estimate both composites and
common factors, and its newly developed goodness-of-fit tests (Dijkstra and Henseler,
2015a) pave the way for refined and novel tools for measurement invariance testing.

Finally, this paper focusses on measurement invariance as a precondition for
multigroup analyses among composites. Consequently, the use of an adequate method of
multigroup analysis to assess the structural invariance of composites did not fit the scope
of this paper. Although there is a variety of approaches to multigroup analysis using
variance-based SEM (for an overview, see Sarstedt et al., 2011a), none of them uses overall
goodness-of-fit measures. Doing so may help controlling the overall error rate when
testing for structural invariance. Since overall goodness-of-fit measures provide a
promising point of departure for multigroup analysis (Henseler and Sarstedt, 2013),
researchers may follow this avenue of future research to extend the set of available
evaluation criteria for composite modeling. Our judgment is that permutation may not
only be useful for assessing measurement invariance, but also structural invariance.

Notes
1. Note that the authors only refer to formative indicators and do not distinguish

between formative, composite, and causal indicators as Bollen (2011) and Bollen and
Bauldry (2011) require.

2. For more information about the data generation for pre-specified PLS path models, see, for
example, Ringle et al. (2014).

3. The SmartPLS (Ringle et al., 2015) project files and data of this example are available at:
www.pls-sem.com

References
Becker, J.-M., Rai, A., Ringle, C.M. and Völckner, F. (2013), “Discovering unobserved

heterogeneity in structural equation models to avert validity threats”, MIS Quarterly,
Vol. 37 No. 3, pp. 665-694.

Bentler, P.M. and Huang, W. (2014), “On components, latent variables, PLS and simple methods:
reactions to ridgon’s rethinking of PLS”, Long Range Planning, Vol. 47 No. 3, pp. 138-145.

425

Testing
measurement
invariance of
composites

www.pls-sem.com
http://www.emeraldinsight.com/action/showLinks?isi=000329756000002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.lrp.2014.02.005&isi=000338597300003


Blalock, H.M. (1964), Causal Inferences in Nonexperimental Research, University of North Carolina
Press, Chapel Hill, NC.

Bollen, K.A. (1989), Structural Equations with Latent Variables, Wiley, New York, NY.

Bollen, K.A. (2011), “Evaluating effect, composite, and causal indicators in structural equation
models”, MIS Quarterly, Vol. 35 No. 2, pp. 359-372.

Bollen, K.A. and Bauldry, S. (2011), “Three Cs in measurement models: causal
indicators, composite indicators, and covariates”, Psychological Methods, Vol. 16 No. 3,
pp. 265-284.

Brettel, M., Engelen, A., Heinemann, F. and Vadhanasindhu, P. (2008), “Antecedents of market
orientation: a cross-cultural comparison”, Journal of International Marketing, Vol. 16 No. 2,
pp. 84-119.

Chin, W.W. and Dibbern, J. (2010), “A permutation based procedure for multi-group PLS analysis:
results of tests of differences on simulated data and a cross cultural analysis of the sourcing
of information system services between Germany and the USA”, in Esposito Vinzi, V.,
Chin, W.W., Henseler, J. and Wang, H. (Eds), Handbook of Partial Least Squares: Concepts,
Methods and Applications (Springer Handbooks of Computational Statistics Series, Vol. II),
Springer, Heidelberg, Dordrecht, London and New York, NY, pp. 171-193.

Chin, W.W., Thatcher, J.B. and Wright, R.T. (2012), “Assessing common method bias: problems
with the ULMC technique”, MIS Quarterly, Vol. 36 No. 3, pp. 1003-1019.

Davison, A.C. and Hinkley, D.V. (1997), Bootstrap Methods and Their Application, Cambridge
University Press, Cambridge.

Diamantopoulos, A. (2006), “The error term in formative measurement models: interpretation and
modeling implications”, Journal of Modelling in Management, Vol. 1 No. 1, pp. 7-17.

