Mark Baron

Mark Baron
Hebrew University of Jerusalem | HUJI · Edmond and Lily Safra Center for Brain Sciences

Master of Science
Ph.D. candidate studying the neural correlates of general anesthesia and loss-of-consciousness.

About

8
Publications
650
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
32
Citations
Citations since 2017
8 Research Items
28 Citations
201720182019202020212022202302468
201720182019202020212022202302468
201720182019202020212022202302468
201720182019202020212022202302468

Publications

Publications (8)
Article
Full-text available
The canonical view of how general anesthetics induce loss-of-consciousness (LOC) permitting pain-free surgery posits that anesthetic molecules, distributed throughout the CNS, suppress neural activity globally to levels at which the cerebral cortex can no longer sustain conscious experience. We support an alternative view that LOC, in the context o...
Article
Although general anesthesia is normally induced by systemic dosing, an anesthetic state can be induced in rodents by microinjecting minute quantities of GABAergic agents into the brainstem mesopontine tegmental anesthesia area (MPTA). Correspondingly, lesions to the MPTA render rats relatively insensitive to standard anesthetic doses delivered syst...
Article
Full-text available
It is nearly axiomatic that pain, among other examples of conscious experience, is an outcome of still-uncertain forms of neural processing that occur in the cerebral cortex, and specifically within thalamo-cortical networks. This belief rests largely on the dramatic relative expansion of the cortex in the course of primate evolution, in humans in...
Article
Full-text available
Doubtless, the conscious brain integrates masses of information. But declaring that consciousness simply "emerges" when enough has accumulated, doesn't really explain how first person experience is implemented by neurons. Moreover, empirical observations challenge integrated information theory's (IIT) reliance on thalamo-cortical interactions as th...
Article
General anesthetic agents are thought to induce loss-of-consciousness (LOC) and enable pain-free surgery by acting on the endogenous brain circuitry responsible for sleep-wake cycling. In clinical use, the entire CNS is exposed to anesthetic molecules with LOC usually attributed to synaptic suppression in the cerebral cortex and immobility and anal...
Article
Full-text available
We all experience pain at one time or another. Pain is an essential “alarm bell” that tells us that something is wrong, and a “teacher” that reminds us not to do that same thing again. Usually, pain is felt when a stimulus, such as a pinch or an injury, causes electrical pulses to run along one of the cables of nerve fibers in our body and into the...
Article
Full-text available
The mesopontine tegmental anesthesia area (MPTA) was identified in rats as a singular brainstem locus at which microinjection of minute quantities of GABAergic agents rapidly and reversibly induces loss-of-consciousness and a state of general anesthesia, while lesioning renders animals insensitive to anesthetics at normal systemic doses. Obtaining...
Article
What we already know about this topic: Lesions of the mesopontine tegmental anesthesia area in the brainstem render rats strongly insensitive to pentobarbitalThe effects of mesopontine tegmental anesthesia area lesions on responses to other anesthetics have not been previously reported WHAT THIS ARTICLE TELLS US THAT IS NEW: Targeted microinjectio...

Network

Cited By