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Abstract6

The use of drones for parcel delivery has recently attracted wide attentions due to its potential7

in improving efficiency of the last-mile delivery. Though attempts have been made on combined8

truck-drone delivery to deploy multiple drones which can deliver multiple packages per trip, many9

have placed extra assumptions to simplify the problem. This paper investigates the multi-visit10

traveling salesman problem with multi-drones (MTSP-MD), whose objective is to minimize the11

time (makespan) required by the truck and the drones to serve all customers together. The energy12

consumption of the drone depends on the flight time, the self-weight of the drone and the total13

weight of packages carried by the drone, which declines after each delivery throughout the drone14

flight. The MTSP-MD problem consists of three complicated sub-problems, namely (1) the drone15

flight problem with both a payload capacity constraint and an energy endurance constraint, (2)16

the traveling salesman problem with precedence constraints, and (3) the synchronization problem17

between the truck route and the drone schedules. The problem is first formulated into a mixed-18

integer linear program (MILP) model and we propose a multi-start tabu search (MSTS) algorithm19

with tailored neighborhood structure and a two-level solution evaluation method that incorporates20

a drone-level segment-based evaluation and a solution-level evaluation based on the critical path21

method (CPM). The experimental results demonstrate the accuracy and efficiency of our proposed22

algorithm and show a significant cost reduction when considering multi-visits, multi-drones, and23

drones with higher payload capacity and higher battery capacity.24
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1. Introduction1

The concept of using unmanned aerial vehicle (UAV) or drones for package delivery was first2

proposed and tested in 2013 by Amazon in the US for the last-mile delivery of small packages . The3

effort sparked significant interest from various companies across R&D (e.g., Google, Workhorse),4

logistics (e.g., UPS), e-commerce (e.g., JD), and automobile manufacturers (e.g., Mercedes-Ben,5

Rinspeed), all of which have invested heavily in related research in recent years. While factors6

such as high density, tall infrastructure, and strict urban airspace guidelines have made it difficult to7

implement drone delivery in urban areas (Otto et al., 2018), this mode of delivery can potentially8

bring cost benefit and better service quality for the last-mile delivery in less densely populated areas9

with a widely spread populace and infrastructure with sufficient airspace for drone flight.10

From an academic perspective, Murray & Chu (2015) proposed the flying sidekick traveling11

salesman problem (FSTSP), which is the first paper to outline the scenario of deploying both a12

delivery truck and a drone together for package delivery in logistics distribution. FSTSP allows13

drones to deliver only one package per flight and studies the synchronization problem between14

truck route and drone flights. Subsequent research extended this basic FSTSP with more complex15

synchronization constraints, such as allowing multiple packages per flight, deploying multiple16

drones per truck, and various other constraints. One important extension introduced in Murray &17

Raj (2020) is the multiple flying sidekicks traveling salesman problem (mFSTSP) with multiple18

drones on the truck. However, the mFSTSP assumes: (1) a drone is capable of carrying only a19

single package at a time, and (2) the truck is only allowed to launch or retrieve one drone at any20

point in time. Recent technological advancements have made the first assumption less relevant21

because newer drone models capable of carrying multiple consumer packages simultaneously have22

been proposed and developed (Wang & Sheu, 2019; Kitjacharoenchai et al., 2020; Liu et al., 2020;23

Poikonen & Golden, 2020b). Furthermore, as more researches have been devoted to investigate24

the deployment of multiple drones per truck to increase the efficiency of last-mile deliveries25

(Kitjacharoenchai et al., 2019; Murray & Raj, 2020; Yoon, 2018; Wang & Sheu, 2019), it is26
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beneficial to design automatic systems that can handle multiple launching and retrieval of drones1

simultaneously to increase efficiency of the system and reduce manpower requirement.2

This paper aims to exclude the above-mentioned two assumptions for a futuristic problem. We3

formulate this problem as a multi-visit traveling salesman problem with multi-drones (MTSP-MD),4

in which each drone is capable of delivering packages to multiple customers per flight. All drones5

are limited by both energy consumption constraints based on flight-time and payload, as well as6

the maximum payload capacity constraints. Launch and retrieval operations can be executed at7

the depot and any customer node, and multiple delivery operations can be carried out concurrently8

at a node using an automated flight control system on the truck. An example of the solution for9

problem with 2 drones and 30 customers is illustrated in Figure 1. The objective is to minimize the10

latest time (i.e. makespan) required by the truck and drones to serve all customers. The MTSP-MD11

problem can be viewed as a combination of three sub-problems: (1) a drone routing problem with12

payload capacity and flight endurance constraints, (2) a TSP with precedence constraints, and 3) a13

synchronization problem between the truck route and multiple drone schedules.

Figure 1: An example of MTSP-MD Solution with 30 customers and 2 drones.

14

We propose a mixed-integer linear programming (MILP) model for the MTSP-MD problem,15

which can be used to study the unique features of the problem and is solvable directly using off-the-16
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shelf solvers on small-scale instances. A multi-start tabu search (MSTS) heuristic is designed to1

solve larger instances with tailored relocation and swap neighborhood structures and a two-level2

feasibility-evaluation method, which consists of a drone-level segment-based evaluation method3

(Vidal et al., 2014) and a solution-level evaluation based on the critical path method (CPM) (Evans,4

1992). The correctness and efficiency of the proposed algorithm is verified on newly generated5

instances extended from Solomon’s instances (Solomon., 1987). Experimental results demonstrate6

the significant cost reduction when considering multi-visits, multi-drones and drones with more7

payload capacity and better flight endurance. We see these results as strong motivation for further8

academic research as well as an effort to commercialize this application for the logistics industry.9

This paper is organized into the following sections. Section 2 presents a review on relevant10

literature. Section 3 introduces the problem in detail with a mathematical model. Section 4 describe11

the different components of the MSTS algorithm. Detailed results of the experimental studies12

are presented in Section 5. Finally, concluding remarks on this work and implications for future13

research are provided in Section 6.14

2. Related works15

This review focuses on literature where trucks and drones are deployed together for last-mile16

delivery. Readers may refer to Otto et al. (2018); Chung et al. (2020); Boysen et al. (2020); Macrina17

et al. (2020) for comprehensive reviews on other drone applications, such as disaster management,18

remote reconnaissance, data collection, and Intelligence, Surveillance and Reconnaissance (ISR).19

2.1. Fundamental issues in coordinated routing problems with trucks and drones20

In FSTSP (Murray & Chu, 2015), the drone is allowed to deliver only one package per flight21

with a maximum flying distance constraint. When not in use, it is carried by the truck to the next22

location. The drone can be launched and retrieved at any customer location and the depot and is23

allowed to directly deliver a parcel to a customer from and then return to the depot. This helps24

to significantly simplify the synchronization problem as these direct drones trip can be trivially25

scheduled before the departure of the truck. Various papers have extended the FSTSP to study the26

development of new models (Dell’Amico et al., 2019), formulate extensional constraints (Jeong27
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et al., 2019), and propose different meta-heuristics (de Freitas & Penna, 2018, 2020). The traveling1

salesman problem with drones (TSP-D) extends the FSTSP but disallows drone trips that start2

and end at the depot directly. Both exact approaches (Agatz et al., 2018; Poikonen et al., 2019;3

Bouman et al., 2018) and heuristic approaches (Yurek & Ozmutlu, 2018; Ha et al., 2018, 2020;4

El-Adle et al., 2019; Wang et al., 2019b) have been applied to solve the TSP-D problem, while5

other research efforts introduced new and practical route characteristics (Marinelli et al., 2017;6

Boysen et al., 2018; bin Othman et al., 2017; Poikonen & Golden, 2020a; Carlsson & Song, 2018).7

The vehicle routing problem with drones (VRP-D) is another extension of the FSTSP that involves8

deployment of multiple trucks (Poikonen et al., 2017; Wang et al., 2017; Schermer et al., 2018,9

2019a,b; Kitjacharoenchai et al., 2019; Chiang et al., 2019; Sacramento et al., 2019; Das et al.,10

2020). The FSTSP, TSP-D, and VRP-D all have a simplified synchronization problem with one11

drone per truck. Furthermore, the limitation of one customer per drone trip allows pre-computation12

of all feasible drone trips as a three-dimensional tuple in O(n3) time for the drone routing problem.13

Currently, more complicated problems are being proposed to extend FSTSP in two directions:14

(1) multiple drones per truck, and (2) multiple deliveries per drone trip with a more sophisticated15

model for drone flight endurance.16

2.2. Extension with multi-drones per truck17

Yoon (2018) and Tu et al. (2018) individually proposed the traveling salesman problem with18

multiple drones (TSP-mD) with a maximum distance constraint. Most literature on this extension19

enforces simplified constraints to reduce the complexity of multi-drone scheduling, for example,20

some require the truck to remain stationary before the drones complete delivery and return (Cojocaru21

et al., 2017; Peng et al., 2019; Moeini & Salewski, 2019; Moshref-Javadi et al., 2020a,b), while22

others restrict trucks to travel on a pre-determined route (Boysen et al., 2018; Hu et al., 2019).23

Murray & Raj (2020) compared several different models for the flight endurance and adopted the24

model based on drone payload for the mFSTSP. The mathematical model in Murray & Raj (2020)25

employs a large number of binary variables to represent precedence relationships between any two26

operations at a node, which greatly increases the complexity of solving the synchronization problem.27

Other research has chosen to simplify this sequencing problem by assigning different priorities28
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to operations (Yoon, 2018), or allowing only a single operation at a node (Kitjacharoenchai et al.,1

2020). It is noteworthy to mention that Campbell et al. (2018b) evaluated the hybrid truck-drone2

delivery system with multiple drones using a continuous approximation modeling technique. Its3

results clearly suggest a great advantage with multiple drones per truck over the truck-only delivery.4

2.3. Extension with multi-visits per drone flight5

Multi-visits per drone trip has mainly been explored for applications in surveillance (Campbell6

et al., 2018a) or reconnaissance (Luo et al., 2017, 2018; Liu et al., 2019). Applications of this7

extension in logistics include Liu et al. (2020) and Wang et al. (2019a) which proposed heuristics8

to solve the multi-visit drone delivery problem with a single truck-drone team using a piecewise9

linear energy consumption function. In contrast, Gonzalez-R et al. (2020) adopted a linear energy10

consumption function and developed an iterative greedy search algorithm to solve a similar problem.11