Diamantopoulos, A. and Papadopoulos, N. (2010), “Assessing the cross-national invariance of
formative measures: guidelines for international business researchers”, Journal of
International Business Studies, Vol. 41 No. 2, pp. 360-370.

Diamantopoulos, A. and Winklhofer, H.M. (2001), “Index construction with formative indicators:
an alternative to scale development”, Journal of Marketing Research, Vol. 38 No. 2,
pp. 269-277.

Diamantopoulos, A., Riefler, P. and Roth, K.P. (2008), “Advancing formative measurement
models”, Journal of Business Research, Vol. 61 No. 12, pp. 1203-1218.

Dijkstra, T.K. (2014), “PLS’ Janus face – response to Professor Rigdon’s ‘rethinking partial least
squares modeling: in praise of simple methods’ ”, Long Range Planning, Vol. 47 No. 3,
pp. 146-153.

Dijkstra, T.K. and Henseler, J. (2011), “Linear indices in nonlinear structural equation models:
best fitting proper indices and other composites”, Quality & Quantity, Vol. 45 No. 6,
pp. 1505-1518.

Dijkstra, T.K. and Henseler, J. (2015a), “Consistent and asymptotically normal PLS estimators
for linear structural equations”, Computational Statistics & Data Analysis, Vol. 81 No. 1,
pp. 10-23.

Dijkstra, T.K. and Henseler, J. (2015b), “Consistent partial least squares path modeling”,
MIS Quarterly, Vol. 39 No. 2, pp. 297-316.

Edgington, E. and Onghena, P. (2007), Randomization Tests, Chapman & Hall, Boca Raton, FL.

Esposito Vinzi, V., Ringle, C.M., Squillacciotti, S. and Trinchera, L. (2007), “Capturing and treating
unobserved heterogeneity by response based segmentation in PLS path modeling:
a comparison of alternative methods by computational experiments”, Working Paper
No. 07019, ESSEC Research Center, Cergy-Pontoise.

426

IMR
33,3

http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.lrp.2014.02.004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fjibs.2009.37&isi=000274317800012
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fjibs.2009.37&isi=000274317800012
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs11135-010-9359-z&isi=000295942200024
http://www.emeraldinsight.com/action/showLinks?crossref=10.2139%2Fssrn.2394044
http://www.emeraldinsight.com/action/showLinks?crossref=10.2139%2Fssrn.2394044
http://www.emeraldinsight.com/action/showLinks?crossref=10.1037%2Fa0024448
http://www.emeraldinsight.com/action/showLinks?crossref=10.1509%2Fjmkr.38.2.269.18845&isi=000168807400011
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.csda.2014.07.008&isi=000343347500002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1017%2FCBO9780511802843
http://www.emeraldinsight.com/action/showLinks?crossref=10.1509%2Fjimk.16.2.84&isi=000256509000004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.jbusres.2008.01.009&isi=000261269600002
http://www.emeraldinsight.com/action/showLinks?isi=000361601700003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1002%2F9781118619179
http://www.emeraldinsight.com/action/showLinks?system=10.1108%2F17465660610667775
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-32827-8_8


Esposito Vinzi, V., Trinchera, L., Squillacciotti, S. and Tenenhaus, M. (2008), “REBUS-PLS:
a response-based procedure for detecting unit segments in PLS path modelling”, Applied
Stochastic Models in Business and Industry, Vol. 24 No. 5, pp. 439-458.

Fornell, C.G. and Bookstein, F.L. (1982), “Two structural equation models: LISREL and PLS
applied to consumer exit-voice theory”, Journal of Marketing Research, Vol. 19 No. 4,
pp. 440-452.

Gelman, A. and Stern, H. (2006), “The difference between ‘significant’ and ‘not significant’ is not
itself statistically significant”, The American Statistician, Vol. 60 No. 4, pp. 328-331.

Goodhue, D.L., Lewis, W. and Thompson, R. (2012), “Does PLS have advantages for small sample
size or non-normal data?”, MIS Quarterly, Vol. 36 No. 3, pp. 891-1001.

