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Abstract

Survival models such as the Weibull or log-normal lead to inference that is not robust

to the presence of outliers. They also assume that all heterogeneity between individuals

can be modelled through covariates. This article considers the use of infinite mixtures of

lifetime distributions as a solution for these two issues. This can be interpreted as the

introduction of a random effect in the survival distribution. We introduce the family of

Shape Mixtures of Log-Normal distributions, which covers a wide range of density and

hazard functions. Bayesian inference under non-subjective priors based on the Jeffreys rule

is examined and conditions for posterior propriety are established. The existence of the

posterior distribution on the basis of a sample of point observations is not always guaranteed

and a solution through set observations is implemented. In addition, a method for outlier

detection based on the mixture structure is proposed. A simulation study illustrates the

performance of our methods under different scenarios and an application to a real dataset

is provided. Supplementary materials, which include R code, are available online.
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1. INTRODUCTION

Frequently, standard survival models do not accommodate all features of real applications.

Datasets often exhibit more “rare” or “tail” observations than predicted by usual models. Hence,

models such as Weibull or log-normal lead to inference that is not robust to the presence of out-

liers (Barros et al., 2008). A second, related, issue is the existence of specific individual factors

that result in heterogeneity of the survival times which can not be captured by covariates (Mar-

shall and Olkin, 2007). Therefore, the typical assumption that the survival times correspond

to realizations of random variables T1, . . . , Tn which have the same “thin tailed” distribution

(possibly depending on a set of covariates) can be inappropriate. An example of such a dataset

is the Veterans’ Administration (VA) lung cancer data presented in Kalbfleisch and Prentice

(2002), for which the previous literature found strong evidence of influential observations and

unobserved heterogeneity related to outliers (e.g. Barros et al., 2008; Heritier et al., 2009).

We consider the use of infinite mixture of lifetime distributions as a solution for these issues.

Mixture modeling can be interpreted as the introduction of a random effect on the survival dis-

tribution. This idea has been mentioned by previous authors (e.g. Marshall and Olkin, 2007),

but is not yet much used in applied work. In particular, this article explores the Shape Mix-

tures of Log-Normal (SMLN) distributions for which the shape parameter is assigned a mix-

ing distribution. This new class covers a wide range of shapes, in particular cases with fatter

tail behaviour than the log-normal. It includes the already studied log-Student t, log-Laplace,

log-exponential power and log-logistic distributions among others. This paper puts the earlier

literature into a common (more general) framework and develops objective Bayesian inference

methods, which should be attractive for practitioners. The proposed priors do not require the

elicitation of hyper-parameters and can be used in the (frequently encountered) setting in which

no reliable prior information is available. They also provide baseline comparison when such
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information is available.

Section 2 introduces the use of mixture families of distributions with particular focus on

the SMLN family. Covariates are introduced through an Accelerated Failure Times model. The

interpretation of the regression coefficients is not affected by the mixing distribution. This is an

advantage over proportional hazards models with frailty terms, in which the interpretation of the

regression parameters is conditional to the random effect, and the proportional hazards property

is not preserved after mixture (Wienke, 2010). Section 3 analyzes aspects of Bayesian inference

for models in the SMLN family. This addresses the existence of censored observations. Non-

subjective priors based on the Jeffreys rule are proposed and conditions for the propriety of the

posterior distribution are provided. In addition, we highlight that the use of point observations

can affect the existence of the posterior distribution and a solution through set observations is

considered. Section 3 also discusses some implementation details and proposes a method for

outlier detection that exploits the mixture structure. A simulation study in Section 4 illustrates

the performance of the proposed framework under different scenarios. We also show that, even

for small sample size or a high proportion of censoring, standard Bayesian model comparison

criteria can successfully detect departures from the log-normal model. In Section 5 we apply our

models to the VA lung cancer dataset. SMLN models fit these data better than the log-normal

model and uncover strong evidence of the presence of heterogeneity that is not accounted for by

the available covariates. Finally, Section 6 concludes. All proofs are contained in the Appendix

without mention in the text.

2. MIXTURES OF LIFE DISTRIBUTIONS

Let T1, . . . , Tn be the survival times of n independent individuals. Usually, T1, . . . , Tn are as-

sumed to have the same “thin-tailed” distribution such as a log-normal or a Weibull (possibly

depending on a set of covariates). However, this is often not appropriate in the face of un-

observed heterogeneity between the survival times. This heterogeneity can be interpreted as
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Table 1: Some SMLN models. fPS(·|δ) denotes a positive stable density with parameter δ.

Distribution Density f(ti) Mixing density

Log-Student t Γ(ν/2+1/2)
Γ(ν/2)

1√
πσ2ν

1
ti

[
1 + (log(ti)−µ)2

σ2ν

]−( ν2 + 1
2 )

, ν > 0 Gamma(ν/2, ν/2)

Log-Laplace 1
2σ

1
ti

exp
{
− | log(ti)−µ|

σ

}
Inv-Gamma(1,1/2)

Log-exponential

power

α
2σΓ( 1

α )
1
ti

exp
{
−
(
| log(ti)−µ|

σ

)α}
, α ∈ (1, 2) Γ(3/2)

Γ(1+1/α)λ
− 1

2
i × fPS(λi|α2 )

Log-logistic 1
σ eµ

(ti/ e
µ)1/σ−1

[1+(ti/ eµ)1/σ]2
λ−2
i

∑∞
k=0

(−2
k

)
(1 + k) e

− (1+k)2

2λi

unobserved individual effects, and can also be related to the presence of outlying observations.

This paper considers the use of mixtures of life distributions in order to account for unobserved

heterogeneity and add robustness to the presence of outliers. The distribution of Ti is defined as

a mixture of life distributions, if and only if its density function is

f(ti|ψ, θ) ≡
∫
L
f(ti|ψ,Λi = λi) dPΛi(λi|θ), (1)

where f(·|ψ,Λi = λi) represents the density function associated with a lifetime distribution

which depends on the values of ψ and λi (underlying distribution), and λi can be understood

as a random effect associated with each individual (frailty term). The mixing distribution has

cumulative distribution function PΛi(·|θ) with support L and depends on a parameter θ. If L is

a finite set of values, the distribution of Ti is a finite mixture of life distributions. However, here

we focus on the case in which Λi is a continuous positive random variable (usually L = R+),

in which case f(·|ψ, θ) can be interpreted as an infinite mixture of densities.

The intuition behind the underlying model carries over to these mixtures. Conditional on

the mixing parameters, the base model applies. Therefore, if there are any theoretical or prac-

tical reasons underpinning this model (without mixing), the same reasons hold for the mixture

model in the presence of unobserved heterogeneity. We specifically focus here on mixtures

generated from log-normal distributions. The log-normal distribution arises as the limiting

distribution when additive cumulative damage is the cause of the death or failure. Using the
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previous argument, mixtures generated from log-normal distributions can be justified in the

same context. Besides mixtures of log-normal distributions, a large number of mixture families

can be generated using (1). For example, Jewell (1982) explores mixtures of exponential and

Weibull distributions. Barros et al. (2008) and Patriota (2012) consider an extended class of

Birnbaum-Saunders distributions that can be represented as in (1). The latter family is moti-

vated by models for crack extensions where the mixing distribution accounts for dependence

between the cracks.