However, these efforts restrict the problem to a single drone per truck.12

The synchronization problem for multi-visits becomes more complex to model and solve with13

multiple drones per truck. Poikonen & Golden (2020b) proposed the k-multi-visit drone routing14

problem (k-MVDRP) with multiple drones on a truck, which requires that: (1) all drone trips from15

the same launch node must end at the same retrieval node, and (2) after launching any drones, the16

truck must travel directly to the retrieving node without stopping or passing by any other nodes. As17

such, the feasibility of each drone flight can be evaluated independently of other flights and the18

synchronization problem is simplified. Wang & Sheu (2019) proposed another variant to restrict19

the retrieval operations to the docking nodes or the depot. This constraint can be relaxed with20

automated flight control systems on the truck so that all customer nodes can serve as retrieval21

nodes. Kitjacharoenchai et al. (2020) formulated the two-echelon vehicle routing problem with22

drones (2EVRPD) with multi-visits and multiple drones per truck, which enforces a drone flight23

endurance model based on the maximum length of a drone route and restricts at most one launching24

or retrieving operation at each customer node. As a result, more customers must be assigned to the25

truck route as launching or retrieving nodes when more drone trips are created. This contradicts the26

original motivation to reduce makespan with more parallel drone deliveries.27
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Table 1: Summary of related papers

Papers Problem NoD NoT NoC Endurance Retrieving Nodes

Fundamental

Murray & Chu (2015); Dell’Amico et al. (2019)
de Freitas & Penna (2018, 2020) FSTSP 1 1 1 Max Distance Customers

Agatz et al. (2018); Poikonen et al. (2019); Bouman et al. (2018)
Yurek & Ozmutlu (2018); Ha et al. (2018, 2020)
El-Adle et al. (2019); Wang et al. (2019b)

TSP-D 1 1 1 Max Distance Customers

Poikonen et al. (2017); Wang et al. (2017); Das et al. (2020)
Schermer et al. (2018, 2019b); Sacramento et al. (2019) VRP-D 1 M 1 Max Distance Customers

Multi-drones
Yoon (2018); Tu et al. (2018) TSP-mD M 1 1 Max Distance Customers
Kitjacharoenchai et al. (2019) MTSP-D M M 1 None Customers
Murray & Raj (2020) mFSTSP M 1 1 Max Energy Customers

Multi-visit

Luo et al. (2017, 2018); Liu et al. (2019) 2E-GURP 1 1 M Max Distance Docking Nodes
Poikonen & Golden (2020b) k-MVDRP M 1 M Max Energy Selected Customers
Kitjacharoenchai et al. (2020) 2EVRPD M M M Max Distance Customers
Wang & Sheu (2019) VRP-Ds M M M Max Distance Docking Nodes

This paper MTSP-MD M 1 M Max Energy Customers

2.4. Summary1

Table 1 summarizes the literature mentioned in this section into groups, in which NoD represents2

the number of drones per truck, NoT represents the number of trucks, NoC represents the number3

of customers that drone can serve in a flight, and M abbreviates "Multiple". The column Endurance4

indicates the constraints on the flight time of drones. Compared to previous literature, the proposed5

MTSP-MD is more practical as (1) it employs a drone flight endurance model based on the payload6

of the multiple parcels and its flight time, (2) it deploys multiple drones from the truck, (3) it allows7

multiple deliveries per drone trip, and (4) it allows multiple operations at any customer node and8

the depot(s).9

3. Problem statement and mathematical model10

This section provides a formal description and an MILP formulation of the MTSP-MD problem.11

A summary of parameter notations used is presented in Table 2. Notations for the truck and the12

drones are labelled with superscript "G" and "U" respectively for better clarity, where "G" stands13

for ground vehicle (truck) and "U" stands for UAV (drone).14

3.1. Notations and problem description15

Let C = {1, . . . , n} be the set of customers, each of which requires a package of weight wi. Node16

n + 1 is designated as the depot and V = C ∪ {n + 1} represents the set of all nodes. Then the17
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MTSP-MD problem is defined over the graph (V, E), where the arc set E = {(i, j)|i, j ∈ V, i , j}.1

A single truck is equipped with a homogeneous fleet of R drones to serve all customers. Each2

customer i ∈ C must be served by either the truck or one of the drones exactly once, and customers3

visited by the truck must be serviced directly by the truck. The delivery to customer i takes a service4

time of sU
i or sG

i if it is served by a drone or by the truck respectively. The travel speeds of the truck5

and the drones are different, which leads to different travel times. The travel times for arc (i, j) ∈ E6

are tG
i j and tU

i j for the truck and the drones respectively.7

The truck is capable of carrying all packages and drones on board and has no constraints on8

its travel distance, while a drone has a self-weight wU and a maximum weight capacity Q on the9

carried packages per trip. Therefore, a set of customers CG ⊆ C must be served by the truck due to10

the maximum capacity of drones. The set CU = C \CG represents customers who can be served by11

either the truck or a drone.12

A drone can be launched and retrieved by the truck at the depot or a customer’s node and is13

capable of carrying multiple packages at the same time. A drone trip is defined as a single drone14

flight used in the solution, which contains a launch node, a sequence of customers serviced by15

the drone, and a retrieval node. A drone trip must adhere to the maximum package weight (Q)16

constraint and the maximum battery capacity (θ) constraint. The drone’s endurance model will be17

discussed in Section 3.2.18

If a drone is not used, it will be carried by the truck along the truck route to the next node. We19

assume that a drone cannot be retrieved at the same node where the drone trip originates from. This20

is beneficial as the drone flies faster than the truck and concurrent movements of both drones and21

truck can increase efficiency of delivery. The time for loading, taking off and landing are negligible22

compared to the flight time from the launch node to the retrieval node and are hence assumed to be23

zero in this study. When a dispatched drone arrives at the retrieval node earlier than the truck, it24

is allowed to hover at the location until the truck arrives. During the hovering period, the drone25

consumes energy and must be retrieved by the truck before it runs out of energy.26

Multiple launch and retrieval operations are allowed to happen concurrently at a node, which27

are assumed to be handled by an automated flight control system as in Poikonen & Golden (2020b).28

Specifically, the MTSP-MD problem adopts the policy that all dispatched drones from the same29
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node should be launched at the same time when the truck departs from the node.1

A drone can perform multiple non-overlapping drone trips in the MTSP-MD. Whenever a2

drone returns to the truck, its battery will be replaced with a fully-charged one for the next trip and3

replacement time is assumed to be negligible.4

3.2. Drone flight endurance5

Zhang et al. (2020) highlights that drone energy consumption is affected by various groups6

of factors, such as the drone design, environment, drone dynamics and delivery operations, and7

provides a review and comparisons on the various energy consumption models proposed for drones8

delivery. In this paper, we extend the energy consumption model in Liu et al. (2020), in which the9

energy consumption rate is positively correlated with the self-weight, payload, and flight speed of10

the drone. Assuming that drones travel at a constant speed during flight, we introduce a parameter11

α to represent energy consumption rate per weight per time. Then the energy consumption Pi j for a12

drone flight along arc (i, j) ∈ E in the MTSP-MD depends on the flight time as well as the total13

weight of the drone and parcels:14

PF
i j = α ×

(
wU + wU

i

)
× tU

i j , (a1)

where wU
i denotes the total payload of the drone when it leaves node i. The drone consumes energy15

while serving a customer or hovering over the retrieval node, of which the energy consumption16

parameter is assumed to be α too. Since the drone only hovers at a location during retrieval, this17

implies that a hovering drone has zero payloads. Meanwhile, when a drone is serving a customer,18

the total weight on board is equal to the weight of the current customer’s package plus the total19

payload of the drone when it departs. Hence, the actual energy consumption PS
i for serving customer20

i ∈ C and the energy consumption PT from hovering can be simplified into the following:21

PT = α × wU × tH, (a2)

PS
i = α ×

(
wU + wi + wU

i

)
× sU

i , (a3)

where tH represents the duration of the drone hovering time.22
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Table 2: Parameter notation

Notation Description

C Set of all customers

CU Set of customers that can be served either by a drone or by the truck

CG Set of customers that can only be served by the truck

V Set of all nodes

R The maximum number of drones a truck can carry

K The set of drone trips used in a solution

tU
i j Time cost when drone flies along arc (i, j) ∈ E

tG
i j Time cost when truck travels along arc (i, j) ∈ E

Q The maximum weight capacity of carried packages by a drone

sU
i The time required for a drone to serve customer i

sG
i The time required for the truck to serve customer i

wi The weight of the package required by customer i

wU The self-weight of a drone

θ The maximum battery capacity of the drone

α The energy consumption rate per weight per time

M A sufficiently large positive number for BIG-M method

3.3. Objective and decision variables1

The objective of this problem is to minimize the time required for the truck and all drones to2

deliver all assigned parcels and return to the depot (i.e., to minimize makespan). This is achieved3

by solving for a series of decision variables, of which a summary is provided in Table 3.4

We discuss the decision variables related to the truck route first. zG
i is a binary decision variable5

that indicates whether the customer i ∈ C is visited and served by the truck. yi j is a binary decision6

variable that indicates if the truck travels along arc (i, j) ∈ E. The schedule of the truck is defined7

based on two continuous decision variables as below. tG,A
i ≥ 0 represents the truck’s arrival time at8

node i ∈ V , and tG,L
i ≥ 0 captures the departure time of the truck from node i ∈ V .9