Gudergan, S.P., Ringle, C.M., Wende, S. and Will, A. (2008), “Confirmatory tetrad analysis in PLS
path modeling”, Journal of Business Research, Vol. 61 No. 12, pp. 1238-1249.

Hahn, C., Johnson, M.D., Herrmann, A. and Huber, F. (2002), “Capturing customer heterogeneity
using a finite mixture PLS approach”, Schmalenbach Business Review, Vol. 54 No. 3,
pp. 243-269.

Hair, J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (2010),Multivariate Data Analysis, Prentice
Hall, Englewood Cliffs, NJ.

Hair, J.F., Hult, G.T.M., Ringle, C.M. and Sarstedt, M. (2017), A Primer on Partial Least Squares
Structural Equation Modeling (PLS-SEM), 2nd ed., Sage, Thousand Oaks, CA.

Hair, J.F., Sarstedt, M., Pieper, T.M. and Ringle, C.M. (2012a), “The use of partial least squares
structural equation modeling in strategic management research: a review of past practices
and recommendations for future applications”, Long Range Planning, Vol. 45 Nos 5-6,
pp. 320-340.

Hair, J.F., Sarstedt, M., Ringle, C.M. and Mena, J.A. (2012b), “An assessment of the use of partial
least squares structural equation modeling in marketing research”, Journal of the Academy
of Marketing Science, Vol. 40 No. 3, pp. 414-433.

Henseler, J. (2010), “On the convergence of the partial least squares path modeling algorithm”,
Computational Statistics, Vol. 25 No. 1, pp. 107-120.

Henseler, J. (2012), “Why generalized structured component analysis is not universally preferable
to structural equation modeling”, Journal of the Academy of Marketing Science, Vol. 40
No. 3, pp. 402-413.

Henseler, J. and Chin, W.W. (2010), “A comparison of approaches for the analysis of interaction
effects between latent variables using partial least squares path modeling”, Structural
Equation Modeling, Vol. 17 No. 1, pp. 82-109.

Henseler, J. and Fassott, G. (2010), “Testing moderating effects in PLS path models: an illustration
of available procedures”, in Esposito Vinzi, V., Chin, W.W., Henseler, J. and Wang, H. (Eds),
Handbook of Partial Least Squares: Concepts, Methods and Applications (Springer
Handbooks of Computational Statistics Series, Vol. II), Springer, Heidelberg, Dordrecht,
London and New York, NY, pp. 713-735.

Henseler, J. and Sarstedt, M. (2013), “Goodness-of-fit indices for partial least squares path
modeling”, Computational Statistics, Vol. 28 No. 2, pp. 565-580.

Henseler, J., Ringle, C.M. and Sarstedt, M. (2012), “Using partial least squares path modeling in
international advertising research: basic concepts and recent issues”, in Okazaki, S. (Ed.),
Handbook of Research in International Advertising, Edward Elgar Publishing, Cheltenham,
pp. 252-276.

Henseler, J., Ringle, C.M. and Sarstedt, M. (2015), “A new criterion for assessing discriminant
validity in variance-based structural equation modeling”, Journal of the Academy of
Marketing Science, Vol. 43 No. 1, pp. 115-135.

427

Testing
measurement
invariance of
composites

http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs11747-011-0261-6&isi=000304166000003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs11747-011-0261-6&isi=000304166000003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-32827-8_31
http://www.emeraldinsight.com/action/showLinks?crossref=10.1198%2F000313006X152649
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs00180-009-0164-x&isi=000273744200007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs00180-012-0317-1&isi=000316755900011
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs11747-011-0298-6&isi=000304166000002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1002%2Fasmb.728&isi=000260594800007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1002%2Fasmb.728&isi=000260594800007
http://www.emeraldinsight.com/action/showLinks?crossref=10.4337%2F9781781001042.00023
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.jbusres.2008.01.012&isi=000261269600005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.lrp.2012.09.008&isi=000312611000003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1080%2F10705510903439003&isi=000273611500005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1080%2F10705510903439003&isi=000273611500005
http://www.emeraldinsight.com/action/showLinks?crossref=10.2307%2F3151718&isi=A1982PU52000006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs11747-014-0403-8&isi=000348345800007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs11747-014-0403-8&isi=000348345800007


Henseler, J., Ringle, C.M. and Sinkovics, R.R. (2009), “The use of partial least squares path
modeling in international marketing”, in Sinkovics, R.R. and Ghauri, P.N. (Eds), Advances
in International Marketing, Emerald, Bingley, pp. 277-320.