2.1 The family of Shape Mixtures of Log-Normals

Definition 1. A random variable Ti has a distribution in the family of Shape Mixtures of Log-

Normals (SMLN) if and only if its density can be represented as

f(ti|µ, σ2, θ) =

∫
L
fLN

(
ti|µ,

σ2

λi

)
dPΛi(λi|θ), ti > 0, µ ∈ R, σ2 > 0, θ ∈ Θ, (2)

where fLN(·|µ, σ2

λi
) corresponds to the density of a log-normal distribution with parameters µ

and σ2/λi, and λi is a realized value of a random variable Λi which has distribution function

PΛi(·|θ) defined on L ⊆ R+ (possibly discrete). Denote Ti ∼ SMLNP (µ, σ2, θ). Alternatively,

(2) can be expressed as a hierarchical representation which corresponds to

Ti|µ, σ2,Λi = λi ∼ LN

(
µ,
σ2

λi

)
, Λi|θ ∼ PΛi(·|θ). (3)

The SMLN family can be interpreted as a mixture of log-normal distributions with random

shape parameter or as the exponential transformation of a random variable distributed as a scale

mixture of normals. This family includes a number of distributions that have been proposed

in the context of survival analysis. Table 1 lists some of them. In particular, the log-Student

t distribution was introduced by Hogg and Klugman (1983) and the log-Laplace appeared in

Uppuluri (1981). The log-exponential power was proposed by Vianelli (1983) and used in

Martı́n and Pérez (2009). The log-logistic distribution was introduced by Shah and Dave (1963)

and is used regularly in survival analysis, hydrology and economics. This list can be increased
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Figure 1: Density function of some SMLN models. Solid line is the log-normal(0, 1) density.

by varying the mixing distribution. For example, all the mixing distributions used for scale

mixtures of normals listed in Fernández and Steel (2000) can be used in this context. For

identifiability reasons, the mixing distribution must not have separate unknown scale parameters

(unknown scale parameters are allowed as long as they are linked to other features of the mixing

distribution, e.g. Λi ∼ Gamma(θ,θ)). As illustrated in Figures 1 and 2, the SMLN family allows

for a wide variety of shapes for the density and the hazard function. For example, while the

hazard rate of the log-normal distribution has an increasing initial phase, the log-Laplace and

log-logistic distributions produce a monotone decreasing hazard rate for some values of σ2.

Whereas all positive moments exist for the log-normal, this is not necessarily the case for

the shape mixtures: in particular, we can show that no positive moments exist for the log-Student

t for any finite value of ν, and the log-Laplace and log-logistic models only allow for moments

up to 1/σ. The log-exponential power distribution with α > 1 does possess all moments.

2.2 The AFT-SMLN model

An important aspect of survival modelling is the inclusion of covariates. Throughout, we will

condition on the covariates which are assumed to be constant in time. An Accelerated Failure
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Figure 2: Hazard function of some SMLN models. Solid line is the log-normal(0,1) hazard rate.

Times (AFT) model is introduced. The AFT-SMLN model expresses the dependence between

the covariates and the survival time by replacing the parameter µ with x′iβ, so that

Ti|xi, β, σ2, θ
ind∼ SMLNP (x′iβ, σ

2, θ), i = 1, 2, . . . , n, (4)

where xi is a vector containing the value of k covariates associated with individual i and β ∈ Rk

is a vector of parameters. This can also be interpreted as a linear regression model for the

logarithm of the survival times with error term distributed as a scale mixture of normals. As the

median of Ti in (4) is given by ex
′
iβ , eβj is interpreted as the (proportional) marginal change of

the median survival time as a consequence of a unitary change in covariate j. This interpretation

is not affected by the mixing distribution.

3. BAYESIAN ANALYSIS OF THE AFT-SMLN MODEL

3.1 The prior

Bayesian inference will be conducted using objective priors that are generated by Jeffreys rule.

This is one of the most common choices in the absence of prior information and has interesting
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invariance and information-theoretic properties. The next theorem presents the Fisher informa-

tion matrix for the AFT-SMLN model which is the basis for the Jeffreys-style priors.

Theorem 1. Let T1, . . . , Tn be independent random variables with Ti distributed according to

(4), then its Fisher information matrix corresponds to

I(β, σ2, θ) =


1
σ2k1(θ)

∑n
i=1 xix

′
i 0 0

0 1
σ4k2(θ) 1

σ2k3(θ)

0 1
σ2k3(θ) k4(θ)

 , (5)

where k1(θ), k2(θ), k3(θ) and k4(θ) are functions depending only on θ.

The expressions involved in k1(θ), k2(θ), k3(θ) and k4(θ) are complicated (see the proof)

and thus I(β, σ2, θ) is not easily obtained from this theorem for any arbitrary mixing distri-

bution. Indeed, it is usually more efficient to compute I(β, σ2, θ) directly from f(·|β, σ2, θ).

However, this structure facilitates a general representation of the Jeffreys-style priors:

Corollary 1. Under the same assumptions as in Theorem 1 it follows that the Jeffreys, inde-

pendence Jeffreys (which deals separately with the blocks for β and (σ2, θ)) and independence

I Jeffreys (which deals separately with β, σ2 and θ) priors are respectively given by

πJ(β, σ2, θ) ∝ 1

(σ2)1+ k
2

√
[k1(θ)]k[k2(θ)k4(θ)− k2

3(θ)], (6)

πI(β, σ2, θ) ∝ 1

σ2

√
k2(θ)k4(θ)− k2

3(θ), (7)

πII(β, σ2, θ) ∝ 1

σ2

√
k4(θ). (8)

The three non-subjective priors presented here can be written as

π(β, σ2, θ) ∝ 1

(σ2)p
π(θ), (9)

where π(θ) is the factor of the prior that depends on θ. For the Jeffreys prior p = 1 + (k/2)

and p = 1 for the other two priors. If θ does not appear (e.g. log-normal, log-Laplace and

log-logistic models) this prior simplifies to π(β, σ2) ∝ (σ2)−p.
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Note that the result in Corollary 1 also specifies the prior for θ. The implied priors for

the special cases of the log-Student t and the log-exponential power (derived directly from the

specific likelihood functions) are explicitly presented in the proof of Theorem 3. In order to

obtain meaningful Bayes factors between models, priors with a improper component π(θ) for

θ are discarded. For the examples explored throughout this article, this argument discards the

independence I Jeffreys prior for the log-Student t model.

3.2 The posterior distribution

The three priors presented in Corollary 1 do not correspond to proper probability distributions

and therefore the propriety of the posterior distribution must be verified. At this stage we

also introduce the existence of censoring (assumed to be non-informative). In the following,

posterior propriety is verified for the AFT-SMLN model under the priors in Corollary 1.

Theorem 2. Let t1, . . . , tn > 0 be the survival times (possibly censored) of n independent

individuals, realizations of random variables distributed as in (4). Assume the prior given in

(9), with
∫

Θ
π(θ) dθ = 1. Without loss of generality, assume that only the first no observations

are uncensored. Define Xo = (x1, . . . , xno)
′ and suppose that the rank of Xo is k.

(i) For p = 1, a sufficient condition for posterior existence is no > k,

(ii) For p = 1 + k/2, a sufficient condition for the posterior propriety is no > k and∫
Θ

E(Λ
− k

2
1 |θ)π(θ) dθ <∞. (10)

Theorem 3. Under the assumptions in Theorem 2 and provided that no > k, it follows that

(i) For the log-Student t AFT model, the posterior is proper under the independence Jeffreys

prior. However, the posterior does not exist for the Jeffreys prior.

(ii) For the log-Laplace AFT model, log-exponential power AFT model and log-logistic AFT

model, the propriety of the posterior can be verified with any of the three proposed priors.
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Theorem 3 tells us that the log-Student t AFT model does not lead to valid Bayesian in-

ference in combination with the Jeffreys prior (the independence I Jeffreys prior was already

discarded in Subsection 3.1). The other models can be combined with all priors considered

here; of course, the absence of θ in the log-Laplace and log-logistic models implies that the

independence Jeffreys and independence I Jeffreys priors coincide in those cases.

3.3 The problem with using point observations

Continuous sampling models assign zero probability to particular (point) values. In spite of

this, the standard statistical analysis is based on point observations. This situation can cause

problems in the context of Bayesian inference. The assessment of the propriety of the posterior

distribution is usually conducted without taking into account events that have zero probability.

Hence, the propriety of the posterior on the basis of a specific sample of point observations

can be precluded. As argued in Fernández and Steel (1998), this issue introduces the risk of

having senseless inference. The following theorem illustrates the problem of the use of point

observations in the context of the AFT log-Student t model.

Theorem 4. Adopt the same assumptions as in Theorem 2 and assume that no > k. If the

mixing distribution is Gamma(ν/2,ν/2) and s (k ≤ s < no) is defined as the largest number

of uncensored observations that can be represented as an exact linear combination of their

covariates (i.e. log(ti) = x′iβ for some fixed β), a necessary condition for the propriety of the

posterior distribution of (β, σ2, ν) is∫ m

0

π(ν) dν = 0, where m =
no − k + (2p− 2)

no − s
− 1. (11)

This result indicates that it is possible to have samples of point observations for which no

Bayesian inference can be conducted, unless π(ν) induces a positive lower bound for ν. For

the log-Student t model we only use the independence Jeffreys prior, so that p = 1 and (11) is

violated whenever s > k. When no covariates are taken into account (k = 1), s coincides with
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the largest number of (uncensored) tied observations. Theorem 4 highlights the need for consid-

ering sets of zero Lebesgue measure when checking the propriety of the posterior distribution

based on point observations.

