Marko Petek

Marko Petek
National Institute of Biology - Nacionalni inštitut za biologijo | NIB · Department of Biotechnology and Systems Biology

PhD

About

127
Publications
14,516
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,133
Citations
Additional affiliations
January 2015 - December 2016
BioSistemika Ltd.
Position
  • R&D Associate
Description
  • DECATHLON project, NGS-related bioinformatics
October 2007 - December 2014
National Institute of Biology - Nacionalni inštitut za biologijo
Position
  • PostDoc Position
Education
October 2007 - June 2012
University of Ljubljana
Field of study
  • Biotechnology
September 2001 - September 2007
University of Ljubljana
Field of study
  • Pharmacy

Publications

Publications (127)
Preprint
Plants respond to stress by redistributing resources from growth- to defence-related processes, often resulting in decreased yields. Understanding the molecular mechanisms behind these growth-defence trade-offs can enhance breeding strategies to help us design crop varieties with improved stress tolerance, yields and quality. To enable the investig...
Article
Full-text available
Ethylene response factors (ERFs) have been associated with biotic stress in Arabidopsis, while their function in non‐model plants is still poorly understood. Here we investigated the role of potato ERF StPti5 in plant immunity. We show that StPti5 acts as a susceptibility factor. It negatively regulates potato immunity against potato virus Y and Ra...
Preprint
Full-text available
Root colonization by certain beneficial microbes can prime plant defenses aboveground, modifying plant responses to potential attackers. Arbuscular mycorrhizal (AM) fungi establish mutualistic symbiosis with most plant species, usually enhancing plant resistance to biotic stresses, leading to Mycorrhiza-Induced Resistance (MIR). Still, our knowledg...
Article
Full-text available
Potato (Solanum tuberosum) is the most popular tuber crop and a model organism. A variety of gene models for potato exist, and despite frequent updates, they are not unified. This hinders the comparison of gene models across versions, limits the ability to reuse experimental data without significant re-analysis, and leads to missing or wrongly anno...
Article
Full-text available
Protein complexes from edible oyster mushrooms (Pleurotus sp.) composed of pleurotolysin A2 (PlyA2) and pleurotolysin B (PlyB) exert toxicity in feeding tests against Colorado potato beetle (CPB) larvae, acting through the interaction with insect‐specific membrane sphingolipid. Here we present a new strategy for crop protection, based on in planta...
Article
Full-text available
Stress Knowledge Map (SKM; https://skm.nib.si) is a publicly available resource containing two complementary knowledge graphs that describe the current knowledge of biochemical, signaling, and regulatory molecular interactions in plants: a highly curated model of plant stress signaling (PSS; 543 reactions) and a large comprehensive knowledge networ...
Article
Full-text available
Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis...
Article
Full-text available
Insect physiology and reproduction depend on several terpenoid compounds, whose biosynthesis is mainly unknown. One enigmatic group of insect monoterpenoids are mealybug sex pheromones, presumably resulting from the irregular coupling activity of unidentified isoprenyl diphosphate synthases (IDSs). Here, we performed a comprehensive search for IDS...
Article
Full-text available
Background Geminiviruses are DNA plant viruses that cause highly damaging diseases affecting crops worldwide. During the infection, geminiviruses hijack cellular processes, suppress plant defenses, and cause a massive reprogramming of the infected cells leading to major changes in the whole plant homeostasis. The advances in sequencing technologies...
Preprint
Full-text available
Potato (Solanum tuberosum) is the most popular tuber crop and model organism. Though its gene models are frequently updated, they are not unified, leading to missing or wrongly annotated genes. Here, we thus unify the recent potato double monoploid v4 and v6 gene models by automatic merging. We established an Apollo web server that enables access t...
Preprint
Full-text available
Stress Knowledge Map (SKM, https://skm.nib.si) is a publicly available resource containing two complementary knowledge graphs describing current knowledge of biochemical, signalling, and regulatory molecular interactions in plants: a highly curated model of plant stress signalling (PSS, 543 reactions) and a large comprehensive knowledge network (CK...
Preprint
Full-text available
Most of the biosynthetic gene clusters (BGC) encoding the biosynthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, robust technologies are required to secure the production of natural products for both drug discovery and any subsequent commercial fermentation processes. Indust...
Preprint
Full-text available
Background: Geminiviruses are DNA plant viruses that cause highly damaging diseases affecting crops worldwide. During the infection, geminiviruses hijack cellular processes, suppress plant defenses, and cause a massive reprogramming of the infected cells leading to major changes in the whole plant homeostasis. The advances in sequencing technologie...
Preprint
Full-text available
Many insect species rely on diverse terpenoids for their development and interorganismal interactions. However, little is known about terpenoid biosynthesis in insects. The monoterpenoid sex pheromones of mealybugs and scale insects (Coccoidea) are particularly enigmatic, with several species producing unique structures presumed to result from the...
Article
Full-text available
TGA transcription factors, which bind their target DNA through a conserved basic region leucine zipper (bZIP) domain, are vital regulators of gene expression in salicylic acid (SA)-mediated plant immunity. Here, we investigated the role of StTGA2.1, a potato (Solanum tuberosum) TGA lacking the full bZIP, which we named a mini-TGA. Such truncated pr...
Article
Full-text available
We developed pISA-tree, a straightforward and flexible data management solution for organisation of life science project-associated research data and metadata. pISA-tree was initiated by end-user requirements thus its strong points are practicality and low maintenance cost. It enables on-the-fly creation of enriched directory tree structure (projec...
Article
Full-text available
Plant biofactories are a promising platform for sustainable production of high-value compounds, among which are insect sex pheromones, a green alternative to conventional insecticides in agriculture. Recently, we have constructed transgenic Nicotiana benthamiana plants (“Sexy Plants”, SxP) that successfully produce a blend of moth (Lepidoptera) sex...
