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Abstract
Ashcraft, M.H., 1992. Cognitive arithmetic: A review of data and theory. Cognition, 44: 75-106.

The area of cognitive arithmetic is concerned with the mental representation of
number and arithmetic. and the processes and procedures that access and use this
knowledge. In this article, I provide a tutorial review of the area. first discussing the
four basic empirical effects that characterize the evidence on cognitive arithmetic:
the effects of problem size or difficulty. errors. relatedness, and strategies of
processing. I then review three current models of simple arithmetic processing and
the empirical reports that support or challenge their explanations. The third section
of the review discusses the relationship between basic fact retrieval and a rule-based
component or system. and considers current evidence and proposals on the overall
architecture of the cognitive arithmetic system. The review concludes with a final set
of speculations about the all-pervasive problem difficulty effect, still a central
puzzle in the field.

‘Introduction

Twenty or so years ago, mainstream cognitive psychology viewed mental arith-
metic not as an arca of research interest, but as a tool to be used for other
purposes. Putting it bluntly. what we knew was that counting backwards by 3s
provided an excellent short-term memory distractor task. Even Newell and
Simon’s (1972) extensive work on cryptarithmetic problem solving, an apparent
exception to this generalization, showed very little interest in arithmetic knowl-
edge itself, compared with the problem-solving steps revealed by that knowledge.
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The publication of Groen and Parkman’s (1972) Psychological Review paper,
however, signalled an important change in this attitude, a genuine interest in
number and arithmetic per se. and in the mental processes that deal with that
knowledge. Within the past decade in particular. this interest has flourished. The
area of rescarch and theory known as metal or cognitive arithmetic is now an
active field, with a substantial empirical basc. a variety of theoretical perspectives,
and a growing core of investigators. Recent extensions of the research to different
populations of subjects, for example. learning disabled children. indicate that the
field can now productively apply its basic knowledge to new situations.

Given these developments. it is appropriate that the area of cognitive arith-
metic be reviewed. that its empirical effects be described. and that its theoretical
claims and disagreements be portrayed to the general community of cognitive
psychologists. This is the first and most basic purpose of the present paper. A
second purpose is to explore several issues of concern to other areas of cognitive
psychology that relate to the area of cognitive arithmetic in important ways. for
example. automaticity of processing, modularity. Finally. a few of the effects that
characterize number and mathematics processing address other areas in cognitive
psychology, implying that the study of cognitive arithmetic can advance cognitive
psychology as a whole. Stated simply. then. the purposes of the present paper are
to review the existing area of cognitive arithmetic. and to explore areas and issues
of reciprocal influence between cognitive arithmetic and the general field of
cognitive psychology.

The paper is divided into three major sections. First. I present a discussion of
four basic empirical effects that form the boundaries of models dealing with
simple mental arithmetic. The first of these effects is also used to illustrate both
the rise and fall of the ancestral model of mental arithmetic. Groen and
Parkman’s min model (1972). 1 then discuss three current models of simple
arithmetic processing: my own nerwork rewrieval model (e.g.. Ashcraft. 1982,
1987). Siegler’s distribution of associations model (e.g.. Siegler, 1988b: Siegler &
Jenkins. 1989; Siegler & Shrager, 1984), and Campbell's nenwork interference
model (e.g., Campbell. 1987a: Campbell & Clark, 1989). Following this, I
consider several papers that address the “rules of arithmetic” (e.g.. Brown &
Burton, 1978: Widaman. Geary, Cormier, & Little, 1989). a discussion that leads
naturally to questions of the overall architecture of the cognitive arithmetic
system (e.g.. Campbell & Clark. 1988: McCloskey. Caramazza. & Basili. 1985)
The final section concludes with a few notes on unresolved issues and theoretical
advances in the area. Although the paper speculates briefly on an integrated
theory of mental arithmetic performance, its primary purpose is a tutorial
portrayal of research and thcory in the arca — a progress report. as it were. on the
first twenty years of the field.