In the context of scale mixture of normals, Fernández and Steel (1998, 1999) proposed the

use of set observations as a solution to this problem. We now extend this to the SMLN family.

The use of set observations is based on the fact that, in practice, it is impossible to record

observations from continuous random variables with total precision and every observation can

only be considered as a label of a set of positive Lebesgue measure. For instance, if the recorded

value for the survival time is ti, it really means that the actual survival time is between ti − εl

and ti + εr where εl and εr are determined by the accuracy with which the data was recorded

(e.g. if the data is recorded in integers, εl = εr = 0.5). This is equivalent to considering

the observation as interval censored. As explained in Subsection 3.4, the implementation is

done through data augmentation which does not involve a large increase of the computational

cost. This procedure also naturally deals with left or right censored observations by taking,

respectively, (εl, εr) = (ti, 0) or (εl, εr) = (0,∞). The following theorem indicates that the use

of set observations can ensure a proper posterior distribution in situations where a particular

sample of point observations might not.

Theorem 5. Adopt the same assumptions as in Theorem 2 and assume that no > k. Replace

the uncensored observations by set observations tε = {(t1− εl, t1 + εr), . . . , (tno− εl, tno + εr)}

(0 < εl, εr <∞). Define E = (t1 − εl, t1 + εr)× (t2 − εl, t2 + εr)× · · · × (tno − εl, tno + εr).

The posterior distribution of (β, σ2, θ) given tε is proper if and only if the marginal likelihood

under point observations is finite for any to ∈ E, except for a set of zero Lebesgue measure.

3.4 Implementation

Bayesian inference was implemented through Markov chain Monte Carlo (MCMC) using the

hierarchical representation (3) of the SMLN family and the data augmentation idea of Tanner
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and Wong (1987). Throughout, we use the prior presented in (9). An Adaptive Metropolis-

within-Gibbs sampling scheme with Gaussian Random Walk proposals is used (Roberts and

Rosenthal, 2009). Both censored and set observations are accommodated through data aug-

mentation (as in Fernández and Steel, 1999, 2000). This introduces an additional step in the

sampler in which, given the current value of the parameters and mixing variables, point val-

ues of the survival times in line with the set observations are simulated. In this case, this can

be easily done by sampling log(ti) from a truncated normal distribution. Regardless of the

mixing distribution and provided that n > 2 − 2p, the full conditionals for β and σ2 are nor-

mal and inverted gamma distributions. However, the full conditionals for Λ1, . . . ,Λn and θ

are generally not of a known form for arbitrary mixing distributions. For the Λi’s we have

π(λ1, . . . , λn|β, σ2, θ, t) =
∏n

i=1 π(λi|β, σ2, θ, t) where t = (t1, . . . , tn)′ are the simulated sur-

vival times and

π(λi|β, σ2, θ, t) ∝ λ
1
2
i exp

{
− 1

2σ2
λi(log(ti)− x′iβ)2

}
dP (λi|θ), i = 1, . . . , n. (12)

For the log-Student t and log-Laplace models, (12) has a known form. In the first case it

is a Gamma((ν + 1)/2,1/2 [{(log(ti)− x′iβ)2/σ2}+ ν]). In the second, it corresponds to an

Inverse Gaussian(σ/| log(ti)− x′iβ|,1). If the mixing distribution has no closed form (as e.g.

for the log-exponential power and log-logistic distributions), the acceptance probability in these

Metropolis-Hastings steps is not easily computable. For the log-logistic model we implement

the rejection sampling algorithm proposed in Holmes and Held (2006, p.163), using the fact

that (2
√

Λi)
−1 has the asymptotic Kolmogorov-Smirnov distribution. In the case of the log-

exponential power model we adopt the mixture of uniforms representation used in Martı́n and

Pérez (2009). This replaces the use of Λi by Ui (i = 1, . . . , n), with Ui
iid∼Gamma(1 + 1/α, 1)

and log(Ti)|Ui = ui, β, σ
2, α ∼ U(x′iβ−σu

1/α
i , x′iβ+σu

1/α
i ). We restrict the range of α to (1, 2),

which is consistent with the SMLN representation. The case α = 1 is excluded but is covered

by the log-Laplace model. We decompose the posterior distribution π(β, σ2, α, u1, . . . , un|t) as∏n
i=1 π(ui|t, β, σ2, α)× π(β, σ2, α|t) and the full conditionals for the Ui’s are

π(ui|t, β, σ2, α) ∝ e−ui , ui >

(
| log(ti)− x′iβ|

σ

)α
, i = 1, . . . , n. (13)
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For π(β, σ2, α|t), the full conditionals of β, σ2 and α can easily be derived from the marginal

likelihood (after integrating out the ui’s) of t given (β, σ2, α). None of them has a known form

and Adaptive Metropolis-Hastings steps are implemented. Additionally, for censored and set

observations, log(ti) is sampled from a truncated uniform distribution. In terms of setting up

a sampler, it might be easier to simply start directly from the log-exponential power or log-

logistic distribution, rather than its interpretation as a scale mixture. However, we would lose

the inference on the mixing variables Λi (or Ui) which is particularly important in identifying

outlying observations (Lange et al., 1989, Fernández and Steel, 1999). This is further discussed

in Subsection 3.6. Also, the use of these mixing representations facilitates dealing with censored

and set observations. See Supplementary material A for more details and R code.

3.5 Model comparison

We consider several standard model comparison criteria. Firstly, we use Bayes factors (BF),

defined as the ratio between the marginal likelihoods of the models. Marginal likelihoods will

be computed using the methodology proposed by Chib (1995) and Chib and Jeliazkov (2001).

The latter was developed for a non-adaptive scheme. Using the stabilized proposal variances, we

estimate the marginal likelihood from shorter nonadaptive chains for which the starting values

are defined as the converged parameter values of the original chains. Secondly, the Deviance

Information Criteria (DIC) developed by Spiegelhalter et al. (2002) is also provided. It is given

by DIC = E(D(β, σ2, θ, y)|y) + pD with pD = E(D(β, σ2, θ, y)|y) − D(β̂, σ̂2, θ̂, y) (effective

number of parameters), D(β, σ2, θ, y) = −2 log(f(y|β, σ2, θ)) (deviance function) and where

β̂, σ̂2 and θ̂ are the posterior medians of β, σ2 and θ, respectively. This is computed using the

marginal likelihood (integrating out the mixing parameters). Low DIC suggests a better model.

In addition, models are compared by the quality of their predictions. We use the Conditional

Predictive Ordinate (CPO) (Geisser and Eddy, 1979). For observation i, CPOi is defined as

CPOi = f(ti|t−i) =

[
E
(

1

f(ti|β, σ2, θ)

)]−1

, t−i = (t1, . . . , ti−1, ti+1, . . . , tn), (14)
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where the expectation is with respect to π(β, σ2, θ|t) and f(·|t−i) is the predictive density

given t−i. The density function f(·|t−i) is replaced by the survival function S(·|t−i) for right

censored observations (Banerjee et al., 2007; Hanson, 2006). Larger values of CPOi indi-

cate better predictive accuracy for the observation i. Geisser and Eddy (1979) also proposes

PsML =
∏n

i=1 CPOi as an estimator of the marginal likelihood (also called Pseudo Marginal

Likelihood). Higher values of PsML indicate a better overall predictive performance of the

model. Pseudo Bayes factors (PsBF) can be easily computed as ratios of PsML’s.

3.6 Detection of influential observations and outliers

A robust model will have no (or few) influential observations. Influential observations can

be detected usingKi = KL(π(β, σ2, θ|t), π(β, σ2, θ|t−i)), where KL(·, ·) denotes the Kullback-

Leibler divergence function (Peng and Dey, 1995; Cho et al., 2009). As suggested in McCulloch

(1989), we transform Ki in terms of its calibration index pi = 0.5
[
1 +

√
1− exp{−2Ki}

]
,

pi ∈ [0.5, 1]. In relation to the Kullback-Leibler divergence, the effect of removing observation

i is equivalent to assigning probability pi to an event which has true probability 0.5. A large

value of pi suggests that observation i is influential.