Henseler, J., Dijkstra, T.K., Sarstedt, M., Ringle, C.M., Diamantopoulos, A., Straub, D.W., Ketchen, D.J.,
Hair, J.F., Hult, G.T.M. and Calantone, R.J. (2014), “Common beliefs and reality about partial
least squares: comments on Rönkkö & Evermann (2013)”, Organizational Research Methods,
Vol. 17 No. 2, pp. 182-209.

Horn, J.L. and McArdle, J.J. (1992), “A practical and theoretical guide to measurement invariance
in aging research”, Experimental Aging Research, Vol. 18 No. 3, pp. 117-144.

Hsieh, J.J.P.-A., Rai, A. and Keil, M. (2008), “Understanding digital inequality: comparing continued
use behavioral models of the socio-economically advantaged and disadvantaged”,
MIS Quarterly, Vol. 32 No. 1, pp. 97-126.

Hult, G.T.M., Ketchen, D.J., Griffith, D.A., Finnegan, C.A., Gonzalez-Padron, T., Harmancioglu, N.,
Huang, Y., Talay, M.B. and Cavusgil, S.T. (2008), “Data equivalence in cross-cultural
international business research: assessment and guidelines”, Journal of International
Business Studies, Vol. 39 No. 6, pp. 1027-1044.

Hwang, H. and Takane, Y. (2004), “Generalized structured component analysis”, Psychometrika,
Vol. 69 No. 1, pp. 81-99.

Jarvis, C.B., MacKenzie, S.B. and Podsakoff, P.M. (2003), “A critical review of construct indicators
and measurement model misspecification in marketing and consumer research”, Journal of
Consumer Research, Vol. 30 No. 2, pp. 199-218.

Jedidi, K., Jagpal, H.S. and DeSarbo, W.S. (1997), “Finite-mixture structural equation models for
response-based segmentation and unobserved heterogeneity”, Marketing Science, Vol. 16
No. 1, pp. 39-59.

Johnson, T., Kulesa, P., Cho, Y.I. and Shavitt, S. (2005), “The relation between culture and
response styles: evidence from 19 countries”, Journal of Cross-Cultural Psychology, Vol. 36
No. 2, pp. 264-277.

Jong, M.G.D., Steenkamp, J.-B.E.M. and Fox, J.-P. (2007), “Relaxing measurement invariance in
cross-national consumer research using a hierarchical IRT model”, Journal of Consumer
Research, Vol. 34 No. 2, pp. 260-278.

Jöreskog, K.G. and Goldberger, A.S. (1975), “Estimation of a model with multiple indicators and
multiple causes of a single latent variable”, Journal of the American Statistical Association,
Vol. 70 No. 351, pp. 631-639.

Lohmöller, J.-B. (1989), Latent Variable Path Modeling with Partial Least Squares, Physica,
Heidelberg.

Lu, I.R.R., Kwan, E., Thomas, D.R. and Cedzynski, M. (2011), “Two new methods for estimating
structural equation models: an illustration and a comparison with two established
methods”, International Journal of Research in Marketing, Vol. 28 No. 3, pp. 258-268.

McDonald, R.P. (1996), “Path analysis with composite variables”, Multivariate Behavioral
Research, Vol. 31 No. 2, pp. 239-270.

Meade, A.W. and Lautenschlager, G.J. (2004), “A comparison of item response theory and
confirmatory factor analytic methodologies for establishing measurement equivalence/
invariance”, Organizational Research Methods, Vol. 7 No. 4, pp. 361-388.

Meredith, W. (1993), “Measurement invariance, factor analysis and factorial invariance”,
Psychometrika, Vol. 58 No. 4, pp. 525-543.

