Mark Hall

Mark Hall
University of Waikato · Department of Computer Science

About

59
Publications
110,880
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
35,677
Citations

Publications

Publications (59)
Chapter
We begin by revisiting the basic instance-based learning method of nearest-neighbor classification and considering how it can be made more robust and storage efficient by generalizing both exemplars and distance functions. We then discuss two well-known approaches for generalizing linear models that go beyond modeling linear relationships between t...
Chapter
One of the most striking contemporary developments in the field of machine learning is the meteoric ascent of what has been called “deep learning,” and this area is now at the forefront of current research. We discuss key differences between traditional neural network architectures and learning techniques, and those that have become popular in deep...
Chapter
Having examined the input to machine learning, we move on to review the types of output that can be generated. We first discuss decision tables, which are perhaps the most basic form of knowledge representation, before considering linear models such as those produced by linear regression. Next we explain decision trees, the most widely used kind of...
Chapter
This chapter explains practical decision tree and rule learning methods, and also considers more advanced approaches for generating association rules. The basic algorithms for learning classification trees and rules presented in Chapter 4, Algorithms: the basic methods, are extended to make them applicable to real-world problems that contain numeri...
Chapter
Machine learning requires something to learn from: data. This chapter explains what kind of structure is required in the input data when applying the machine learning techniques covered in the book, and establishes the terminology that will be used. First, we explain what is meant by learning a concept from data, and describe the types of machine l...
Chapter
A powerful way to improve performance in machine learning is to combine the predictions of multiple models. This involves constructing an ensemble of classifiers—e.g., a set of decision trees rather than a single tree. We begin by describing bagging and randomization, which both use a single learning algorithm to generate an ensemble predictor. Bag...
Chapter
s Now we plunge into the world of actual machine learning algorithms. This chapter only considers basic, principled, versions of learning algorithms, leaving advanced features that are necessary for real-world deployment for later. A rudimentary rule learning algorithm simply picks a single attribute to make predictions; the well-known “Naive Bayes...
Chapter
In many practical applications, labeled data is rare or costly to obtain. “Semisupervised” learning exploits unlabeled data to improve the performance of supervised learning. We first discuss how to combine clustering with classification; more specifically, how mixture model clustering using expectation maximization can be combined with Naive Bayes...
Chapter
s There are many transformations that can make real-world datasets more amenable to the learning algorithms discussed in the rest of the book. We first consider methods for attribute selection, which remove attributes that are not useful for the task at hand. Then we look at discretization methods: algorithms for turning numeric attributes into dis...
Chapter
This book is about machine learning techniques for data mining. We start by explaining what people mean by data mining and machine learning, and give some simple example machine learning problems, including both classification and numeric prediction tasks, to illustrate the kinds of input and output involved. To demonstrate the wide applicability o...
Article
Full-text available
Despite its simplicity, the naive Bayes classifier has surprised machine learning researchers by exhibiting good performance on a variety of learning problems. Encouraged by these results, researchers have looked to overcome naive Bayes primary weakness - attribute independence - and improve the performance of the algorithm. This paper presents a l...
Article
Full-text available
WEKA is a popular machine learning workbench with a development life of nearly two decades. This article provides an overview of the factors that we believe to be important to its success. Rather than focussing on the software's functionality, we review aspects of project management and historical development decisions that likely had an impact on...
Chapter
Full-text available
The Weka workbench is an organized collection of state-of-the-art machine learning algorithms and data preprocessing tools. The basic way of interacting with these methods is by invoking them from the command line. However, convenient interactive graphical user interfaces are provided for data exploration, for setting up large-scale experiments on...
Article
Full-text available
More than twelve years have elapsed since the first public release of WEKA. In that time, the software has been rewritten entirely from scratch, evolved substantially and now accompanies a text on data mining [35]. These days, WEKA enjoys widespread acceptance in both academia and business, has an active community, and has been downloaded more than...
Conference Paper
Scheme-specific attribute selection with the wrapper and variants of forward selection is a popular attribute selection technique for classification that yields good results. However, it can run the risk of overfitting because of the extent of the search and the extensive use of internal cross-validation. Moreover, although wrapper evaluators tend...
Article
Full-text available
This manual is licensed under the GNU General Public License version 2. More information about this license can be found at
Conference Paper
The much-publicized Netflix competition has put the spotlight on the application domain of collaborative filtering and has sparked interest in machine learning algorithms that can be applied to this sort of problem. The demanding nature of the Netflix data has lead to some interesting and ingenious modifications to standard learning methods in the...