In addition, the existence of outlying observations will be assessed using the posterior dis-

tribution of the mixing variables. Extreme values (with respect to a reference value, λref ) of

the mixing variables are associated with outliers (see also West, 1984). Formally, evidence

of outlying observations will be assessed by contrasting the models M0 : Λi = λref versus

M1 : Λi 6= λref (with all other Λj, j 6= i free). Evidence in favour of each of these models will

be measured using Bayes factors, which can be computed as the generalized Savage-Dickey

density ratio proposed in Verdinelli and Wasserman (1995). The evidence in favour of M0

versus M1 (i.e. against observation i being an outlier) is

BF01 = π(λi|t)E
(

1

dP (λi|θ)

) ∣∣∣∣
λi=λref

, (15)

where the expectation is with respect to π(θ|t,Λi = λref ). When the parameter θ does not
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appear in the model, this simplifies to the original Savage-Dickey density ratio

BF01 =
π(λi|t)
dP (λi)

∣∣∣∣
λi=λref

= E
(
π(ti|β, σ2, λi)

π(ti|β, σ2)

) ∣∣∣∣
λi=λref

, (16)

where the expectation is with respect to π(β, σ2|t). The main challenge of this approach is the

choice of λref . Intuitively, if there is no unobserved heterogeneity, the posterior distribution

of the mixing parameters should not be much affected by the data. Therefore, the mixing

distribution (which can be interpreted as a prior distribution for Λi) will then be close to the

posterior distribution of Λi. Following this intuition, we propose to use E(Λi|θ) (if it exists) as

λref . Using this rule, λref = 1 for the log-Student t model. This choice was supported by our

empirical examples. If E(Λi|θ) depends on θ (unknown), we suggest estimating it through the

posterior median of θ. Examples for whichE(Λi|θ) is not finite require a more detailed analysis.

For example, the expectation of the mixing distribution that generates the log-Laplace and log-

logistic distributions do not exist. For the log-Laplace model, simulated datasets indicate a

large heterogeneity between the posterior distributions of the Λi’s and the existence of a unique

reference value is not clear (even in the absence of outlying observations). However, the average

of the posterior medians of the mixing distribution is close to unity for all simulated data sets

we have tried. In this calculation, we discard the lowest 25% of λi values in order to remove

the influence of any possible outliers. Hence, we propose λref = 1 for the log-Laplace model.

In the log-logistic case, the posterior distributions of the Λi’s behave as in the log-Student t

case, where the reference value is clearer. We chose λref = 0.4 for the log-logistic model,

using the same argument as in the log-Laplace case. Figure 3 shows the performance of the

reference values by plotting the Bayes factor in (15) for the log-Student t and in (16) for the log-

Laplace and log-logistic models against a standardized log survival time z (given β, σ2 and θ).

This is defined as log(t) minus its mean, divided by its standard deviation (i.e. σ
√

EΛ(1/Λ|θ)).

For the log-Student t, log-Laplace and log-logistic models, z = log(t)−x′β
σ

√
ν−2
ν

(for ν > 2),

z = log(t)−x′β
σ

1√
2

and z = log(t)−x′β
σ

√
3
π

, respectively. As expected, large values of |z| lead to

evidence in favour of an outlier. The log-Student t model with very large number of degrees of

freedom requires exceptionally large |z| values to distinguish it from the log-normal case.
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Figure 3: Bayes factor for outlier detection as a function of |z|. The log Bayes factor has been re-scaled

by 2 in order to apply the interpretation rule proposed in Kass and Raftery (1995). The dotted horizontal

line is the threshold above which observations will be considered outliers.

The log-exponential power model is a special case. As explained in Subsection 3.4, Bayesian

inference for this model is implemented through a mixture of uniforms representation with mix-

ing parameters denoted by Ui. The models for outlier detection in terms of Ui are M0 : Ui =

uref versus M1 : Ui 6= uref . The expectation of Ui given α is 1 + 1/α and, according to

the intuition presented previously, we might use this value as uref . With this rule, uref is a

function of α which lies in (1.5, 2). In practice, this choice detected large amounts of outliers

(even for datasets generated from the log-normal model). We estimate π(uref |t) by averaging

π(uref |t, β, σ2, α) in (13) using an MCMC sample from the posterior distribution of (β, σ2, α).

Hence, if the value of (β, σ2, α) is such that uref ≤
(
| log(ti)−x′iβ|

σ

)α
, π(uref |t, β, σ2, α) is equal

to zero and the Bayes factor in favour of the observation i being an outlier is computed as infin-

ity. Simulated datasets indicated that the means and medians of
(
| log(ti)−x′iβ|

σ

)α
, i = 1, . . . , n,

are around 0.6, regardless of the model from which the data was generated. We then adjust the

reference value to uref = 1 + 1/α + 0.6. This choice performed much better with simulated

datasets (e.g. using log-normal data no outliers were detected). The resulting Bayes factors as a

function of z = log(t)−x′β
σ

√
Γ(1/α)
Γ(3/α)

(see Figure 3) are not much affected by the value of α.
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For all models, moderate changes to the reference values do not have a large impact on the

outlier detection curves in Figure 3.

4. SIMULATION STUDY

A simulation study is designed in order to evaluate the performance of the proposed mixture

scheme versus a log-normal model (with no unobserved heterogeneity) under different scenar-

ios. Two independent covariates, x1 ∼ Ber(0.5) and x2 ∼ Unif(0, 1) are simulated, and an

intercept is added (k = 3). Throughout, we use β = (4, 0.5,−1)′ and σ2 = 0.1 (which are

in the range of usual empirical values). Datasets are simulated from the following models: (i)

log-normal, (ii) log-Student t with ν = 5, (iii) log-Student t with ν = 20, (iv) log-Laplace,

(v) log-exponential power with α = 1.2, (vi) log-exponential power with α = 1.8 and (vii)

log-logistic. Four different scenarios are defined through sample size (n = 100, 500) and per-

centage of censoring (PC = 10%, 70%). These rather small sample sizes are often observed in

survival datasets. For each model, 100 independent datasets are simulated under each scenario.

In all cases, survival times are rounded to integers in order to reflect the usual inaccuracy in the

data recording process. Independent censoring times are sampled from a uniform distribution

in (0, C) where the value of C is tuned to control the percentage of censoring. Detailed results

of the simulation study are displayed in supplementary material B.

For AFT models, β is usually the parameter of interest and its interpretation is not affected

by our mixing scheme. We compare the performance of different SMLN-AFT models based

on the posterior median of β. The choice between one of the three Jeffreys-rule based priors

suggested in Subsection 3.1 is not very critical for the estimation of β as all priors produce

very similar inference for the regression parameter. Of course, estimation is more accurate

when the data provides more information, i.e. for n = 500 and PC = 10%. There are no

major differences between log-normal datasets and those generated by a SMLN model with

weak unobserved heterogeneity (log-Student t with ν = 20 and log-exponential power with
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α = 1.8). In such cases, the log-normal model correctly estimates β. Crucially, fitting SMLN

models to log-normal datasets is harmless. The β estimates are concentrated around the true

value, although they are slightly more spread out when using a log-Laplace model (which has

a very dispersed mixing distribution). As expected, if the data display stronger unobserved

heterogeneity, mixture models tend to outperform the log-normal one. For those cases, SMLN

models produce more accurate estimates of β in terms of both bias and spread, especially under

large amounts of censoring. This is even the case when using a different mixing distribution

than the one that generated the data. These differences are largest for the log-Laplace datasets

and diminish for milder cases of unobserved heterogeneity, like the log-logistic case.

The Bayesian model comparison criteria described in Subsection 3.5 are applied to each

dataset in order to assess their effectiveness. Here we focus on the Jeffreys and independence

Jeffreys priors (both types of independence Jeffreys priors lead to similar results). The perfor-

mance of BF is better (and more in line with the other criteria) under the independence Jeffreys

prior, except for the log-logistic data. Under the Jeffreys prior and with log-normal data, BF

assigns relatively little support to the log-normal model when n = 100 (especially with high

PC). For k = 3, the Jeffreys prior favours small values of σ2, much more than the independence

Jeffreys (the difference increases with k). When the dataset provides little information (small

n and/or large PC), the prior has a strong influence on posterior inference. We might, thus,

underestimate σ2 and the fitted log-normal model will have too small a spread to accommodate

the data, even though they were generated by the log-normal model. Predictive criteria are less

affected by this. Overall, DIC, BF and PsBF point in the same direction, largely successfully

detecting the presence and absence of unobserved heterogeneity. However, very mild forms of

unobserved heterogeneity (log-Student t with ν = 20, log-exponential power with α = 1.8)

are often indistinguishable from the log-normal model. Stronger unobserved heterogeneity is

more easily detected (even when n = 100 and PC = 70%). Jointly, these criteria successfully

indicate the existence of unobserved heterogeneity. Even in the worst scenario, the log-normal

model is correctly detected more than 60% of the time if we use the independence Jeffreys prior.
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Distinguishing between the different mixing distributions is more demanding, but can be

achieved for large sample sizes. The best results are observed for the independence Jeffreys

prior. In this case, we correctly classify data generated by the log-Laplace model in at least 60%

of the cases when n = 100 and at least 82% of the cases for n = 500. With log-logistic datasets,

the right model is detected in at least 70% of the simulations with n = 500 under either prior.