Millsap, R.E. (2011), Statistical Approaches to Measurement Invariance, Routledge, New York, NY.
Monecke, A. and Leisch, F. (2012), “semPLS: structural equation modeling using partial least

squares”, Journal of Statistical Software, Vol. 48 No. 3, pp. 1-32.

428

IMR
33,3

http://www.emeraldinsight.com/action/showLinks?crossref=10.1287%2Fmksc.16.1.39&isi=A1997WV57700004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-52512-4
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2FBF02294825&isi=A1993ML05100001
http://www.emeraldinsight.com/action/showLinks?system=10.1108%2FS1474-7979%282009%290000020014
http://www.emeraldinsight.com/action/showLinks?system=10.1108%2FS1474-7979%282009%290000020014
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fpalgrave.jibs.8400396&isi=000258457700007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fpalgrave.jibs.8400396&isi=000258457700007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1177%2F0022022104272905&isi=000227048600006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ijresmar.2011.03.006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1177%2F1094428114526928&isi=000335651500006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2FBF02295841&isi=000224190000005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1086%2F518532
http://www.emeraldinsight.com/action/showLinks?crossref=10.1086%2F518532
http://www.emeraldinsight.com/action/showLinks?crossref=10.1207%2Fs15327906mbr3102_5&isi=A1996UZ72600005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1207%2Fs15327906mbr3102_5&isi=A1996UZ72600005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1080%2F03610739208253916&isi=A1992JX45100002
http://www.emeraldinsight.com/action/showLinks?crossref=10.18637%2Fjss.v048.i03&isi=000305117200001
http://www.emeraldinsight.com/action/showLinks?crossref=10.1086%2F376806&isi=000185215800004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1086%2F376806&isi=000185215800004
http://www.emeraldinsight.com/action/showLinks?crossref=10.2307%2F2285946&isi=A1975AQ72400022
http://www.emeraldinsight.com/action/showLinks?crossref=10.1177%2F1094428104268027&isi=000223991500001
http://www.emeraldinsight.com/action/showLinks?isi=000253702000005


Money, K.G., Hillenbrand, C., Henseler, J. and Da Camara, N. (2012), “Exploring unanticipated
consequences of strategy amongst stakeholder segments: the case of a european revenue
service”, Long Range Planning, Vol. 45 Nos 5-6, pp. 395-423.

Morris, T. and Pavett, C.M. (1992), “Management style and productivity in two cultures”, Journal
of International Business Studies, Vol. 23 No. 1, pp. 169-179.

Okazaki, S., Mueller, B., Okazaki, S. and Mueller, B. (2007), “Cross-cultural advertising research:
where we have been and where we need to go”, International Marketing Review, Vol. 24
No. 5, pp. 499-518.

R Core Team (2014), R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna.

Raju, N.S., Laffitte, L.J. and Byrne, B.M. (2002), “Measurement equivalence: a comparison of
methods based on confirmatory factor analysis and item response theory”, Journal of
Applied Psychology, Vol. 87 No. 3, pp. 517-529.

Raykov, T. and Calantone, R. (2014), “The utility of item response modeling in marketing
research”, Journal of the Academy of Marketing Science, Vol. 42 No. 4, pp. 337-360.

Reinartz, W.J., Haenlein, M. and Henseler, J. (2009), “An empirical comparison of the efficacy of
covariance-based and variance-based SEM”, International Journal of Research in
Marketing, Vol. 26 No. 4, pp. 332-344.

Rigdon, E.E. (2012), “Rethinking partial least squares path modeling: in praise of simple
methods”, Long Range Planning, Vol. 45 Nos 5-6, pp. 341-358.

Rigdon, E.E. (2014), “Rethinking partial least squares path modeling: breaking chains and
forging ahead”, Long Range Planning, Vol. 47 No. 3, pp. 161-167.

Rigdon, E.E., Ringle, C.M., Sarstedt, M. and Gudergan, S.P. (2011), “Assessing heterogeneity in
customer satisfaction studies: across industry similarities and within industry differences”,
Advances in International Marketing, Vol. 22, pp. 169-194.