10



Since drones are homogeneous, we do not assign drone trips to drones specifically in the model1

but just ensure to have enough drones on board of truck for drone trips. Specifically, at most n − 12

customers can be assigned to drone trips because drones are not allowed to launch from and return3

to the depot to perform a drone trip directly in our setting. Therefore, at most n − 1 drone trips exist4

in a solution. Then, we can define K = {1, 2, . . . , n − 1} to represent the set of available drone trips5

for any particular solution in the mathematical model. A drone trip k ∈ K will be set to empty if it6

is not used in the solution. Moreover, an integer decision variable ri ∀i ∈ V is defined to indicate7

the number of drones carried by the truck when it departs from node i, and updated based on the8

number of drones transported from the previous location, and the numbers of drones launched and9

retrieved at i.10

We define the decision variables for the drone trips as below. xi jk is a binary variable that11

denotes if the k-th drone trip travels along arc (i, j), ∀(i, j) ∈ E, k ∈ K. zU
ik is a binary decision12

variable that indicates whether the customer i ∈ C is served in the drone trip k ∈ K. Similar to tG,A
i13

and tG,L
i , continuous decision variables tU,A

i ≥ 0 and tU,L
i ≥ 0 indicate the drone’s arrival time at and14

departure time from customer i respectively. For a launch node, tU,L
i is equal to tG,L

i as both the truck15

and the drones will depart from the customer at the same time. For a retrieval node, tU,A
i indicates16

the arrival time of the last drone at node i. A special set of constraints is used to enforce the flight17

endurance limitations for each drone trip, since the model does not directly capture each drone’s18

arrival time at the retrieval node specifically.19

Continuous decision variable wU
i ≥ 0 captures the drone’s payload at a customer i ∈ C and20

continuous decision variable pU
i ≥ 0 represents the drone’s remaining energy when leaving node21

i ∈ V . For customers i that are selected as launch nodes, pU
i will be directly set to θ. Note that wU

i22

is not well defined for a launch node, as multiple drones can be launched from the same customer.23

Instead, the total payload of a specific drone trip at the launch node is calculated at the first customer24

node visited by the drone trip. As is assigned to exactly one drone trip, no index k is needed to25

differentiate the drone trips for decision variables tU,A
i , tU,L

i , wU
i and pU

i .26

Finally, hL
ik and hR

ik are both binary decision variables that indicate if node i ∈ V is the launch27

node or the retrieval node of drone trip k ∈ K respectively.28
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Table 3: List of decision variables

Name Description

zG
i ∈ {0, 1} Indicates whether customer i is served by the truck.

yi j ∈ {0, 1} Indicates whether the truck travels along arc (i, j) ∈ E.

tG,A
i ≥ 0 The truck’s arrival time at node i

tG,L
i ≥ 0 The truck’s departure time from node i

0 ≤ ri ≤ R The number of drones on the truck that are not in flight upon departure from node i

zU
ik ∈ {0, 1} Indicates whether customer i is served by the drone trip k.

xi jk ∈ {0, 1} Indicates whether the drone trip k travels along arc (i, j) ∈ E.

tU,A
i ≥ 0 The drone’s arrival time at node i

tU,L
i ≥ 0 The drone’s departure time from node i

wU
i ≥ 0 The total payload of the drone at point of departure from node i

0 ≤ pU
i ≤ θ The remaining energy of the drone at point of departure from node i

hL
ik ∈ {0, 1} Indicates whether node i is the launch node of drone trip k

hR
ik ∈ {0, 1} Indicates whether node i is the retrieval node of drone trip k

3.4. Routing constraints1

The objective function and the general constraints based on the arc-based model for the truck-

drone routing problem are as follows:

min max {tU,A
n+1, t

G,A
n+1} (1)

s.t.
∑
k∈K

zU
ik + zG

i = 1, ∀i ∈ CU (2)

zG
i = 1, ∀i ∈ CG (3)∑
j∈V

x jik ≥ zU
ik , ∀i ∈ C, ∀k ∈ K (4)

zG
i =

∑
j∈V

y ji, ∀i ∈ C (5)

hR
ik +

∑
j∈V

xi jk = hL
ik +

∑
j∈V

x jik, ∀i ∈ C, ∀k ∈ K (6)

12



∑
j∈V

xi jk ≤ 1, ∀i ∈ V, ∀k ∈ K (7)

∑
j∈V

x jik ≤ 1, ∀i ∈ V, ∀k ∈ K (8)

∑
j∈V

yi j =
∑
j∈V

y ji ≤ 1, ∀i ∈ V (9)

∑
k∈K

xi jk +
∑
k∈K

x jik ≤ 1, ∀(i, j) ∈ E (10)

zU
ik + zU

jk ≥ 1 − M ×
(
1 − xi jk

)
, ∀(i, j) ∈ E, ∀k ∈ K (11)

hL
ik ≥ 1 − M ×

(
2 − xi jk − zU

jk + zU
ik

)
, ∀i ∈ V,∀ j ∈ C, i , j, ∀k ∈ K (12)

hR
jk ≥ 1 − M ×

(
2 − xi jk − zU

ik + zU
jk

)
, ∀i ∈ C,∀ j ∈ V, i , j, ∀k ∈ K (13)∑

k∈K

hL
ik ≤ M ×

∑
j∈V

y ji, ∀i ∈ V (14)

∑
k∈K

hR
ik ≤ M ×

∑
j∈V

yi j, ∀i ∈ V (15)

hL
ik + hR

ik ≤ 1, ∀i ∈ V, ∀k ∈ K (16)∑
i∈V

hL
ik =

∑
i∈V

hR
ik ≤ 1, ∀k ∈ K (17)∑

i∈C

yn+1,i =
∑
i∈C

yi,n+1 = 1 (18)

The objective function (1) seeks to minimize the latest time at which either the truck or a drone1

returns to the depot. Constraints (2) ensure each customer is served exactly once and Constraints2

(3) ensure that customers can only be serviced by the truck are served accordingly. Constraints (4)3

ensure that customers served by a drone must be visited by the drone trip. Constraints (5) enforce4

that customers visited by the truck must be served by the truck directly. The route of each drone5

flight is a non-closed loop with a launch node and retrieval node that are different and indicate the6

start and end of the flight. The launch node only has an out-degree and the retrieval node only has7

an in-degree. Constraints (6) provide a flow balance equation for all nodes visited by drone trip8

k ∈ K, which can handle launch and retrieval nodes as well. Constraints (7) and (8) appropriately9

restrict the total in-degrees for each node and total out-degrees for each drone trip respectively to10

ensure that each customer is served only once. Constraints (9) both maintain a balanced flow for the11
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truck and ensure that a customer can be visited at most once by the truck. Constraints (10) require1

each edge to be visited by drones at most once. Constraints (11) require each edge visited by the2

drone to have at least one customer serviced in this drone trip, and prevents the drone from flying3

along the route of the truck unnecessarily.4

Constraints (12) and (13) determine the launch and retrieval node of the drone trip k ∈ K5

respectively, while Constraints (14) and (15) ensure that both the launch and retrieval nodes must6

be visited and served by the truck. Constraints (16) ensure the retrieval node of a drone trip differs7

from the launch node of the same drone trip. Constraints (17) ensure an equal number of launch8

and retrieval nodes in each drone trip, with at most one launch node in each drone trip. Finally,9

Constraint (18) ensures only a single truck is used.10

3.5. Duration constraints11

This section outlines the following constraints that represent the schedule of the drone trips and

appropriately model drone flight endurance limitations.

rn+1 +
∑
j∈C

∑
k∈K

x(n+1) jk = R (19)

ri +
∑
l∈V

∑
k∈K

xl jk ≥ r j +
∑
l∈V

∑
k

x jlk − M ×
(
1 − yi j

)
, ∀i ∈ V, ∀ j ∈ C, i , j (20)

ri +
∑
j∈V

∑
k∈K

x j,n+1,k ≥ R − M ×
(
1 − yi,n+1

)
, ∀i ∈ V (21)

∑
i∈C

wi × zU
ik ≤ Q, ∀k ∈ K (22)

wU
j ≥

∑
l∈C

(
wl × zU

lk

)
− w j − M ×

(
3 − xi jk − zU

jk − hL
ik

)
, ∀i ∈ V,∀ j ∈ C, i , j, ∀k ∈ K (23)

wU
j ≥ wU

i − w j − M ×

3 −∑
k∈k

xi jk −
∑
k∈k

zU
ik −

∑
k∈k

zU
jk

 , ∀i, j ∈ C, i , j (24)

pU
i ≥ θ − M ×

∑
k∈k

zU
ik , ∀i ∈ V (25)

pU
j ≥ pU

i − α ×
(
tU
i j + sU

j

)
× (wU

j + wU + w j) − M ×
(
3 − xi jk − hL

ik − zU
jk

)
, ∀(i, j) ∈ E,∀k ∈ K

(26)

pU
j ≥ pU

i − α ×
(
tU
i j + sU

j

)
× (wU

i + wU) − M ×
(
3 − xi jk − zU

ik − zU
jk

)
, ∀(i, j) ∈ E,∀k ∈ K (27)
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pU
i ≥ α × tU

i j × wU + max
{
α ×

(
tG,A

j − tU,L
i − tU

i j

)
× wU , 0

}
− M ×

(
2 − xi jk − hR

jk

)
,

∀i ∈ C, j ∈ V,i , j,∀k ∈ K (28)

Constraints (19)-(21) track the number of drones on the truck, while Constraints (19) calculate1

the number of drones on board at the point the truck leaves the depot. Constraints (20) balance2

the number of drones launched, retrieved and remained. Constraints (21) are the special case of3

constraints (20) for the depot. Constraints (22)-(24) track changes in payload throughout each drone4

trip. The formula
∑

i∈C wi × zU
ik calculates the total payload that the drone must carry in drone trip5

k ∈ K. Thus, Constraints (23) enforce the drone’s maximum payload. When a drone is launched6

along arc (i, j) ∈ E, node i ∈ V must be served by the truck and node j ∈ C must be served by7

this drone. As mentioned in Section 3.3, the value of wU
i at the launching node cannot be obtained8

directly. Therefore, in this constraint,
∑

l∈C

(
wl × zU

lk

)
is calculated as the weight of all the customers’9

packages. Constraints (24) calculate the drone’s payload when leaving node j ∈ C in a scenario10

where the antecedent node is served by a drone.11

Constraints (25)-(28) represent the energy consumption of operating drones based on formula12

(a1), (a2) and (a3). Constraints (25) ensure that the drone is fully charged when it departs from13

the launch node. Constraints (26) regulate energy consumption and updates pU
j when the drone14

travels from launch node i ∈ C to the first customer j ∈ C in this drone trip. The total payload when15

leaving node i for the drone trip is set to wU
j + wU + w j. When the drone leaves node j ∈ V , the16

remaining energy is equal to the energy left at node i ∈ V minus the energy consumed during the17

flight from node i ∈ V to node j ∈ C, as well as during service at node j ∈ V . Constraints (27)18

follow the same logic as (26) to calculate energy consumption when a drone travels between two19

nodes (i and j) to be serviced. The only difference is that the total payload is equal to wU
i + wU