The rate of correct detection is lower for the log-Student t and log-exponential power models,

for which an extra parameter needs to be estimated. The DIC and PsBF criteria do best overall:

under both priors they correctly identify models with moderate or strong heterogeneity on the

basis of 500 observations with low censoring in at least 57% of the cases.

5. APPLICATION: THE VA LUNG CANCER TRIAL

The dataset (presented in Kalbfleisch and Prentice, 2002) relates to a trial in which a therapy

(standard or test chemotherapy) was randomly applied to 137 patients who were diagnosed

with inoperable lung cancer. The survival times of the patients were measured in days since

treatment and the following covariates were used: the treatment that is applied to the patient

(0: standard, 1: test); the histological type of the tumor (squamous, small cell, adeno, large

cell); a continuous index representing the status of the patient at the moment of the treatment

(the higher the index, the better the patient’s condition); the time between the diagnosis and the

treatment (in months); age (in years); and a binary indicator of prior therapy (0: no, 1: yes). The

data contain 9 right censored observations. This dataset has been previously analyzed from a

frequentist point of view using traditional models such as the Cox, Weibull, log-normal and log-

logistic regressions (see Lee and Wang, 2003; Heritier et al., 2009). These models all suggest

that the status of the patient at the moment of treatment and the histological type of the tumor

are the relevant explanatory variables for the survival time. Nevertheless, evidence of influential

observations has been found. Barros et al. (2008) illustrated that the inference produced by a

log-Birnbaum-Saunders model is greatly modified when dropping observations 77, 85 and 100.
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They proposed a log-Birnbaum-Saunders Student t distribution as a more robust alternative for

this dataset because it allows for fatter tails and accommodates heterogeneity in the data. This

distribution can also be represented through a mixture family as in (1), so our methodology

could be also extended to include this distribution. Heritier et al. (2009) detected observations

17 and 44 as influential when fitting a Cox proportional hazard model and proposed the use of

an adaptive robust estimator instead.

Table 2 presents a summary of the posterior distribution of (β, σ2) when a log-normal AFT

model is fitted. This is based on 10,000 draws, recorded from a total of 400,000 iterations with a

burn-in period of 200,000 and a thinning of 20. The use of different starting points and the usual

convergence criteria strongly suggest convergence of the chains (see supplementary material C).

The Jeffreys and the independence Jeffreys prior produced similar results. Bayesian inference

was conducted on the basis of point and set observations, using εl = εr = 0.5 for uncensored

observations. For this model, inference on point and set observations is quite similar. The

use of point observations does not produce problems for the log-normal model. However, we

know that set observations avoid potential problems with the inference for other models (see

Subsection 3.3), so we will focus on the analysis with set observations in the rest of the paper.

Results suggest that the main covariate effects are due to the tumour type and patient status, and

are roughly in line with the maximum likelihood results for the log-Birnbaum Saunders AFT

model in Barros et al. (2008), although the effect of the test treatment is less clearly negative.

We then use the AFT-SMLN model (4) with the continuous mixing distributions presented

in Table 1. Bayesian inference is conducted under the Jeffreys-type priors introduced in Corol-

lary 1. We adopted the same total number of iterations, burn in and thinning as for the log-

normal model. We compare the models through Bayes factors, Pseudo Bayes factors, DIC and

the CPO predictive performance, summarized in Figure 4 and Table 3. Clearly, all these criteria

provide evidence in favour of mixture models. For the log-Student t model, this evidence is

also supported by the fact that inference on ν favours relative small values. Similarly, the log-

exponential power model suggests values of α far from 2. From plots (unreported) of the prior
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Table 2: Summary of the posterior distribution of the parameters of the log-normal AFT model. β0:

Intercept, β1: Treat (test), β2: Type (squamous), β3: Type (small cell), β4: Type (adeno), β5: Status, β6:

Time from diagnosis, β7: Age, β8: Prior therapy (yes).

Jeffreys prior Independence Jeffreys prior

Point Observations Set Observations Point Observations Set Observations

Median HPD 95% Median HPD 95% Median HPD 95% Median HPD 95%

β0 1.82 [ 0.50, 3.08] 1.79 [ 0.47, 3.10] 1.82 [ 0.42, 3.14] 1.80 [ 0.42, 3.09]

β1 -0.17 [-0.53, 0.22] -0.17 [-0.56, 0.21] -0.17 [-0.56, 0.21] -0.17 [-0.57, 0.22]

β2 -0.12 [-0.65, 0.46] -0.12 [-0.67, 0.45] -0.11 [-0.68, 0.46] -0.12 [-0.71, 0.45]

β3 -0.73 [-1.28,-0.22] -0.72 [-1.26,-0.19] -0.73 [-1.29,-0.21] -0.73 [-1.27,-0.19]

β4 -0.77 [-1.32,-0.16] -0.77 [-1.37,-0.18] -0.78 [-1.37,-0.13] -0.77 [-1.37,-0.15]

β5 0.04 [ 0.03, 0.05] 0.04 [ 0.03, 0.05] 0.04 [ 0.03, 0.05] 0.04 [ 0.03, 0.05]

β6 0.00 [-0.02, 0.02] 0.00 [-0.02, 0.02] 0.00 [-0.02, 0.02] 0.00 [-0.02, 0.02]

β7 0.01 [-0.01, 0.03] 0.01 [ 0.00, 0.03] 0.01 [ 0.00, 0.03] 0.01 [-0.01, 0.03]

β8 -0.11 [-0.54, 0.34] -0.11 [-0.57, 0.34] -0.11 [-0.59, 0.35] -0.11 [-0.57, 0.37]

σ2 1.12 [ 0.87, 1.42] 1.13 [ 0.88, 1.43] 1.20 [ 0.90, 1.53] 1.21 [ 0.92, 1.54]

and posterior distributions it is clear they differ and that the latter is strongly driven by the data

itself. Overall, the log-logistic model seems the best candidate for fitting this dataset. This is in

line with the results in Lee and Wang (2003) in which, using a maximum likelihood approach,

the log-logistic model is preferred to the log-normal and other standard models.

The choice of prior and mixing distribution is not too critical for the inference about β (only

results under the independence Jeffreys prior are reported). For mixture models, the posterior

distribution of β is somewhat different from that for the log-normal model (see Table 4). In

particular, the effect of the test treatment is less pronounced. The results on β are relatively

close to the classical ones reported in Barros et al. (2008) using the log-Birnbaum Saunders

Student tmodel and to the ones in Lee and Wang (2003) using the log-logistic model. Estimates

of σ2 cannot be compared because it has a different interpretation for each model.

Table 3 also indicates that the number of influential observations is smaller for the SMLN
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Table 3: DIC, the fraction of observations with better CPO performance than the log-normal model, and

the number of influential observations.

Prior Model DIC
CPO better No. obs. No. obs.

than LN pi ≥ 0.8 pi ≥ 0.9

Jeffreys

Log-normal 1449.01 - 6 2

Log-Student t - - - -

Log-Laplace 1444.18 52% 2 1

Log-exp. power 1444.00 54% 3 1

Log-logistic 1444.14 66% 3 1

Ind. Jeffreys

Log-normal 1449.56 - 6 2

Log-Student t 1445.86 64% 3 1

Log-Laplace 1444.37 53% 1 1

Log-exp. power 1444.79 55% 3 1

Log-logistic 1444.49 66% 3 1

Ind. I Jeffreys

Log-normal 1449.56 - 6 2

Log-Student t - - - -

Log-Laplace 1444.37 53% 1 1

Log-exp. power 1444.81 55% 3 1

Log-logistic 1444.49 66% 3 1

models than for the log normal model, which is consistent with the superior ability of the SMLN

models to accommodate unusual observations. Disregarding the prior, observations 12, 77, 85,

95, 100 and 106 are detected as influential observations for the log-normal model (with no

mixture) when using the threshold pi ≥ 0.8 (in fact, pi ≥ 0.9 for observations 85 and 106). In

contrast, for all the mixture models, observations 77, 95 and 100 do not appear as influential

observations (both thresholds). Despite of the mixture, observation 106 is always considered as

influential (pi ≥ 0.9). Observations 12 and 85 are pointed as influential by some of the mixtures.