Ringle, C.M., Sarstedt, M. and Mooi, E.A. (2010), “Response-based segmentation using finite
mixture partial least squares: theoretical foundations and an application to American
customer satisfaction index data”, Annals of Information Systems, Vol. 8, pp. 19-49.

Ringle, C.M., Sarstedt, M. and Schlittgen, R. (2014), “Genetic algorithm segmentation in partial
least squares structural equation modeling”, OR Spectrum, Vol. 36 No. 1, pp. 251-276.

Ringle, C.M., Sarstedt, M. and Straub, D.W. (2012), “A critical look at the use of PLS-SEM in MIS
quarterly”, MIS Quarterly, Vol. 36 No. 1, pp. iii-xiv.

Ringle, C.M., Sarstedt, M. and Zimmermann, L. (2011), “Customer satisfaction with commercial
airlines: the role of perceived safety and purpose of travel”, Journal of Marketing Theory
and Practice, Vol. 19 No. 4, pp. 459-472.

Ringle, C.M., Wende, S. and Becker, J.-M. (2015), SmartPLS 3, SmartPLS GmbH, Bönningstedt.
Ringle, C.M., Sarstedt, M., Schlittgen, R. and Taylor, C.R. (2013), “PLS path modeling

and evolutionary segmentation”, Journal of Business Research, Vol. 66 No. 9,
pp. 1318-1324.

Salzberger, T. and Sinkovics, R.R. (2006), “Reconsidering the problem of data equivalence in
international marketing research: contrasting approaches based on CFA and the Rasch
model for measurement”, International Marketing Review, Vol. 23 No. 4, pp. 390-417.

Sarstedt, M. (2008), “A review of recent approaches for capturing heterogeneity in partial least
squares path modelling”, Journal of Modelling in Management, Vol. 3 No. 2, pp. 140-161.

Sarstedt, M. and Mooi, E.A. (2014), A Concise Guide to Market Research: The Process, Data, and
Methods Using IBM SPSS Statistics, Springer, Heidelberg, Dordrecht, London and
New York, NY.

429

Testing
measurement
invariance of
composites

http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.jbusres.2012.02.031&isi=000320484600013
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.lrp.2012.09.003&isi=000312611000006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1037%2F0021-9010.87.3.517&isi=000176417700010
http://www.emeraldinsight.com/action/showLinks?crossref=10.1037%2F0021-9010.87.3.517&isi=000176417700010
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.lrp.2014.02.003&isi=000338597300006
http://www.emeraldinsight.com/action/showLinks?isi=000300480200001
http://www.emeraldinsight.com/action/showLinks?system=10.1108%2F02651330610678976&isi=000241079600004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fpalgrave.jibs.8490264&isi=A1992HQ47300008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1057%2Fpalgrave.jibs.8490264&isi=A1992HQ47300008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs11747-014-0391-8
http://www.emeraldinsight.com/action/showLinks?system=10.1108%2FS1474-7979%282011%290000022011
http://www.emeraldinsight.com/action/showLinks?crossref=10.2753%2FMTP1069-6679190407
http://www.emeraldinsight.com/action/showLinks?crossref=10.2753%2FMTP1069-6679190407
http://www.emeraldinsight.com/action/showLinks?system=10.1108%2F17465660810890126
http://www.emeraldinsight.com/action/showLinks?system=10.1108%2F02651330710827960&isi=000250281700002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ijresmar.2009.08.001&isi=000271884500011
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ijresmar.2009.08.001&isi=000271884500011
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-1-4419-1280-0_2
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-53965-7
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-53965-7
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.lrp.2012.09.010
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs00291-013-0320-0&isi=000330173800013


Sarstedt, M. and Ringle, C.M. (2010), “Treating unobserved heterogeneity in PLS path modelling:
a comparison of FIMIX-PLS with different data analysis strategies”, Journal of Applied
Statistics, Vol. 37 No. 8, pp. 1299-1318.