20

when the drone leaves node i. Constraints (28) pertain to the retrieval progress, where the first21

node of the arc must be a customer node. When the drone leaves node i ∈ C and is retrieved at node22

j ∈ V , the remaining energy level must be greater than the total energy consumption of α× tU
i j ×wU .23

If the drone arrives at the retrieval node earlier than the truck, according to (a2), the drone should24

hover and wait for tG,A
j − tU,L

i − tU
i j time units while consuming α ×

(
tG,A

j − tU,L
i − tU

i j

)
× wU units of25

15



energy. Constraints (28) ensure that the drone will not run out of energy from hovering at node1

j ∈ V .2

3.6. Time constraints3

This section outlines time constraints that synchronise the truck and drone schedules.

tG,A
j ≥ tG,L

i + tG
i j − M ×

(
1 − yi j

)
∀(i, j) ∈ E (29)

tG,L
i ≥ tG,A

i + sG
i − M ×

(
1 − zG

i

)
, ∀i ∈ C (30)

tG,L
i ≥ tU,A

i − M ×
(
1 − zG

i

)
, ∀i ∈ C (31)

tU,A
j ≥ tU,L

i + tU
i j − M ×

1 −∑
k∈K

xi jk

 , ∀(i, j) ∈ E (32)

tU,L
i ≥ tU,A

i + sU
i − M ×

1 −∑
k

zU
ik

 , ∀i ∈ C (33)

tU,L
i ≥ tG,L

i − M ×
(
1 − hL

ik

)
, ∀i ∈ C, ∀k ∈ K (34)

tU,L
i ≤ tG,L

i + M ×
(
1 − hL

ik

)
, ∀i ∈ C, ∀k ∈ K (35)

Constraints (29) update the arrival time of the truck at a node based on its departure time from4

the previous node and the corresponding travel time. Constraints (30) ensure that the truck cannot5

depart from the customer node before the service is completed. Constraints (31) restrict the truck6

from leaving the node before all drones have been retrieved at this node. Constraints (32) are similar7

to Constraints (29) and calculate the time consumption for the drone. Constraints (33) calculates8

the time spent to serve customer i ∈ C. Constraints (34) and (35) limit that both the drones and the9

truck leave the launch node at the same time.10

The above model is complete and correct for the MTSP-MD to solve for a minimum makespan.11

However, additional constraints can be included to speed up the exact solver as well as to ensure12

proper values for the drone trips. Due to limited space, we outline these constraints in the Appendix.13

4. Heuristic algorithm14

In this section, we discuss the heuristic approach for solving the MTSP-MD. First, we present15

16



the tabu search (TS) procedure and the MSTS algorithm in Section 4.1. Next, we discuss the1

solution representation in Section 4.2 and the construction algorithm in Section 4.3 before we2

define the neighborhood structures used in the TS procedure in Section 4.4. Lastly, we discuss how3

to evaluate the feasibility of a given solution efficiently in Section 4.5 with a two-level evaluation4

method. Note that the solution evaluation and feasibility checking is used in both the TS procedure5

and the construction algorithm.6

For the sake of consistency, the truck route represents the sequence of customers visited by the7

truck, and we differentiate a single drone trip from the drone schedule: a single drone trip consists8

of a launch node, a sequence of customers visited, and a retrieval node; while a drone schedule9

contains a sequence of non-overlapping single drone trips assigned to the same drone. Note that a10

drone trip k ∈ K can be empty in Section 3, but an empty single drone trip will always be removed11

from the drone schedule in this section (i.e. empty drone trips will never exist on our heuristic12

solution).13

4.1. TS Procedure and MSTS algorithm14

TS has been applied in solving various routing related problems successfully (Gendreau et al.,15

1994; Toth & Vigo, 2003; Qiu et al., 2018; Pan et al., 2020a), which introduces tabu moves to avoid16

repeated visits to previously visited solutions during the search process. Normally TS starts with17

an initial solution and searches for the best non-tabu solution in the neighborhood of the current18

solution at each iteration until the termination criterion are met. In our implementation, the TS19

procedure uses the customized neighborhood structures for the MTSP-MD as described in Section20

4.4 and uses arcs as tabu control. Whenever an arc is removed from the incumbent solution, it is21

marked as tabu for the next µ iterations, where parameter µ is tuned during the parameter tuning22

stage. Note that the TS does not differentiate arcs traveled by a drone from the arcs traveled by the23

truck for the sake of tabu control. In this way, TS prevents the algorithm from revisiting previous24

solutions and encourages thorough searching of the local region. An aspiration to revoke the tabu25

status of an arc is allowed when the move leads to a new solution with a lower cost than the best26

solution found thus far by the algorithm. The TS terminates when it fails to find better solutions in27

a consecutive number of εTS steps, which is a dynamic measure as explained below.28
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We embed the TS procedure into a MSTS algorithm (Algorithm 1) to increase the efficiency1

of the algorithm. In each iteration, the MSTS algorithm either constructs a new initial solution2

(Line 14) using the construction algorithm (Section 4.3) or restarts from the best found solution3

(Line 12), and passes the solution to the TS procedure (Line 5) to search for better solutions.4

The strength of the TS procedure depends on the parameter εTS , which represents the number of5

consecutive non-improving steps allowed within the TS procedure before the termination of the6

search. The algorithm employs a dynamic approach to update εTS (Line 4) as follows: (1) When7

the MSTS iteration fails to find a better solution, the counter Ccni is increased, which increases8

the strength of the stronger TS procedure via εTS by searching a larger solution space; (2) When a9

better solution is found, Ccni is reset to 0 to speed up subsequent TS iterations; and (3) the value of10

εTS is lower-bounded by the parameter ρLB. The MSTS algorithm terminates after it has exceeded11

its maximum run time or when the number of consecutive non-improving TS iterations reaches12

ωmsts × n, where the parameter ωmsts is set to 300 in our computational experiments.

Algorithm 1 Multi-start Tabu Search (MSTS)
1: Construct a new initial solution S
2: S best ← S , Ccni ← 0
3: while Ccni < ωmsts × n and not exceeding max run time do
4: εTS ← max{Ccni, ρ

LB}

5: S ← TS (S , εTS )
6: if cost(S ) < cost(S best) then
7: Ccni ← 0, S best ← S
8: else
9: Ccni ← Ccni + 1

10: end if
11: if A randomly generated boolean value is true then
12: S ← S best

13: else
14: Construct a new initial solution S
15: end if
16: end while
17: return S best

13
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4.2. Solution representation1

A solution to the problem contains information on customer assignments to the truck and drones,2

the sequences of customers visits by both the truck and drones, as well as the launch and retrieval3

nodes of all drone trips. The solution in Figure 1 can be represented as a Directed Acyclic Graph4

(DAG), where the customers are represented as nodes, and the precedence orders of visits by the5

drone or the truck are represented using directed arcs (Figure 2).6

Figure 2: Solution in DAG

4.3. Solution construction7

We design a simple and fast route-first-drone-second construction algorithm (Yurek & Ozmutlu,8

2018; Schermer et al., 2018) based on the unique features of the MTSP-MD and the two-level9

solution evaluation method (Algorithm 2). First, a giant TSP tour without any drone assignments10

is randomly created as the truck route. In the second phase, only customers in CU who are not11

used as launching or retrieving nodes in the current solution will be considered for insertion in12

order of their positions in the truck route. The algorithm initializes each drone schedule with a13

single drone trip. Afterward, the algorithm attempts to insert one customer from the truck route14

to an existing single drone trip at a time. If insertion is not possible, the algorithm will attempt15

to create a new single drone trip for the selected customer at any feasible positions of the truck16

route. If this attempt also fails, the selected customer will be marked as processed and remain in the17

truck route during the construction phase. The construction algorithm does not attempt to insert all18

customers in CU into drone schedules to avoid generating initial solutions that are over-constrained19

and difficult to improve by the TS procedure later. Formally, the construction terminates when less20

than (1 − φ) × n customers in CU are yet to be processed, where the parameter φ will be tuned21
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during the parameter tuning stage. The detailed construction algorithm is included in the Appendix1

due to space constraints.2

4.4. Neighbourhood structures for TS3

Relocation and swap operators are widely used by heuristic methods in solving routing problems4

(Pan et al., 2020b) and are hence extended as neighborhood structures for the MTSP-MD problem5

based on the unique features of the problem. A total of 9 neighborhood structures from four groups6

are proposed, as summarized in Table 4.