These results are roughly in line with the results in Barros et al. (2008), where observations 77,

85 and 100 were also identified as (strong) influential observations when fitting a log-Birnbaum-

Saunders model. Using a log-Birnbaum-Saunders-t model they also label observations 12, 77,

95 and 106 as (mild) influential observations.

The posterior distributions of the mixing parameters (not reported) vary substantially be-

tween the patients, suggesting heterogeneity in the data. Figure 5 formalizes this by presenting
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Figure 4: Bayes factors and pseudo Bayes factors of each model with respect to the log-normal one.

Table 4: Summary of the posterior distribution under the independence Jeffreys prior for various SMLN

models on the basis of set observations. β0: Intercept, β1: Treat (test), β2: Type (squamous), β3: Type

(small cell), β4: Type (adeno), β5: Status, β6: Time from diagnosis, β7: Age, β8: Prior therapy (yes).

Log-Student t Log-Laplace Log-exp. power Log-logistic

Median HPD 95% Median HPD 95% Median HPD95% Median HPD95%

β0 2.09 [ 0.76, 3.38] 2.08 [ 0.82, 3.36] 2.00 [ 0.71, 3.27] 2.06 [ 0.73, 3.35]

β1 -0.08 [-0.46, 0.27] -0.06 [-0.42, 0.28] -0.09 [-0.47, 0.26] -0.09 [-0.48, 0.26]

β2 0.02 [-0.52, 0.57] -0.03 [-0.56, 0.52] -0.04 [-0.61, 0.52] -0.01 [-0.56, 0.55]

β3 -0.73 [-1.25,-0.24] -0.73 [-1.22,-0.24] -0.73 [-1.22,-0.20] -0.73 [-1.22,-0.20]

β4 -0.75 [-1.27,-0.21] -0.67 [-1.17,-0.17] -0.71 [-1.22,-0.16] -0.77 [-1.27,-0.21]

β5 0.04 [ 0.03, 0.05] 0.04 [ 0.03, 0.04] 0.04 [ 0.03, 0.05] 0.04 [ 0.03, 0.05]

β6 0.00 [-0.02, 0.02] 0.01 [-0.02, 0.02] 0.00 [-0.02, 0.02] 0.00 [-0.02, 0.02]

β7 0.01 [-0.01, 0.03] 0.01 [-0.01, 0.02] 0.01 [-0.01, 0.03] 0.01 [-0.01, 0.03]

β8 -0.09 [-0.53, 0.32] -0.11 [-0.50, 0.33] -0.10 [-0.52, 0.33] -0.10 [-0.53, 0.35]

σ2 0.80 [ 0.47, 1.19] 0.69 [ 0.47, 0.95] 1.26 [ 0.57, 2.19] 0.36 [ 0.26, 0.48]

θ 5.22 [ 1.68,17.60] - - 1.30 [ 1.00, 1.74] - -

the Bayes factor in favour of being an outlier for each of the 137 observations. There is clear

evidence for the existence of outlying observations under the suggested priors for all models.

Although all priors present similar results, this evidence is slightly stronger for the Jeffreys

prior. The choice of the mixture model does not greatly affect the conclusions. The analysis
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Figure 5: 2× log(BF) in favour ofH1 : λi 6= λref (ui 6= uref ) versusH0 : λi = λref (ui = uref ), using

independence Jeffreys prior. Horizontal lines reflect the interpretation rule of Kass and Raftery (1995).

suggests that, regardless of the prior, observations 77 and 85 are very clear outliers. Patients

77 and 85 had an uncensored survival time of 1 day (the lowest value observed in the dataset),

were under the standard treatment and had a squamous type of tumor. Different models might

detect different outliers. In fact, observations 15, 44, 95 and 100 are also detected as outlying

observations only for some of these models under both types of independence Jeffreys prior.

Observations 17, 21 and 75 are added to this list under the Jeffreys prior. With the exception

of patient 21, they all correspond to uncensored observations. While observations 15, 95 and

100 have a small survival time (8, 2 and 11 days respectively), the survival times associated to

patients 17, 21, 44 and 75 are larger (384, 123, 392 and 991 days respectively). In particular,

the survival time of patient 75 is the second largest of the survival times of patients with squa-

mous type of tumor (observation 70 has the largest survival time, but it is explained by a very

good patient’s status at treatment time) Similarly, the survival times of patients 17 and 44 are

the largest survival times for patients that had the same type of tumor (small cell). None of the

patients detected as possible outliers had tumors type adeno or large cell. Additionally, patient

95 has a considerably larger number of months from diagnosis than other patients with the same

type of tumor (small cell).
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6. CONCLUDING REMARKS

We recommend the use of mixtures of life distributions as a convenient framework for survival

analysis, particularly when standard models such as the Weibull or log-normal are not able to

capture some features of the data. This approach intuitively leads to flexible distributions on

the basis of a known distribution by mixing over a parameter. This can also be interpreted

through random effects or frailty terms. These mixture families can accommodate unobserved

heterogeneity or outlying observations. In particular, the SMLN family is proposed. This family

of mixtures of life distributions is based on the log-normal model and allows us to fit data with

a variety of tail behavior. The mixing is applied to the shape parameter of the log-normal

distribution and the resulting distribution is quite flexible and can be adjusted by choosing the

mixing distribution. This makes this family applicable in a wide range of situations. Under

mixture modelling, we recommend AFT regressions instead of the well-known proportional

hazards models. Mixtures of AFT models provide a clearer interpretation of the regression

parameters, which does not depend on the mixing distribution. In addition, the estimation of

the regression coefficients is not much affected by the choice of mixing distribution. The latter

is illustrated with both simulated and real data.

We consider objective Bayesian inference under the AFT-SMLN model. We propose three

different Jeffreys-type priors. These priors are improper and therefore the propriety of the

posterior distribution needs to be verified. Subsection 3.2 provides conditions for the existence

of the posterior distribution based on an arbitrary mixing distribution. In particular, Theorem

3 provide some extra guidance and results for specific mixing distributions. In addition, the

problem associated with the use of point observations is explored. The use of set observations

is considered as a solution, which can easily be implemented in an MCMC sampling scheme.

We recommend the use of set observations throughout. Set observations might also be helpful

in other contexts. For example, the issues of the Cox proportional hazard model with ties in the

data are well known. Heritier et al. (2009) ignored ties when analyzing the real dataset used
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here, but that strategy might lead to serious loss of information if applied routinely. Different

methods have been proposed for dealing with ties in the Cox regression model (see Kalbfleisch

and Prentice, 2002, p. 104), but they might lead to biased estimations (Scheike and Sun, 2007).

Set observations are a natural solution that takes into account the imprecision with which the

data was recorded.

We also propose a methodology for outlier detection that is based on the mixing struc-

ture. Outliers are associated with extreme values of their corresponding mixing variable and

the evidence for outlying observations is formalized by means of Bayes factors. We provide

recommendations for the (critical) choice of a reference value.

A simulation study shown that standard Bayesian model comparison criteria can fairly eas-

ily identify the need of incorporating unobserved heterogeneity to the model, even with rather

small sample sizes and a considerable amount of censoring. Ignoring unobserved heterogeneity

can lead to biased or less precise inference for the regression parameters, whereas inference

with SMLN models works well even in the absence of unobserved heterogeneity. The best re-

sults in terms of identifying the correct model are obtained for the independence Jeffreys prior

and the model selection criteria DIC and PsBF. Our methodology was also applied to the VA

lung cancer data, for which previous studies have found evidence of influential observations.

For these data, we uncover strong evidence of unobserved heterogeneity which is mostly driven

by outlying observations.