Sarstedt, M., Henseler, J. and Ringle, C.M. (2011a), “Multi-group analysis in partial least squares
(PLS) path modeling: alternative methods and empirical results”, in Sarstedt, M.,
Schwaiger, M. and Taylor, C.R. (Eds), Advances in International Marketing, Vol. 22,
Emerald, Bingley, pp. 195-218.

Sarstedt, M., Becker, J.-M., Ringle, C.M. and Schwaiger, M. (2011b), “Uncovering and treating
unobserved heterogeneity with FIMIX-PLS: which model selection criterion provides an
appropriate number of segments?”, Schmalenbach Business Review, Vol. 63 No. 1, pp. 34-62.

Sarstedt, M., Ringle, C.M., Henseler, J. and Hair, J.F. (2014), “On the emancipation of PLS-SEM:
a commentary on Rigdon (2012)”, Long Range Planning, Vol. 47 No. 3, pp. 154-160.

Sarstedt, M., Ringle, C.M., Smith, D., Reams, R. and Hair, J.F. (2014), “Partial least squares
structural equation modeling (PLS-SEM): a useful tool for family business researchers”,
Journal of Family Business Strategy, Vol. 5 No. 1, pp. 105-115.

Schwaiger, M. (2004), “Components and parameters of corporate reputation: an empirical study”,
Schmalenbach Business Review, Vol. 56 No. 1, pp. 46-71.

Singh, N., Fassott, G., Chao, M.C.H. and Hoffmann, J.A. (2006), “Understanding international
website usage”, International Marketing Review, Vol. 23 No. 1, pp. 83-97.

Squillacciotti, S. (2010), “Prediction-oriented classification in PLS path modeling”, in Esposito Vinzi,
V., Chin, W.W., Henseler, J. and Wang, H. (Eds), Handbook of Partial Least Squares: Concepts,
Methods and Applications (Springer Handbooks of Computational Statistics Series, Vol. II),
Springer, Heidelberg, Dordrecht, London and New York, NY, pp. 219-233.

Steenkamp, J.-B.E.M. and Baumgartner, H. (1998), “Assessing measurement invariance in cross-
national consumer research”, Journal of Consumer Research, Vol. 25 No. 1, pp. 78-107.

Steenkamp, J.-B.E.M. and Hofstede, F.T. (2002), “International market segmentation: issues and
outlook”, International Journal of Research in Marketing, Vol. 19 No. 3, pp. 185-213.

Steinmetz, H., Schmidt, P., Tina-Booh, A., Wieczorek, S. and Schwartz, S.H. (2009), “Testing
measurement invariance using multigroup CFA: differences between educational groups
in human values measurement”, Quality and Quantity, Vol. 42 No. 4, pp. 599-616.

Vandenberg, R.J. and Lance, C.E. (2000), “A review and synthesis of the measurement invariance
literature: suggestions, practices, and recommendations for organizational research”,
Organizational Research Methods, Vol. 3 No. 1, pp. 4-70.

Wedel, M. and Kamakura, W.A. (2000), Market Segmentation: Conceptual and Methodological
Foundations, Kluwer, Boston, MA.

Wold, H.O.A. (1982), “Soft modeling: the basic design and some extensions”, in Jöreskog, K.G. and
Wold, H.O.A. (Eds), Systems under Indirect Observations: Part II, North-Holland,
Amsterdam, pp. 1-54.

About the authors
Jörg Henseler holds the Chair of Product-Market Relations in the Faculty of Engineering
Technology, University of Twente (The Netherlands). His research interests focus on empirical
methods for the interface of behavioral and design research. He has published in Computational
Statistics & Data Analysis, European Journal of Information Systems, International Journal of
Research in Marketing, Journal of Public Policy & Marketing, Journal of Supply Chain
Management, Journal of the Academy of Marketing Science, MIS Quarterly, Organizational
Research Methods, Packaging Technology and Science, and Structural Equation Modeling − An
Interdisciplinary Journal. He chairs the scientific advisory board of ADANCO, a software for
variance-based SEM.