Table 4: Summary of neighbourhood structures for TS

Group S/N Operator Special attention

Intra-drone schedule
1 Relocate Allow to create or remove single drone trip
2 Swap Not applicable

Inter-drone schedule
3 Relocate Allow to create or remove single drone trip
4 Swap Not applicable

Intra-truck route
5 Relocate Update of launch and retrieval nodes
6 Swap Update of launch and retrieval nodes

Inter operators
between the

truck route and
a drone schedule

7 Relocate from truck route Update of launch and retrieval nodes,
and allow to remove single drone trip

8 Relocate to truck route Allow to remove single drone trip
9 Swap Update of launch and retrieval nodes

7

The intra-drone schedule operators work on the schedule of a particular drone and either8

relocate a customer or swap the positions of two customers within the drone schedule. Note that the9

operators can involve two different drone trips performed by the same drone because a single drone10

trip is normally too short for operations. Similarly, the inter-drone schedule operators work on the11

schedules of two drones with the relocation and swap operators. Note that relocation to a drone12

schedule allows the algorithm to create a new single drone trip for the customer, while relocation13

from a drone schedule can remove a single drone trip with only one customer and relocate the14

affected customer accordingly.15

The intra-truck operators resemble the traditional intra-operators in VRP problems with an16

additional step to update the launch and retrieval nodes of the affected drone trips when necessary.17

For intra-truck swaps, relevant nodes for two in all affected drone trips (Figure 3 and 4) are swapped.18
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For intra-vehicle route relocation, the launch node of the affected drone trip will be set to the next1

customer in the truck route, while the retrieval node of the affected drone trip will be set to the2

previous customer in the truck route (Figure 5 and 6). This mechanism increases the chance of3

finding feasible moves since it can potentially reduce travel times and energy consumption by drone4

trips.5

Figure 3: Before intra-truck route swap Figure 4: After intra-truck route swap

Figure 5: Before intra-truck route relocate Figure 6: After intra-truck route relocate

The truck-drone operators update the launch and retrieval nodes for affected single drone trips6

in the same manner as the intra-truck operators. This update rule applies for relocating customers7

from the truck route to a drone trip (7 and 8), and swapping of customers between the truck route8

and a drone trip (Figure 9 and 10). For the relocation operator, the affected customer is simply9

removed from the drone trip and inserted into the truck route directly.10

Figure 7: Before inter-truck route & drone trip reloca-
tion

Figure 8: After inter-truck route & drone trip reloca-
tion
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Figure 9: Before inter-truck route & drone trip swap Figure 10: After inter-truck route & drone trip swap

4.5. Solution evaluation and feasibility checking1

Given a feasible solution, the makespan is equivalent to the length of the longest path (i.e.2

critical path) of the DAG, which can be determined with the critical path method (CPM) (Evans,3

1992). In essence, CPM finds a topological order for all nodes in a DAG, performs forward4

propagation and backward propagation to determine the earliest start and end times, latest start and5

end times, and time float for each node, and then identifies the critical path and its corresponding6

length.7

However, feasibility evaluation is not as straightforward for an MTSP-MD solution, since it8

depends on the feasibility of all the single drone trips both at the drone-level and solution-level. At9

the drone-level, a single drone trip is feasible only if: (1) its energy consumption during the flight10

does not exceed the drone’s battery capacity; and (2) its payload is not more than the maximum11

payload of the drone. This can be evaluated efficiently with the segment-based evaluation method12

in Section 4.5.1. At the solution-level, as drones are allowed to arrive at the retrieval node earlier13

than the truck as long as there is sufficient energy, the feasibility of a single drone trip depends on14

the truck route and the schedules of other drone trips. Hence, we modify the DAG accordingly in15

Sections 4.5.2 and discuss the solution-level feasibility checking in detail in 4.5.3. The high-level16

pseudo-code of the solution cost evaluation algorithm is shown in Algorithm 2, which returns∞ if17

the solution is infeasible.18

4.5.1. Drone-level feasibility evaluation19

Vidal et al. (2014) proposed an efficient segment-based evaluation of cumulative cost on a truck

route, which can be adopted to evaluate the feasibility of a drone trip at the drone-level. We use the

term "segment" in this section to represent a segment of customer visits by a single drone trip. Let
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Algorithm 2 Solution cost evaluation
1: if any single drone trip is infeasible at drone-level then
2: Return∞
3: end if
4: Construct the modified DAG for the solution
5: Build topological order for the DAG nodes
6: Perform forward and backward propagation to determine critical path and arrival time at each

customer node
7: if any single drone trip is infeasible at solution-level then
8: Return∞
9: else

10: Return the length of the critical path
11: end if

a segment be denoted as σ = (σ1, σ2, ...σL). From this, we pre-compute and store the following

information for σ: the total duration D(σ) which includes both travel time and service time incurred

along the segment, the total demand Q(σ) which includes the no-payload weight of the drone and

payload of all parcels to be delivered, and total energy consumption F(σ) from the launch node

to the retrieval node which is independent of the truck’s route. Note that F(σ) does not contain

any possible hovering energy consumption, which will be handled in the solution-level evaluation

instead. Single customer segments are initialized differently for the launch node, the retrieval node

as well as the customers served by the drone, as summarized in Table 5. For any two segments

σ1 = (σ1
1, σ

1
2, ...σ

1
L1

) and σ2 = (σ2
1, σ

2
2, ...σ

2
L2

), we denote the segment by appending σ2 to the end

of σ1 as σ1
⊕

σ2. Note that σ1 cannot contain any retrieval node and σ2 should not contain any

launch node. The associated values for σ1
⊕

σ2 can be calculated with the following equations:

Q(σ1 ⊕ σ2) = Q(σ1) + Q(σ2) (36)

D(σ1 ⊕ σ2) = D(σ1) + tU
σ1

L1
,σ2

1
+ D(σ2) (37)

F(σ1 ⊕ σ2) = F(σ1) + F(σ2) + α ∗
(
D(σ1) + tU

σ1
L1
,σ2

1

)
∗ Q(σ2) (38)

Lastly, σ is feasible at the drone-level if and only if Q(σ) ≤ Q and F(σ) ≤ θ. Feasibility evaluation1

of a single drone trip at the drone-level can be done in O(1) time independent of the length of a2

single drone trip. This speeds up processing during the TS procedure, especially for test instances3
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with more powerful drones that can serve more customers per single drone trip.

Table 5: Initialization of drone trip segment

Duration Demand Energy consumption
D(σ) Q(σ) F(σ)

Launch Node 0 0 0
Visit Node (i) sU

i wi αsU
i wi

Retrieval Node 0 wU 0

1

4.5.2. Modified DAG for CPM2

We modify the DAG (Figure 11) based on the unique features of the MTSP-MD (Figure 12).

Figure 11: Original DAG of a MTSP-MD solu-
tion Figure 12: Modified DAG of a MTSP-MD solution

3

First, each customer which is assigned to the truck and used as either launching node or retrieval4

node by a drone is split into the arrival node and the departure node. For example, the customer 1 is5

represented by two nodes, 1a for the arrival of the truck and 1d for the departure of both the truck6

and the drones. Note that (1) the duration of 1a is equal to s1 and the duration of 1d is simply 0; (2)7

the distance between 1a and 1d is 0; and (3) the distance between 1d and 2a is equal to tG
1,2. Second,8

we aggregate a single drone trip into a single node. For example, node D1 represents the single9

drone trip (1, 5, 6, 7, 3) and its duration is equal to the total duration from the launch node 1d to the10

retrieval node 3d without consideration of possible hovering of the drone at the customer 3. The11

distances between 1d and D1 and between D1 and 3d are both 0.12

The splitting of customer nodes in the modified DAG is necessary to allow for overlapping13

operations of customer service by the truck and automatic retrieval of drones. For example, the14

drone serving (1, 5, 6, 7, 3) can land at the customer 3 any time between the truck’s arrival at node15

3a and the departure of both the truck and the drone at node 3d. The modified DAG does not16
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enforce the order of service at the customer 3 and the landing of the drones. Furthermore, the split1

enforces the retrieval of all drones at their respective retrieval nodes before the truck departs. For2

example, the drone leaves customer 1 together with the truck and other drones at node 1d, and must3

arrive at node 3d before the departure of the truck from customer 3. This split is also necessary to4

evaluate the feasibility of a single drone trip at the solution-level when drone hovering and awaiting5

for truck arrival is required (refer to Section 4.5.3).6

4.5.3. Solution-level feasibility evaluation7

A CPM algorithm is invoked to calculate relevant information about the critical path based on8

the modified DAG. Thereafter, we evaluate the solution-level feasibility, i.e, whether any single9

drone trip has incurred a waiting time that consumes more energy than what is remaining upon10

arrival at the retrieval node. For example, D1 in Figure 12 is feasible at solution-level if and only if11

the actual truck arrival time at node 3a less the actual truck/drone departure time at node 1d is earlier12

than the maximum hovering time allowed for the single drone trip. Mathematically, the maximum13

hovering time T Hover
max (σ) can be calculated by (θ − F(σ))/(αwU), and the difference between the14

truck arrival and drone arrival is max{0, ta
σL
− td

σ1
− D(σ)}, where σ is the drone trip, ta

σL
is the truck15

arrival time at retrieval node σL and td
σ1

is the departure time of the truck and drones from launch16

node σ1. T Hover
max (σ) is pre-computed and stored for each single drone trip in the solution for faster17

solution evaluation as explained in Section 4.5.1.18

5. Computational experiments19

We first describe the test instances in Section 5.1 and provide detailed experimental results in20

Section 5.2. All programs are coded in Java and run in single-thread mode on a Ubuntu 18.04.3 LTS21

server with Intel(R) Xeon(R) Silver 4216 CPU at 2.10 GHz. The MSTS program is run 10 times22

with different random seeds for each test instance. The MILP model is solved with IBM ILOG23

CPLEX 12.8.0 (IBM CPLEX, 2017). The parameters are tuned using the automatic configuration24

tool IRACE (López-Ibáñez et al., 2016) in a similar way as in Pan et al. (2020b). More specifically,25

a total of 20 instances are randomly chosen as training instances, and a budget of 200 iterations26

with each for 300 seconds is given to execute the MSTS algorithm. The list of parameters and their27
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best values returned by IRACE are reported in Table 6.