Article
Full-text available
PaintOmics is a web server for the integrative analysis and visualisation of multi-omics datasets using biological pathway maps. PaintOmics 4 has several notable updates that improve and extend analyses. Three pathway databases are now supported: KEGG, Reactome and MapMan, providing more comprehensive pathway knowledge for animals and plants. New m...
Preprint
Full-text available
TGA transcription factors, which bind their target DNA through a conserved basic region leucine zipper (bZIP) domain, are vital regulators of gene expression in salicylic acid (SA)-mediated plant immunity. Here, we investigate the role of StTGA2.1, a potato TGA lacking the full bZIP, which we name a mini-TGA. Such truncated proteins have been widel...
Preprint
Full-text available
We have developed pISA-tree, a straightforward and flexible data management solution for organisation of life science project-associated research data and metadata. It enables on-the-fly creation of enriched directory tree structure (project/Investigation/Study/Assay) via a series of sequential batch files in a standardised manner based on the ISA...
Article
Full-text available
Arthropods crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingl...
Chapter
Understanding the molecular mechanisms of potato development and responses to environmental stressors is of utmost importance for achieving stable crop yields. RNA sequencing (RNA-Seq) provides an insight into responses of all of the organism genes to the environmental and developmental cues and thus provides insights into underlying modes of actio...
Chapter
We have witnessed a rapid advancement in high-throughput genome sequencing and the maturation of long-read technologies. However, an accurate assembly of polyploid potato genomes still remains challenging. Sequencing the double-monoploid genome of Solanum tuberosum Group Phureja (Xu et al., Nature 475:189–195, 2011) has enabled functional studies o...
Article
Full-text available
Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’, but molecular interactions between the causal pathogen and its host plant are not well understood. In this work, we combined the analysis of high-throughput RNA-Seq and sRNA-Seq data with interaction network analysis for...
Data
see all Supplementary Information at https://fairdomhub.org/assays/1261 under the project https://fairdomhub.org/projects/161
Article
Full-text available
Colorado potato beetle (CPB) is an agricultural pest of solanaceous crops, notorious for its rapid resistance development to chemical pesticides. Foliar spraying of dsRNA formulations is a promising innovative technology providing highly specific and environmentally acceptable option for CPB management. We designed dsRNA to silence CPB mesh gene (d...
Article
Plant–microbe–arthropod (PMA) three-way interactions have important implications for plant health. However, our poor understanding of the underlying regulatory mechanisms hampers their biotechnological applications. To this end, we searched for potential common patterns in plant responses regarding taxonomic groups or lifestyles. We found that most...
Article
Full-text available
Although the reference genome of Solanum tuberosum Group Phureja double-monoploid (DM) clone is available, knowledge on the genetic diversity of the highly heterozygous tetraploid Group Tuberosum, representing most cultivated varieties, remains largely unexplored. This lack of knowledge hinders further progress in potato research. In conducted inve...
Chapter
RNA interference (RNAi) is a post-transcriptional gene silencing mechanism whereby target gene messenger RNA (mRNA) is neutralized by double-stranded RNA (dsRNA) homologous to the mRNA sequence. The pathway can be exploited for pest and disease control purposes by delivery of exogenous dsRNA targeting a gene essential for the target organism’s surv...
Preprint
Full-text available
Colorado potato beetle (CPB) is an agricultural pest of solanaceous crops, notorious for its rapid resistance development to chemical pesticides. Foliar spraying of dsRNA formulations is a promising innovative technology providing highly specific and environmentally acceptable option for CPB management. We designed dsRNA to silence CPB mesh gene (d...
Preprint
Full-text available
Although the reference genome of Solanum tuberosum Group Phureja double-monoploid (DM) clone is available, knowledge on the genetic diversity of the highly heterozygous tetraploid Group Tuberosum, representing most cultivated varieties, remains largely unexplored. This lack of knowledge hinders further progress in potato research. In conducted inve...
Article
When Colorado potato beetle larvae ingested potato plants treated with the plant defense inducer compound hexanoic acid, midgut chymotrypsin enzyme activity increased, and the corresponding chymotrypsin genes were differentially expressed, evidence of the larval digestive proteolytic system's plasticity. We previously reported increased susceptibil...
Article
Full-text available
Background Progress in high-throughput molecular methods accompanied by more complex experimental designs demands novel data visualisation solutions. To specifically answer the question which parts of the specifical biological system are responding in particular perturbation, integrative approach in which experimental data are superimposed on a pri...
Article
Full-text available
The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the gen...
Article
Full-text available
Potato virus Y is the most economically important potato viral pathogen. We aimed at unraveling the roles of small RNAs (sRNAs) in the complex immune signaling network controlling the establishment of tolerant response of potato cv. Désirée to the virus. We constructed a sRNA regulatory network connecting sRNAs and their targets to link sRNA level...
Preprint
Potato virus Y is the most economically important potato viral pathogen. We aimed at unraveling the roles of small RNAs (sRNAs) in the complex immune signaling network controlling the establishment of tolerant response of potato cv. Désirée to the virus. We constructed a sRNA regulatory network connecting sRNAs and their targets to link sRNA level...
Preprint
Full-text available
The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the gen...
Article
Full-text available
Background Quantitative molecular biology remains a challenge for researchers due to inconsistent approaches for control of errors in the final results. Due to several factors that can influence the final result, quantitative analysis and interpretation of qPCR data are still not trivial. Together with the development of high-throughput qPCR platfo...