430

IMR
33,3



Christian M. Ringle is a Chaired Professor of Management at the Hamburg University of
Technology (TUHH) and Conjoint Professor at the University of Newcastle. His widely published
research addresses the management of organizations, strategic and human resource
management, marketing, and quantitative methods for business and market research. He is
cofounder of SmartPLS (http://www.smaprtpls.com), a statistical software tool with a graphical
user interface for partial least squares structural equation modeling (PLS-SEM). He regularly
teaches doctoral seminars on multivariate statistics, structural equation modeling, and the use of
SmartPLS worldwide. More information about Christian Ringle and his full list of publications
available at: www.tuhh.de/hrmo/team/prof-dr-c-m-ringle.html.

Marko Sarstedt is a Chaired Professor of Marketing at the Otto-von-Guericke-University
Magdeburg (Germany) and Conjoint Professor to the Faculty of Business and Law at the
University of Newcastle (Australia). His main research is in the application and advancement of
structural equation modeling methods to further the understanding of consumer behavior and
to improve marketing decision making. His research has been published in journals such as
Journal of Marketing Research, Journal of the Academy of Marketing Science, Organizational
Research Methods, MIS Quarterly, International Journal of Research in Marketing, Journal of
World Business, and Journal of Business Research. Marko Sarstedt is the corresponding author
and can be contacted at: Marko.Sarstedt@ovgu.de

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

431

Testing
measurement
invariance of
composites


	Cit p_1:1: 
	Cit p_2:1: 
	Cit p_15:1: 
	Cit p_12:1: 
	Cit p_12:2: 
	Cit p_16:1: 
	Cit p_20:1: 
	Cit p_20:2: 
	Cit p_6:1: 
	Cit p_13:1: 
	Cit p_17:1: 
	Cit p_10:1: 
	Cit p_7:1: 
	Cit p_14:1: 
	Cit p_18:1: 
	Cit p_4:1: 
	Cit p_11:1: 
	Cit p_8:1: 
	Cit p_30:1: 
	Cit p_30:2: 
	Cit p_34:1: 
	Cit p_23:1: 
	Cit p_31:1: 
	Cit p_35:1: 
	Cit p_32:1: 
	Cit p_21:1: 
	Cit p_21:2: 
	Cit p_36:1: 
	Cit p_25:1: 
	Cit p_29:1: 
	Cit p_33:1: 
	Cit p_33:2: 
	Cit p_22:1: 
	Cit p_37:1: 
	Cit p_37:2: 
	Cit p_45:1: 
	Cit p_49:1: 
	Cit p_53:1: 
	Cit p_38:1: 
	Cit p_38:2: 
	Cit p_42:1: 
	Cit p_42:2: 
	Cit p_46:1: 
	Cit p_50:1: 
	Cit p_39:1: 
	Cit p_43:1: 
	Cit p_47:1: 
	Cit p_47:2: 
	Cit p_51:1: 
	Cit p_51:2: 
	Cit p_40:1: 
	Cit p_55:1: 
	Cit p_44:1: 
	Cit p_44:2: 
	Cit p_48:1: 
	Cit p_52:1: 
	Cit p_41:1: 
	Cit p_71:1: 
	Cit p_56:1: 
	Cit p_60:1: 
	Cit p_60:2: 
	Cit p_64:1: 
	Cit p_68:1: 
	Cit p_72:1: 
	Cit p_57:1: 
	Cit p_57:2: 
	Cit p_61:1: 
	Cit p_65:1: 
	Cit p_69:1: 
	Cit p_69:2: 
	Cit p_73:1: 
	Cit p_58:1: 
	Cit p_62:1: 
	Cit p_62:2: 
	Cit p_66:1: 
	Cit p_74:1: 
	Cit p_74:2: 
	Cit p_63:1: 
	Cit p_67:1: 
	Cit p_86:1: 
	Cit p_75:1: 
	Cit p_75:2: 
	Cit p_79:1: 
	Cit p_83:1: 
	Cit p_84:1: 
	Cit p_81:1: 
	Cit p_85:1: 
	Cit p_78:1: 
	Cit p_82:1: 