Table 6: Parameters and tuning results

Parameter Type Range Final Value

µ Integer [4,20] 11
ρLB Integer [5,100] 20
φ Real [0.1,0.8] 0.73

1

5.1. Test instances2

As the MTSP-MD is a new problem, new test instances are derived from the widely used3

Solomon test instances (Solomon., 1987) with pre-defined drone configurations to evaluate the4

performance of the proposed algorithm. Table 7 presents details of the three types of drones used:5

"L" for low capacity, "M" for medium capacity, and "H" for high capacity. With a higher θ and v, L6

drones can carry the same package for a longer time and travel a further distance compared to the7

other two drones. On the other hand, with a higher Q, it can carry more payload packages of heavier8

weights as well. Only three basic test instances, namely C101, R101 and RC101, are adopted for

Table 7: Drone profiles

L M H

Q 35 55 80
wU 5 5 5
θ 800 1200 1600
α 1 1 1
v 2 2.5 3

9

the MTSP-MD problem as the other Solomon’s instances share the same customer locations as10

one of them. The service times of C101 are changed to 10 from 90 to ensure consistency with the11

other two test instances. The travel speed of the truck is set to be 1 for all instances so that tG
i j is12

equivalent to the Euclidean distance di j.13

The MTSP-MD test instances include various customer sizes (8, 10, 15, 25, 50, 100), drone14

sizes (1, 2, 3, 4), and three drone profiles. We use the notation "n− R− T − XXXXX" to represent a15

test instance, where n is the set of all customers, R is the maximum number of drones, T represent16
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the drone’s capacity profile, and XXXXX denotes the original test instance from Solomon which it1

is derived from (i.e. C101, R101 or RC101).2

Test instances with 8, 10, 25, and 50 customers are allocated 300 seconds per run, while3

instances with 100 customers are allocated 600 seconds per run. The CPLEX solver is given a4

run time limit of 2 hours. All test instances used in this paper and the detailed routing plans are5

available online at http://www.computational-logistics.org/orlib/M-TSPMD.6

5.2. Experimental results and analysis7

We evaluate the correctness of the MSTS algorithm in Section 5.2.1 and present the results on8

medium and large test instances in Section 5.2.2. We also analyse the impact of multi-visit on the9

cost of the solutions in Section 5.2.3 and discuss some observations on the sub-optimal single drone10

trips found in the solution in 5.2.4.11

5.2.1. Analysis on small scale instances comparison on CPLEX12

As optimal solutions can only be obtained for small scale instances by the exact solver due to13

the high complexity of the MTSP-MD problem, we limit the customer size of instances to 8 or14

10 and apply both the MSTS algorithm and the CPLEX solver on these instances for comparison15

(Table 8). The test instances are grouped by number of customers and number of drones used. For16

CPLEX, the table reports number of optimal solutions found ("#OPT") and the average run time17

required ("Avg RT"). For MSTS, the table presents the number of best known solutions found18

("#BKS ") and the average run time to the BKS ("Avg Tbest").19

Results show that the CPLEX solver solved all test instances with 8 customers to optimality,20

but was unable to solve 9 instances with 10 customers within the time limit of 2 hours. The time21

required to solve the instances increases dramatically when the number of customers increases22

from 8 to 10. On the other hand, the MSTS algorithm found optimal solutions for all instances23

with 8 customers. The MSTS performs reasonably well and finds 27 BKS for the instances with24

10 customers in significantly shorter times. It is interesting to note that the test instances with 1025

customers and 1 or 2 drones are relatively more difficult for the CPLEX to solve than the instances26

with 3 or 4 drones in terms of Avg RT and #OPT. The detailed results per instance are included in27

the Appendix.28

27
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Table 8: CPLEX vs MSTS on small instances

n = 8 n = 10
CPLEX MSTS CPLEX MSTS

#inst. #OPT Avg RT #BKS Avg Tbest #OPT Avg RT #BKS Avg Tbest

R = 1 9 9 78.2 9 3.5 4 5976.9 7 8.0
R = 2 9 9 46.0 9 2.6 5 4638.9 4 4.9
R = 3 9 9 30.2 9 0.8 9 2150.8 7 14.2
R = 4 9 9 19.6 9 10.9 9 1485.2 9 5.1

5.2.2. Results from the MTSP-MD heuristic algorithm1

We conduct further experiments on test instances with 25, 50 and 100 customers, where the2

results (Table 9) can be used as a benchmark reference for future studies. The cost (Cbest) of best3

known solutions (BKS) and the average cost (Cavg) of the solutions found are reported for each test4

instance. The "ratio" under n = 50 is defined as (Cbest for n = 50/Cbest for n = 25) for the same5

instance. As shown in Figure 13, while this ratio varied for different instances, we observed that the6

average ratio across all test instances is consistent with the ratio between customer sizes and the7

variances are in general higher for the instances with 100 customers than the ones for instances8

with 50 customers. It is interesting that the variances of the ratio for the test instances with low9

capacity drones are higher. Table 10, which presents the average coefficient of variation (CV) of the10

best solutions cost over 10 runs for test instances grouped by drone profile type and customer size,11

shows that the CV is normally lowest for the drones with high capacity. It suggests that it could be12

more difficult to solve the test instances with drones of lower capacity.13

Additionally, results show that for each instance with the same number of customers, (1) the14

savings margin on solution cost decreases gradually when more and more drones of the same profile15

are added; and (2) deploying drones with profiles that have better capabilities can significantly16

reduce total costs. The findings are consistent with similar results reported in the literature17

(Campbell et al., 2018b). Graphical representations of the solutions are provided in Figures 14 - 1718

for four instances with the same number of customers and drone profile. It is worthy to point out19

that the utilization rates of the drones are very high for all the BKS. Indeed, it never occurs in the20

four BKS when a truck carries an idling drone on route in the four BKS.21
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Table 9: Results for n=25/50/100

n = 25 n = 50 n = 100
Inst. Cbest Cavg Cbest Ratio Cavg Cbest Ratio Cavg

1-L-C101 219.20 221.64 477.94 2.18 497.32 1179.93 5.38 1328.32
1-L-R101 305.65 314.76 553.25 1.81 589.44 1089.03 3.56 1161.18
1-L-RC101 295.05 302.10 627.33 2.13 707.36 1259.73 4.27 1369.31
1-M-C101 207.05 208.80 424.57 2.05 449.82 1042.42 5.03 1186.89
1-M-R101 285.93 288.39 514.75 1.80 533.84 950.62 3.32 1021.62
1-M-RC101 272.46 277.19 608.69 2.23 669.26 1133.37 4.16 1218.44
1-H-C101 199.26 201.30 421.00 2.11 435.08 966.70 4.85 1020.30
1-H-R101 261.76 271.82 484.32 1.85 507.01 919.96 3.51 951.74
1-H-RC101 258.26 262.86 551.32 2.13 584.65 1035.51 4.01 1080.32
2-L-C101 171.74 173.93 359.14 2.09 377.61 995.72 5.80 1124.23
2-L-R101 232.23 239.12 442.26 1.90 468.65 839.59 3.62 910.43
2-L-RC101 248.78 258.81 597.52 2.40 653.42 1018.64 4.09 1157.52
2-M-C101 150.66 153.43 312.80 2.08 328.88 787.57 5.23 894.17
2-M-R101 198.25 206.86 364.50 1.84 384.94 692.18 3.49 736.59
2-M-RC101 207.12 217.07 447.54 2.16 548.36 803.17 3.88 909.35
2-H-C101 141.15 143.51 285.38 2.02 300.97 709.68 5.03 759.72
2-H-R101 187.61 190.83 342.52 1.83 353.12 647.68 3.45 675.72
2-H-RC101 193.33 202.84 411.25 2.13 456.28 748.37 3.87 781.70
3-L-C101 146.45 152.46 319.78 2.18 338.28 1009.48 6.89 1109.91
3-L-R101 194.64 199.63 367.51 1.89 404.18 691.13 3.55 794.26
3-L-RC101 226.93 235.06 604.60 2.66 676.49 975.94 4.30 1123.47
3-M-C101 119.33 126.29 251.55 2.11 263.26 644.98 5.41 744.62
3-M-R101 160.99 164.94 299.47 1.86 311.90 564.37 3.51 612.63
3-M-RC101 187.87 196.14 431.60 2.30 497.16 714.33 3.80 805.97
3-H-C101 113.81 115.86 235.44 2.07 245.12 570.67 5.01 612.41
3-H-R101 147.62 150.76 274.81 1.86 286.11 513.18 3.48 547.30
3-H-RC101 162.90 167.53 336.80 2.07 380.39 628.66 3.86 656.62
4-L-C101 140.61 144.58 299.51 2.13 317.02 914.85 6.51 1019.66
4-L-R101 170.65 176.46 340.49 2.00 366.48 625.21 3.66 686.92
4-L-RC101 214.10 223.69 605.32 2.83 661.08 943.82 4.41 1056.06
4-M-C101 106.24 109.25 223.92 2.11 233.59 507.91 4.78 629.16
4-M-R101 134.44 140.33 246.84 1.84 267.20 466.77 3.47 504.88
4-M-RC101 165.73 176.03 389.88 2.35 447.79 609.71 3.68 687.86
4-H-C101 94.19 96.36 194.00 2.06 208.80 510.09 5.42 535.32
4-H-R101 121.35 128.49 233.69 1.93 240.34 423.81 3.49 456.55
4-H-RC101 140.67 147.55 330.13 2.35 356.73 502.78 3.57 581.72

Avg 2.09 4.32

Table 10: Average coefficient of variation of best solution costs by customer size and drone profile over 10 runs

Drone profile type
Customer size L M H

n = 25 1.9% 2.0% 1.7%
n = 50 4.3% 4.5% 3.2%
n = 100 6.6% 6.9% 4.4%
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Figure 13: Box plot for ratios

5.2.3. Multi-visits vs. single visit1

To investigate the impact of allowing multiple visits in the context of the MTSP-MD, we modify2

the MSTS algorithm to only allow single-visits on instances with 100 customers. A comparison3

between multi-visits and single visit is done by calcuating a cost ratio of (best cost of multi-visit /4

best cost of single-visit) *100% for each instance, and results on the average ratio are presented5

and grouped by drone size and drone profile in Table 11. These results demonstrate that allowing6

multiple visits can reduce costs when compared to single-visits due to: (1) the greater number of7

drones that can be deployed at the same time to reduce costs; and (2) drone profiles with better8

performance help to improve cost savings by carrying more payload and enduring longer flight9

distances when required. Together with our results from 5.2.2, these findings motivate further10

research on drone delivery variants that allow for multiple visits and multiple drones per truck,11

along with higher drone payload capacity. A detailed comparison is presented in the Appendix.12

5.2.4. On sub-optimal single drone trips13

It is noteworthy that the overall best solution might contain single drone trips that are not14

optimal for the customers served in the trip. For example, the BKS of 25-4-H-R101 (Figure 17)15
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Figure 14: BKS for 25-1-H-R101 Figure 15: BKS for 25-2-H-R101