The mixing framework proposed here can be used with any proper mixing distribution,

whether the induced survival time distribution has a closed-form density function or not. The

proposed MCMC inference scheme does not rely on a closed form expression for the survival

density with the mixing variables integrated out, so our Bayesian inference can be used much

more widely than in the examples illustrated here. The challenge then may be that the Jeffreys-

type prior for the parameter(s) of the mixing distribution needs to be derived from the expression

in Theorem 1 (rather than from the integrated survival density) and this may not be trivial in

general.
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APPENDIX: PROOFS

Theorem 1. Taking the negative expectation of the second derivatives of the log likelihood, the

expressions k1(θ), k2(θ), k3(θ) and k4(θ) are given by

k1(θ) = nETi

[ log(ti)− x′iβ
σ

]2
EΛi

(
ΛifLN

(
ti|x′iβ, σ

2

Λi

))
f(ti)

2
 , (17)

k2(θ) =
n

4

ETi
[ log(ti)− x′iβ

σ

]4
EΛi

(
ΛifLN

(
ti|x′iβ, σ

2

Λi

))
f(ti)

2
− 1

 , (18)

k3(θ) =
n

2
ETi


[

log(ti)−x′iβ
σ

]2

EΛi

(
ΛifLN

(
ti|x′iβ, σ

2

Λi

))
f 2(ti)

∫ ∞
0

fLN

(
ti|x′iβ,

σ2

λi

)
d

dθ
dPΛi(λi|θ)


−1

2

n∑
i=1

∫ ∞
0

d

dθ
dPΛi(λi|θ), (19)

k4(θ) = nETi


∫∞0 fLN

(
ti|x′iβ, σ

2

λi

)
d
dθ
dPΛi(λi|θ)

f(ti)

2
− n∑

i=1

∫ ∞
0

d2

dθ2
dPΛi(λi|θ). (20)

Corollary 1. The proof follows directly from Theorem 1 using the structure of the determinant

of the Fisher information matrix and its sub-matrices.

Theorem 2. Define to = (t1, . . . , tno)
′ and Do = diag(λ1, . . . , λno). The contribution of the

censored observations to the likelihood function is a factor in [0, 1]. Hence, the marginal like-

lihood of the complete sample (fT (t)) is bounded above by the marginal likelihood of the non-

censored observations (fTo(to)). Therefore, a sufficient condition for existence of the posterior

distribution of (β, σ2, θ) is fTo(to) <∞. After some algebraic manipulation, fTo(to) is equal to

∫
Rk

∫
R+

∫
Θ

∫
R+no

∏no
i=1 λ

1
2
i

(2πσ2)
no
2
∏no
i=1 ti

e−
1

2σ2
[(β−a)′A(β−a)+S2(Do,yo)] π(θ)

(σ2)p

no∏
i=1

dP (λi|θ) dβ dσ2 dθ,

(21)
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where A = X ′oDoXo, a = A−1X ′oDoyo, S2(Do, yo) = y′oDoyo − y′oDoXo(X
′
oDoXo)

−1X ′oDoyo

and yo = (log(t1), . . . , log(tno))
′. Provided that ti 6= 0 for all i ∈ {1, . . . , no}, using Fubini’s

theorem for the integral (21) and integrating first with respect to β, we have

fTo(to) ∝
∫
R+

∫
Θ

∫
R+no

(σ2)−
no+2p−k

2

∏no
i=1 λ

1
2
i√

det(X ′oDoXo)
e−

S2(Do,yo)

2σ2 π(θ)
no∏
i=1

dP (λi|θ) dθ dσ2.

(22)

After integrating with respect to σ2, it follows that

fTo(to) ∝
∫

Θ

∫
R+no

no∏
i=1

λ
1
2
i (det(X ′oDoXo))

− 1
2 [S2(Do, yo)]

−no+2p−k−2
2 π(θ)

no∏
i=1

dP (λi|θ) dθ,

(23)

as long as no + 2p− k− 2 > 0 and S2(Do, yo) > 0. If no > k we know that S2(Do, yo) > 0 a.s.

and the first condition is certainly satisfied when p ≥ 1. Analogously to Lemma 1 in Fernández

and Steel (1999), fTo(to) has upper and lower bounds proportional to∫
Θ

∫
0<λ1<···<λno<∞

∏
i/∈{m1,...,mk}

λ
1
2
i λ
−no+2p−k−2

2
mk+1 π(θ)

no∏
i=1

dP (λi|θ) dθ, (24)

where

k∏
i=1

λmi ≡ max

{
k∏
i=1

λli : det (xl1 · · ·xlk) 6= 0, l1, . . . lk ∈ {1, . . . , no}

}
, (25)

k+1∏
i=1

λmi ≡ max


k+1∏
i=1

λli : det

 xl1 · · · xlk+1

log(tl1) · · · log(tlk+1
)

 6= 0, l1, . . . lk ∈ {1, . . . , no}

 .(26)

(i) For p = 1. Barring a set of zero Lebesgue measure, λmk+1
= max{λi : i 6∈ {m1, . . . ,mk}}.

Hence, (24) is bounded above by
∫

Θ
π(θ) dθ = 1. If no > k, the posterior exists.

(ii) For p = 1+k/2. By the same argument, (24) is bounded above by
∫

Θ
E(Λ

− k
2

mk+1|θ)π(θ) dθ.

However, E(Λ
− k

2
mk+1 |θ) ≤ E(Λ

− k
2

(1) |θ) where Λ(1) = min{Λ1, . . . ,Λno}. Using the density

of the first order statistic it follows that E(Λ
− k

2

(1) |θ) ≤ noE(Λ
− k

2
i |θ) ∀i = 1, . . . , no and

hence, as the Λi’s are iid, the results holds.
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Theorem 3. (i) It can be shown that the Fisher information matrix corresponds to
1
σ2

ν+1
ν+3

∑n
i=1 xix

′
i 0 0

0 n
2σ4

ν
ν+3

− n
σ2

1
(ν+1)(ν+3)

0 − n
σ2

1
(ν+1)(ν+3)

n
4

[
Ψ′(ν

2
)−Ψ′(ν+1

2
)− 2(ν+5)

ν(ν+1)(ν+3)

]
 . (27)

Therefore, the components depending on ν of the Jeffreys, independence Jeffreys and

independence I Jeffreys prior are, respectively

πJ(ν) ∝
(
ν + 1

ν + 3

)k/2√
ν

ν + 3

√
Ψ′
(ν

2

)
−Ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2
, (28)

πI(ν) ∝
√

ν

ν + 3

√
Ψ′
(ν

2

)
−Ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2
, (29)

πII(ν) ∝

√
Ψ′
(ν

2

)
−Ψ′

(
ν + 1

2

)
− 2(ν + 5)

ν(ν + 1)(ν + 3)
. (30)

It can be shown that πJ(ν) and πI(ν) are proper priors for ν (Corollary 1 in Fonseca et al.,

2008). However, πII(ν) is not (it behaves as ν−1 when ν → 0). Hence, as mentioned in

Subsection 3.1, the independence I prior is discarded for the log-Student t model.

Theorem 2 part (i) implies the propriety of the posterior distribution for the independence

Jeffreys prior. Theorem 2 cannot be used in order to conclude about the posterior exis-

tence under the Jeffreys prior (the condition in part (ii) is not satisfied because E(Λ−k/21 |ν)

does not exist for ν < k). However, upper and lower bounds for the integral in (24) can

be found using the inequality (Fernández and Steel, 1999, 2000)

λvi+1

v
e−rλi+1 ≤

∫ λi+1

0

λv−1
i e−rλi dλi ≤

λvi+1

v
, r, v > 0. (31)

The integral in (31) is not finite for v ≤ 0. Barring a set of zero Lebesgue measure,

λmk+1
= λ(n−k), where λ(n−k) is the (n − k)-th order statistic of λ1, . . . , λn. After inte-

grating with respect to the n− k − 1 smallest λi’s, (24) has the lower bound

∫ ∞
0

∫
Λ∗

[ (
ν
2

) ν
2

Γ
(
ν
2

)]n−k [ν+1
2

]−(n−k−1)

(n− k − 1)!
λc−1

(n−k) e
− (n−k)ν

2
λ(n−k) dλ(n−k)

[
n∏

i=n−k+1

dP (λ(i)|ν)

]
π(ν) dν,

(32)
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where Λ∗ = {(λ(n−k), . . . , λ(n)) : 0 < λ(n−k) < · · · < λ(n) <∞} and c = −n+2p−k−3
2

+

ν
2

+ (n−k−1)(ν+1)
2

= ν(n−k)+2−2p
2

. When integrating with respect to λ(n−k) we need c > 0

in order to have a finite integral in (41). Hence, the propriety of the posterior distribution

requires ν > 2p−2
n−k .