Article
We investigate a simple semi-naive Bayesian ranking method that combine naive Bayes with induction of decision tables. Naive Bayes and decision tables can both be trained efficientyly, and the same holds true for the combined semi-naive model. We show that the resulting ranker, compared to either component technique, frequently significantly increa...
Conference Paper
Model trees—decision trees with linear models at the leaf nodes—have recently emerged as an accurate method for numeric prediction that produces understandable models. However, it is known that decision lists—ordered sets of If-Then rules—have the potential to be more compact and therefore more understandable than their tree counterparts. We prese...
Conference Paper
Logistic Model Trees have been shown to be very accurate and compact classifiers [8]. Their greatest disadvantage is the computational complexity of inducing the logistic regression models in the tree. We address this issue by using the AIC criterion [1] instead of cross-validation to prevent overfitting these models. In addition, a weight trimming...
Article
Tree induction methods and linear models are popular techniques for supervised learning tasks, both for the prediction of nominal classes and numeric values. For predicting numeric quantities, there has been work on combining these two schemes into `model trees', i.e. trees that contain linear regression functions at the leaves. In this paper, we p...
Chapter
Full-text available
The Weka workbench is an organized collection of state-of-the-art machine learning algorithms and data preprocessing tools. The basic way of interacting with these methods is by invoking them from the command line. However, convenient interactive graphical user interfaces are provided for data exploration, for setting up large-scale experiments on...
Conference Paper
Association rule mining is a data mining technique that reveals interesting relationships in a database. Existing approaches employ different parameters to search for interesting rules. This fact and the large number of rules make it difficult to compare the output of confidence-based association rule miners. This paper explores the use of classifi...
Article
Full-text available
The Weka machine learning workbench provides a general-purpose environment for automatic classification, regression, clustering and feature selection—common data mining problems in bioinformatics research. It contains an extensive collection of machine learning algorithms and data pre-processing methods complemented by graphical user interfaces for...
Article
Data engineering is generally considered to be a central issue in the development of data mining applications. The success of many learning schemes, in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant, and noisy attributes in the...
Conference Paper
Inducing classifiers that make accurate predictions on future data is a driving force for research in inductive learning. However, also of importance to the users is how to gain information from the models produced. Unfortunately, some of the most powerful inductive learning algorithms generate “black boxes”—that is, the representation of the model...
Conference Paper
This paper proposes a method for generating classifiers from large datasets by building a committee of simple base classifiers using a standard boosting algorithm. It allows the processing of large datasets even if the underlying base learning algorithm cannot efficiently do so. The basic idea is to split incoming data into chunks and build a commi...
Conference Paper
Full-text available
The alternating decision tree (ADTree) is a successful clas- sication technique that combines decision trees with the predictive ac- curacy of boosting into a set of interpretable classication rules. The original formulation of the tree induction algorithm restricted atten- tion to binary classication problems. This paper empirically evaluates seve...
Article
Full-text available
Introduction The Waikato Environment for Knowledge Analysis (Weka) is a comprehensive suite of Java class libraries that implement many state-of-the-art machine learning and data mining algorithms. Weka is freely available on the World-Wide Web and accompanies a new text on data mining [1] which documents and fully explains all the algorithms it co...
Article
Waikato Environment for Knowledge Analysis (WEKA) is a comprehensive suite of Java class libraries that implement many state-of-the-art machine learning/data mining algorithms. Non-programmers interact with the software via a user interface component called the Knowledge Explorer. Applications constructed from the WEKA class libraries can be run on...
Conference Paper
Full-text available
Machine learning methods for classification problems commonly assume that the class values are unordered. However, in many practical applications the class values do exhibit a natural order—for example, when learning how to grade. The standard approach to ordinal classification converts the class value into a numeric quantity and applies a regressi...
Conference Paper
Full-text available
The standardized visual field assessment, which measures visual function in 76 locations of the central visual area, is an important diagnostic tool in the treatment of the eye disease glaucoma. It helps determine whether the disease is stable or progressing towards blindness, with important implications for treatment. Automatic techniques to class...
Article
Data engineering is generally considered to be a central issue in the development of data mining applications. The success of many learning schemes, in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the m...
Article
Knowledge discovered in a database must be represented in a form that is easy to understand. Small, easy to interpret nuggets of knowledge from data are one requirement and the ability to induce them from a variety of data sources is a second. The literature is abound with classification algorithms, and in recent years with algorithms for time sequ...

Network

Cited By