Figure 16: BKS for 25-3-H-R101 Figure 17: BKS for 25-4-H-R101

Table 11: Cost ratio of multi-vist over single-visit

Type R = 1 R = 2 R = 3 R = 4

L 93.5% 88.3% 87.7% 87.1%
M 85.1% 80.4% 79.7% 73.1%
H 83.3% 77.9% 74.4% 72.0%

contains a sub-optimal single drone trip (12-11-19-7), which takes a longer time compared to the1

optimal single drone trip (12-19-11-7). However, since another drone trip 12-5-17-7 takes a longer2

time, (12-11-19-7) is not part of the critical path and the MSTS algorithm does not seek to improve3

this single drone trip any longer as it will not improve the total makespan.4

Furthermore, incorporating flight endurance into the model changes the solution structure5

substantially, since a given single drone trip with a shorter flight duration will not be feasible if6

constraints on payload capacity and flight endurance are violated. For example, let Trip1 represent7
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the single drone trip (12-11-19-7) and Trip2 represent (12-19-11-7) in Figure 17. Although Trip21

has a shorter total flight time than Trip1, the package for customer 11 is transported over a longer2

distance in Trip2. When w11 is significantly large enough, Trip2 can consume more energy than θ3

and become infeasible while Trip1 is still feasible.4

Potential mitigating strategies include changing the objective function to minimize the total5

route length (cost), adopting multi-objective optimization approaches to optimize both makespan6

and energy consumption, or adopting post-optimization procedures for all single drone trips.7

6. Conclusion8

In this paper, we proposed the MTSP-MD problem that determines the shortest critical path for a9

single truck equipped with a homogeneous fleet of drones capable of serving multiple customers in10

a single flight. A MILP model is formulated for the problem, for which commercial solvers can only11

solve for small-size instances. To tackle medium and large-size instances which are more practical12

for real-world scenarios, we design an improved multi-start tabu search (MSTS) algorithm which13

consists of three main components: (1) a quick feasibility evaluation method applicable at both14

drone-level and solution-level; (2) a random-sequence based construction algorithm to generate15

initial solutions; and (3) a TS algorithm with tailored neighborhood structures. A set of 180 test16

instances is derived from Solomon’s data to validate the performance of the proposed algorithm.17

Our computational results show great potential in cost reduction with multi-visit, multi-drones, and18

drones with higher capacity.19

We see a myriad of opportunities for future research in this area. For example, the MTSP-20

MD can be extended to allow for parallel operation of multiple trucks, that can possibly allow21

deployed drones to be retrieved by another truck with spare capacity. Other extensions include the22

deployment of heterogeneous drone fleets to serve use cases that involve pickups and deliveries,23

such as perishable food delivery. Other areas for improvement include developing more efficient24

heuristic approaches and incorporating more real-world considerations into the model. New25

theoretical bounds on features such as drone multi-visits and critical path scheduling with complex26

synchronization constraints will be valuable in assessing the performance of heuristic approaches27
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for large-scale problems. Additional studies may explore multi-objective optimization or total cost1

minimization by removing sub-optimal single drone trips.2
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Appendix A Additional constraints1

Acceleration constraints2

To tighten the model’s solution space, the following constraints are added to speed up the

computational process of the CPLEX solver, of which some complement the constraints as outlined

in 3.4, 3.5 and 3.6, while others are defined based on assumptions detailed in 3.1:

ri +
∑
l∈V

∑
k∈K

xl jk ≤ r j +
∑
l∈V

∑
k

x jlk + M ×
(
1 − yi j

)
, ∀i ∈ V, ∀ j ∈ C, i , j (A.1)

ri +
∑
j∈V

∑
k∈K

x j,n+1,k ≤ R + M ×
(
1 − yi,n+1

)
, ∀i ∈ V, (A.2)

wU
j ≤

∑
l

(
wl × zU

lk

)
− w j + M ×

(
3 − xi jk − zU

jk − hL
ik

)
, ∀i ∈ V,∀ j ∈ C, i , j, ∀k ∈ K (A.3)

wU
j ≤ wU

i − w j + M ×

3 −∑
k∈k

xi jk −
∑
k∈k

zU
ik −

∑
k∈k

zU
jk

 , ∀i, j ∈ C, i , j (A.4)

pU
j ≤ pU

i − α ×
(
tU
i j + sU

j

)
× (wU

j + wU + w j) + M ×
(
3 − xi jk − hL

ik − zU
jk

)
, ∀i, j ∈ V, i , j,∀k ∈ K

(A.5)

pU
j ≤ pU

i − α ×
(
tU
i j + sU

j

)
× (wU

j + wU) + M ×
(
3 − xi jk − zU

ik − zU
jk

)
, ∀i, j ∈ V, i , j,∀k ∈ K (A.6)

tU,L
n+1 = tG,L

n+1 = 0 (A.7)∑
k∈K

zU
n+1,k + zG

n+1 = 0 (A.8)

M ×
∑
a≤i

zU
ak ≥

∑
a≤i

∑
b≥k

zU
ab, ∀i ∈ C, ∀k ∈ K (A.9)

Constraint (A.1) supplements Constraint (20) by ensuring that ri +
∑

j∈V
∑

k∈K x jlk = rl +3 ∑
j∈V

∑
k xl jk when the truck travels from node i to node j, while Constraint (A.2) supplements4

Constraint (21) in a similar fashion. This is done to enforce equation ri +
∑

j∈V
∑

k∈K x j,n+1,k = R to5

hold true when the truck returns to the depot. Constraint (A.3) complements Constraint (23) by6

restricting the payload of a drone when leaves the first customer in each drone trip. Constraint (A.4)7

complements Constraint (24) to balance changes in payload during drone flight. Constraints (A.5)8

and (A.6) complement Constraints (26) and (27) respectively in enforcing limits on drone energy9

consumption.10
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To enforce our assumptions, Constraint (A.7) initialises the departure times of the truck and1

drones from the depot as zero, and Constraint (A.8) prevents the depot from being assigned.2

The symmetric-breaking constraint proposed by Coelho & Laporte (2014) and Darvish et al.3

(2020) are typically used to reduce the size of solution space to avoid isomorphic solutions.4

Constraint (A.9) is an improvement on the typical hierarchical ordering constraint, in which5

customers with lower indices always have a priority on drone trips also with lower indices.6

While these constraints do not affect the objective function value of the optimal solution, they7

help to determine the value of key decision variables under specific conditions to help commercial8

exact solvers such as CPLEX to obtain the optimal solution more quickly.9

Readability constraints10

In this section, we introduce additional constraints to the original model that help to provide11

bounds for unrestricted decision variables. This helps us better understand generated optimal12

solutions from commercial solvers in a more intuitive manner and improve its readability.13

∑
i∈V

∑
j∈V

xi jk ≤ M ×
∑
i∈V

hL
ik, ∀k ∈ K (A.10)

∑
i∈V

∑
j∈V

xi jk ≤ M ×
∑
i∈V

hR
ik, ∀k ∈ K (A.11)

ri ≤ M ×

1 −∑
k∈K

zU
ik

 , ∀i ∈ C (A.12)

wU
i ≤ M ×

∑
k∈k

zU
ik , ∀i ∈ C (A.13)

M ×
∑
k∈K

∑
j∈V

x jik ≥ tU,L
i ≥ tU,A

i , ∀i ∈ C (A.14)

M ×
∑
j∈V

yi j ≥ tG,L
i ≥ tG,A

i , ∀i ∈ C (A.15)

Constraints (A.10) and (A.11) ensure that a non-empty drone trip must contain both a launch14

node and a retrieval node. Constraint (A.12) forces ri to be zero if customer i is not visited by the15

truck. Constraint (A.12) ensures the value of wU
i is equal to zero if node i ∈ V is not served by a16
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drone. Constraints (A.14) and (A.15) ensure time is set to zero if a customer is not visited by either1

the truck or the drones.2

These additional constraints, combined with the constraints outlined in the main paper, limit3

the values which decision variables outside of the main routes can take on, without affecting the4

objective value in the optimal solution, which allows for the result to be read directly.5

Are supplementary constraints necessary?6

As opposed to the conventional Vehicle Routing Problem (VRP), it is necessary for us to7

incorporate the acceleration and readability constraints into our proposed model due to the following8

two reasons: 1) interference when routes are parallel, and 2) inherent limitations of the objective9

function.10

To better understand this necessity, we present the following hypothetical instance:11

Figure A.1: Hypothetical Instance

Assume that the solution shown in A.1 is the optimal solution, and that the truck takes more12

time to arrive at node 2. For a conventional VRP instance, the values of decision variables at each13

node can be derived in reverse from the makespan of the optimal solution. However, in our problem,14

when a deployed drone and truck travel towards the same destination node on parallel routes with15

different travel times, only the travel time of the drone/truck which arrives later can be derived in16

reverse from the optimal solution.17
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In this instance, the value of tG,A
i and tG,L

i in the truck route (0-1-2-0) can be identified as a1

specific value based on the minimized makespan and constraints (29)-(30). Based on the assumption2

and constraints (32), we can then infer tG,A
2 ≥ tU,A

2 ≥ tU,L
3 + tU

3,2. Thereafter, according to Constraints3

(32)-(35), we obtain tU,A
3 ≥ tU,L

1 + tU
1,3 = tG,L

1 + tU
1,3 and tU,L

3 ≥ tU,A
3 + s3. Therefore, although the4

optimal makespan and routes are given, we are only able to ascertain that the time when the drone5

leaves node 3 is within the range of (tG,A
2 − tU

3,2 ≥ tU,L
3 ≥ tG,L

1 + tU
1,3 + s3).6

This time range introduces randomness which in turn leads to uncertainty in other decision7

variables. With Constraint (26) on edge <1-3>, pU
3 ≥ θ − α ×

(
tU
1,3 + s3

)
× (wU

3 + wU + w3), which8

simplifies to pU
3 ≥ θ − (P1,3 + PS

3 ). Similarly, with Constraint (28) on edge <3-2>, we obtain9

pU
3 ≥ P3,2 + PT

2 . Without the above supplementary constraints, the value of pU
3 instead be a random10

number in the range θ ≥ pU
3 ≥ max

{
θ − (P1,3 + PS

3 ), P3,2 + PT
2

}
.11

This randomness expands the solution space of the optimal solution and makes it difficult to12

apply relevant constraints in some algorithms. Introducing Constraint (A.5) helps to determine that13

pU
3 = θ− (P1,3 + PS

3 ) and reduces the solution space while improving readability of the solution. The14

other acceleration constraints we have defined also have similar effects on the decision variables ri15

and wU
i .16

The necessity of supplementary constraints implies that the key to the solution lies in finding the17

longest path to complete the task. This characteristic shares similarities with the Program Evaluation18

and Review Technique (PERT). Hence, there might be potential to further study algorithms in19

project management and discover methods that may be useful for solving the MTSP-MD.20