As a consequence, the posterior distribution of (β, σ2, ν) is not proper if p > 1 and the

range of ν is (0,∞). In particular, the Jeffreys-rule prior (for which p = 1 + k/2) does

not lead to a proper posterior distribution and Bayesian inference is thus precluded with

this prior. Incorporating censored observations does not help, as the posterior distribution

is still not well defined. For example, under right censoring, the marginal likelihood can

be expressed as

fT (t) =

∫
T ∗

∫
Rk

∫
R+

∫
Θ

[
n∏
i=1

fTi(t
∗
i |β, σ2, θ)

]
π(β, σ2, θ) dβ dσ2 dθ dt∗ ≡

∫
T ∗
f∗T (t∗) dt∗, (33)

where T ∗ = t1×· · ·× tno× (tno+1,∞)×· · · (tn,∞) and f ∗T (t∗) is an auxiliary marginal

likelihood that treats censored observations as if they were non-censored. For any t∗ ∈

T ∗, f ∗T (t∗) is not finite. Therefore, we conclude that fT (t) is not finite and the posterior

based on the complete sample is not well-defined under the Jeffreys prior.

(ii) As the parameter θ is not required for the log-Laplace model, the independence Jeffreys

and independence I Jeffreys coincide. Theorem 2 part (i) indicates that the posterior is

proper under these priors. In both cases, E(Λ
− k

2
1 ) is finite and therefore the posterior

under the Jeffreys prior is also proper. In fact, for the log-Laplace model, Λ−1
1 is Gamma

distributed and all its positive moments are finite. For the log-logistic model, it can be

shown that Ωi =
√

1/(4Λi) has an Asymptotic Kolmogorov distribution with density

function g(ωi) = 8ωi
∑∞

s=1(−1)s+1s2 e−2s2ω2
i , for ωi > 0. Therefore, for k > −2, it

follows that

E(Λ
−k/2
1 ) = 2k+3

∞∑
s=1

(−1)s+1s2

∫ ∞
0

ωk+1
1 e−2s2ω2

1 dω1 (34)

= 2k+2
∞∑
s=1

(−1)s+1s2

∫ ∞
0

ηk/2 e−2s2η dη (35)

= 2k/2+1Γ(1 + k/2)

∞∑
s=1

(−1)s+1 1

sk
<∞. (36)
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For the log-exponential power model, the Fisher Information matrix was derived by

Martı́n and Pérez (2009) and is given by
α(α−1)Γ(1− 1

α
)

σ2Γ( 1
α

)

∑n
i=1 xix

′
i 0 0

0 nα
σ2 −n(1+Ψ(1+ 1

α
))

σα

0 −n(1+Ψ(1+ 1
α

))

σα
n
α3

[
(1 + 1

α
)Ψ′(1 + 1

α
) + (1 + Ψ(1 + 1

α
))2 − 1

]
 .

Therefore, the components depending on α of the Jeffreys, independence Jeffreys and

independence I Jeffreys prior are, respectively

πJ(α) =

[
α(α− 1)Γ(1− 1/α)

Γ(1/α)

]k/2
1

α

√(
1 +

1

α

)
Ψ′
(

1 +
1

α

)
− 1, (37)

πI(α) =
1

α

√(
1 +

1

α

)
Ψ′
(

1 +
1

α

)
− 1, (38)

πII(α) =
1

α
3
2

√(
1 +

1

α

)
Ψ′
(

1 +
1

α

)
+

[
1 + Ψ

(
1 +

1

α

)]2

− 1. (39)

As the previous components are bounded continuous functions of α in (1, 2), they are

proper priors for α. Theorem 2 part (i) implies the propriety of the posterior distribu-

tion under the independence Jeffreys and independence I Jeffreys prior. The propriety of

the posterior under the Jeffreys prior can be verified using Theorem 2 part (ii) because

E(Λ
− k

2
1 |α) is a continuous bounded function for α ∈ (1, 2). In fact,

E(Λ
− k

2
1 |α) =

Γ(3/2)

Γ(1 + 1/α)

E(W
k+1
2 |α)

E(Z
k+1
2 |α)

=
Γ(3/2)

Γ(1 + 1/α)

Γ((k + 1)/α + 1)

Γ((k + 3)/2)
, (40)

where W ∼ Weibull(α/2, 1) and Z ∼ Exponential(1). The latter uses the lemma in

Meintanis (1998) which states that a Weibull(a, 1) random variable can be represented as

the ratio of an Exponential(1) and an independent positive stable(a) random variable.

Theorem 4 (Based on Fernández and Steel, 1999). If s is the largest number of observations

that can be written as an exact linear combination of their covariates, λmk+1
(defined in (26))

corresponds to λ(no−s), which represent the (no − s)-th order statistic of λ1, . . . , λno . The rest
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of the proof is obtained by iteratively integrating (24), using the inequality in (31). After inte-

grating with respect to the no − s− 1 smallest λ’s, (24) has a lower bound given by

∫ ∞
0

∫
0<λ(no−s)<···<λ(no)<∞

[ (
ν
2

) ν
2

Γ
(
ν
2

)]no−s [ν+1
2

]−(no−s−1)

(no − s− 1)!
λa−1

(no−s) e
− (no−s)ν

2
λ(no−s)

no∏
i=no−s+1

dP (λ(i)|ν)π(ν) dν.

(41)

Where a = −no+2p−k−3
2

+ ν
2

+ (no−s−1)(ν+1)
2

. Note that when integrating with respect to λ(no−s),

we need a > 0 in order to have a finite integral in (41). Hence, the propriety of the posterior

distribution requires ν > no−k+(2p−2)
no−s − 1.

Theorem 5. Define I(s) =
∫
Rk
∫∞

0

∫
Θ
fTo(s|β, σ2, θ)π(β, σ2, θ) dβ dσ2 dθ. Based on the sam-

ple tε, the posterior distribution exists if and only if
∫
E
I(s) ds is finite. As E is bounded∫

E
I(s) ds is bounded as long as I(·) is finite except on a set of zero Lebesgue measure.
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Martı́n, J. and Pérez, C. (2009). Bayesian analysis of a generalized lognormal distribution.

Computational Statistics and Data Analysis, 53:1377–1387.

McCulloch, R. E. (1989). Local model influence. Journal of the American Statistical Associa-

tion, 84:473–478.

Meintanis, S. (1998). Moment-type estimation for positive stable laws with applications.

IAENG International Journal of Applied Mathematics, 38:26–29.

Patriota, A. (2012). On scale-mixture Birnbaum-Saunders distributions. Journal of Statistical

Planning and Inference, 142:2221–2226.

Peng, F. and Dey, D. K. (1995). Bayesian analysis of outlier problems using divergence mea-

sures. The Canadian Journal of Statistics, 23:199–213.

34



Roberts, G. and Rosenthal, J. (2009). Examples of adaptive MCMC. Journal of Computational

and Graphical Statistics, 18:349–367.

Scheike, T. H. and Sun, Y. (2007). Maximum likelihood estimation for tied survival data under

Cox regression model via EM-algorithm. Lifetime data analysis, 13(3):399–420.

Shah, B. and Dave, P. (1963). A note on log-logistic distribution. Journal of the M.S. University

of Baroda (Science Number), 12:15–20.

Spiegelhalter, D., Best, N., Carlin, B., and van der Linde, A. (2002). Bayesian measures

of model complexity and fit (with discussion). Journal of the Royal Statistical Society, B,

64:583–640.

Tanner, M. and Wong, W. (1987). The calculation of posterior distributions by data augmenta-

tion. Journal of the American Statistical Association, 82:528–540.

Uppuluri, V. (1981). Some properties of log-laplace distribution. Statistical Distributions in

Scientific Work 4, Taillie, C., Patil, G. P., Baldessari, B. A. (eds.), Reidel, pages 105–110.

Verdinelli, I. and Wasserman, L. (1995). Computing Bayes factors by using a generalization

of the Savage-Dickey density ratio. Journal of the American Statistical Association, 90:614–

618.

Vianelli, S. (1983). The family of normal and lognormal distributions of order r. Metron,

41:3–10.

West, M. (1984). Outlier models and prior distributions in Bayesian linear regression. Journal

of the Royal Statistical Society, B, 46:431–439.

Wienke, A. (2010). Frailty Models in Survival Analysis. Chapman & Hall/CRC.

35