We also note that this necessity exists only when the objective function aims to minimize21

makespan. When the objective function is defined instead as minimizing of total costs in lieu of22

drone flight times and energy consumption, a reverse-derivation of decision variables for each note23

from the objective value becomes feasible without supplementary constraints. In future studies, the24

MTSP-MD model may be simplified by applying cost-minimization objective functions or using25

multi-objective optimization.26
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Appendix B Detailed construction algorithm1

Algorithm B.1 Construction algorithm
1: Create a random sequence of customers Vseq as the truck route
2: Duplicate Vseq as unprocessed customer seq Cseq

3: for each customer i in G do
4: Remove i from Cseq

5: end for
6: for each drone do
7: while true do
8: Let c be the first customer in Cseq

9: for each pair of lc and rc in Vseq do
10: if single drone trip (lc, c, rc) is feasible at both drone-level and solution-level then
11: Create a single drone trip (lc, c, rc) for the drone
12: Remove c from Vseq and Cseq

13: Remove lc and rc from Cseq if necessary
14: Break while statement
15: end if
16: end for
17: Remove c from Cseq

18: end while
19: end for
20: while |Cseq| ≥ (1 − φ) × n do
21: Let c be the first customer in Cseq

22: for each single drone trip in solution do
23: if c can be inserted into the single drone trip then
24: Insert c into the single drone trip
25: Remove c from Vseq

26: Go to Line 39
27: end if
28: end for
29: for each drone schedule do
30: for each pair of lc and rc in Vseq where the drone is idling do
31: if single drone trip (lc, c, rc) is feasible at both drone-level and solution-level then
32: Create a new drone trip (lc, c, rc) and insert it into the drone schedule
33: Remove c from Vseq

34: Remove lc and rc from Cseq if necessary
35: Go to Line 39
36: end if
37: end for
38: end for
39: Remove c from Cseq

40: end while 42



Appendix C CPLEX vs MSTS1

For the CPLEX solver, Table C.1 presents whether an optimal solution is found within the run2

time limit ("Opt?"), the best solution cost found (CCPLEX
best ), and the actual run time (Ttot). For the3

MSTS algorithm, the table presents the cost of the best-found solution (CMS TS
best ), the best running4

time to find CMS TS
best , as well as the gap between the cost of solutions found by both algorithms. The5

gap is formally defined as (CMS TS
best −CCPLEX

best )/CCPLEX
best .6

Table C.1: CPLEX vs MSTS for small instances

CPLEX MSTS CPLEX MSTS
Inst. Opt? CCPLEX

best Ttot CMS TS
best Tbst Gap Inst. Opt? CCPLEX

best Ttot CMS TS
best Tbst Gap

8-1-L-C101 Y 75.49 84 75.49 0.25 - 10-1-L-C101 N 88.27 7219 87.53 0.62 -0.8%
8-1-L-R101 Y 128.82 55 128.82 1.52 - 10-1-L-R101 Y 150.1 4268 150.1 0.09 -
8-1-L-RC101 Y 112.73 44 112.73 7.15 - 10-1-L-RC101 Y 149.82 3732 149.82 0.42 -
8-1-M-C101 Y 69.03 88 69.03 2.15 - 10-1-M-C101 N 81.83 7219 81.72 0.64 -0.1%
8-1-M-R101 Y 107.34 67 107.34 7.69 - 10-1-M-R101 N 136.13 7215 133.22 40.75 -2.1%
8-1-M-RC101 Y 103.16 50 103.16 0.35 - 10-1-M-RC101 Y 132.38 4656 132.38 0.6 -
8-1-H-C101 Y 66.24 164 66.24 8.04 - 10-1-H-C101 N 78.74 7200 79.36 2.12 0.8%
8-1-H-R101 Y 99.1 98 99.1 4.25 - 10-1-H-R101 N 122.96 7216 125.85 26.55 2.4%
8-1-H-RC101 Y 97.21 54 97.21 0.08 - 10-1-H-RC101 Y 116.33 5067 116.33 0.52 -
8-2-L-C101 Y 57.25 24 57.25 0.75 - 10-2-L-C101 Y 64.69 3335 65.96 0.75 2.0%
8-2-L-R101 Y 88.34 45 88.34 2.23 - 10-2-L-R101 Y 112.45 3133 112.45 0.64 -
8-2-L-RC101 Y 92.25 25 92.25 0.24 - 10-2-L-RC101 Y 138.97 3078 138.97 0.15 -
8-2-M-C101 Y 54.18 46 54.18 11.90 - 10-2-M-C101 N 58.81 7200 59.31 0.5 0.9%
8-2-M-R101 Y 73.14 62 73.14 0.22 - 10-2-M-R101 N 88.84 7200 91.02 12.54 2.5%
8-2-M-RC101 Y 79.34 24 79.34 4.31 - 10-2-M-RC101 Y 95.16 1768 95.16 0.63 -
8-2-H-C101 Y 52.84 81 52.84 3.22 - 10-2-H-C101 N 56.24 7200 55.97 21.43 -0.5%
8-2-H-R101 Y 65.98 91 65.98 0.09 - 10-2-H-R101 N 81.65 7213 82.15 6.81 0.6%
8-2-H-RC101 Y 74.92 16 74.92 0.20 - 10-2-H-RC101 Y 83.76 1623 88.11 0.25 5.2%
8-3-L-C101 Y 49.91 27 49.91 1.07 - 10-3-L-C101 Y 54.86 2234 56.96 1.51 3.8%
8-3-L-R101 Y 70.65 22 70.65 0.06 - 10-3-L-R101 Y 86.15 1895 86.15 3.58 -
8-3-L-RC101 Y 89.23 21 89.23 0.04 - 10-3-L-RC101 Y 128.91 2339 128.91 2.25 -
8-3-M-C101 Y 46.05 31 46.05 2.24 - 10-3-M-C101 Y 47.94 1957 47.94 17.19 -
8-3-M-R101 Y 61.8 63 61.8 0.14 - 10-3-M-R101 Y 73.7 1817 74.36 10.65 0.9%
8-3-M-RC101 Y 71.61 13 71.61 0.32 - 10-3-M-RC101 Y 79.84 807 79.84 0.11 -
8-3-H-C101 Y 43.38 24 43.38 1.52 - 10-3-H-C101 Y 45.35 2141 45.35 72.79 -
8-3-H-R101 Y 60.61 55 60.61 1.80 - 10-3-H-R101 Y 67.55 5402 67.55 18.23 -
8-3-H-RC101 Y 71.61 16 71.61 0.10 - 10-3-H-RC101 Y 74.92 765 74.92 1.86 -
8-4-L-C101 Y 45.69 18 45.69 21.08 - 10-4-L-C101 Y 50.07 1284 50.07 0.16 -
8-4-L-R101 Y 61.8 18 61.8 9.22 - 10-4-L-R101 Y 78.12 1256 78.12 0.18 -
8-4-L-RC101 Y 82.11 17 82.11 9.49 - 10-4-L-RC101 Y 128.91 2278 128.91 0.11 -
8-4-M-C101 Y 43.58 20 43.58 2.44 - 10-4-M-C101 Y 46.05 1544 46.05 0.32 -
8-4-M-R101 Y 55.83 26 55.83 4.75 - 10-4-M-R101 Y 62.51 1495 62.51 10.71 -
8-4-M-RC101 Y 71.61 19 71.61 0.11 - 10-4-M-RC101 Y 71.61 798 71.61 4.03 -
8-4-H-C101 Y 42.17 18 42.17 42.78 - 10-4-H-C101 Y 43.38 1407 43.38 0.1 -
8-4-H-R101 Y 51.72 24 51.72 8.38 - 10-4-H-R101 Y 61.8 3035 61.8 21.31 -
8-4-H-RC101 Y 71.61 16 71.61 0.10 - 10-4-H-RC101 Y 71.61 270 71.61 8.95 -
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Appendix D Multi-visit vs Single-visit detailed table1

Table D.1: Multi-vist vs single-visit scenario

Inst SV MV MV/SV Inst SV MV MV/SV

100-1-H-C101 1181.13 966.70 81.8% 100-3-H-C101 770.39 570.67 74.1%
100-1-H-R101 1065.90 919.96 86.3% 100-3-H-R101 676.32 513.18 75.9%
100-1-H-RC101 1268.51 1035.51 81.6% 100-3-H-RC101 856.75 628.66 73.4%
100-1-L-C101 1242.34 1179.93 95.0% 100-3-L-C101 1046.34 1009.48 96.5%
100-1-L-R101 1182.99 1089.03 92.1% 100-3-L-R101 831.49 691.13 83.1%
100-1-L-RC101 1349.29 1259.73 93.4% 100-3-L-RC101 1167.16 975.94 83.6%
100-1-M-C101 1246.29 1042.42 83.6% 100-3-M-C101 836.93 644.98 77.1%
100-1-M-R101 1094.46 950.62 86.9% 100-3-M-R101 706.97 564.37 79.8%
100-1-M-RC101 1336.07 1133.37 84.8% 100-3-M-RC101 869.28 714.33 82.2%
100-2-H-C101 882.14 709.68 80.4% 100-4-H-C101 670.85 510.09 76.0%
100-2-H-R101 846.96 647.68 76.5% 100-4-H-R101 613.86 423.81 69.0%
100-2-H-RC101 973.45 748.37 76.9% 100-4-H-RC101 708.77 502.78 70.9%
100-2-L-C101 1057.99 995.72 94.1% 100-4-L-C101 1033.19 914.85 88.5%
100-2-L-R101 956.24 839.59 87.8% 100-4-L-R101 782.76 625.21 79.9%
100-2-L-RC101 1226.20 1018.64 83.1% 100-4-L-RC101 1015.72 943.82 92.9%
100-2-M-C101 942.19 787.57 83.6% 100-4-M-C101 710.97 507.91 71.4%
100-2-M-R101 867.34 692.18 79.8% 100-4-M-R101 643.38 466.77 72.5%
100-2-M-RC101 1033.70 803.17 77.7% 100-4-M-RC101 808.72 609.71 75.4%
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