One final introductory note deserves mention here. Because of the close
relationships between arithmetic performance on the one hand, and the inter-
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twined effects of age and educational level on the other. research and models in
this area tend to be more responsive to developmental concerns than is typical in
other specialties within cognitive psychology: see, for example. the accompanying
article on children’s crucial experiences in learning to count (Gallistel & Gelman,
this issue) and the impact this has on early arithmetic performance, reviewed
below. Thus. an adequate model of mental arithmetic must not only cxplain the
variety of effects found in normal adults but must also. at the minimum, be
plausible in its account of age-related changes in performance.' Indecd, the
criterion of developmental plausibility itself. and the additional leverage and
insight provided by developmental data. have been critically important to the field
of cognitive arithmetic. They would probably be beneficial to other specialty areas
as well.

Basic effects

The area of cognitive or mental arithmetic asks a seemingly simple question: how
do people do arithmetic in their heads? That is. how does an educated person.
one who has studied and used arithmetic and mathematics since the earliest years
of formal schooling. accomplish routine acts such as adding or multiplying
single-digit numbers. to say nothing of more complex mathematical opcrations
and processes. or naturally occurring math (c.g.. Lave. 1988)?

Modern cognitive psychology is not the first discipline to ask such questions, of
course. Important work on the relative difficulty of the number combinations, and
on educational practice designed to overcome that difficulty. dates at least to the
early years of this century (e.g., Brownell. 1928: Clapp, 1924: Thorndike. 1922:
Washburne & Vogel, 1928: see Resnick & Ford, 1981, Chapter 2, for an excellent
discussion). And yet much of this work is either theoretically or empirically
tangential to contemporary concerns. Put simply, our current concerns involve the
two basic questions of structure and process: how is a person’s knowledge of
number and mathematics organized in memory. and what are the processes by
which this knowledge is accessed and applied in various settings? Four important
empirical effects illustrate the depth of these questions, and have determined the

overall shape or architecture of the three most current models of arithmetic
performance.

The problem sizeldifficulty effect

Consider the simple. single-digit addition problems from 0 + 0 up through 9+9.

'McCloskey (this issue; see also McCloskey et al., 1985) argues that the models must also be
consistent with the growing body of data on disruptions of arithmetic processing among brain-damaged
individuals. )
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and their companion multiplication problems. the “basic facts” or *‘basic number
combinations.” The most widely reported result in the literature on mental
arithmetic is the problem size or problem difficulty effect, which concerns just
these basic facts. The effect is simply that reaction times (RTs) are longer for the
larger facts: that is, that problems with larger addends or multipliers, and hence
with larger answers. are in some fashion more difficult to solve than those with
smaller numbers and answers. The effect is akin to such effects as word frequency
and semantic relatedness in studies of lexical and semantic representation, both
because it is an overwhelmingly common result and because it motivates the basic
structural and processing assumptions about the memory system.

Groen and Parkman’s (1972) paper reported the first thorough examination of
the problem size effect, and the first serious attempt to explain it in terms of
postulated mental structures and processes. In one of their experiments. first
graders were timed as they gave answers to addition problems with sums less than
or equal to 9. in a production task (state the answer to 3+5). In two other
studies. college adults responded to the entire set of basic addition (Parkman &
Groen. 1971) and multiplication (Parkman, 1972) facts in a verification task
(make a true/false decision to 3+2=5). In all three studies, RT increased
directly as a function of problem size.

Analyses of the children’s latencies evaluated the fit of five different models, all
of which attributed changes in RT across problems to some internal counting
mechanism. The best-fitting model in this set of candidates was termed with min
model. because the minimum, that is, smaller, addend in the problem yielded the
highest R® value. The mechanism underlying this variable was a counting or
incrementing process. according to Groen and Parkman. in which the numerical
value held in memory, the 4 in 4 + 3, was incremented by 1s repeatedly until the
number of increments equalled the min. 3 in this example (this pattern is also
widely known as “‘counting-on”). Thus, first graders were said to perform simple
addition by means of a simple incrementing process. The 400-ms slope of the
regression line was interpreted as an estimate of their rate of mental counting.
400 ms per increment,

Some of the limits of counting models became apparent when Groen and
Parkman examined adult performance, however. Although adults’ addition RTs
were well predicted by either the min or the sum, the 20-ms slope of the
regression function across min was judged an implausibly rapid rate for the
hypothesized incrementing process. Instead, Groen and Parkman suggested that
adult performance to addition problems might be accomplished by some direct
access retrieval process, with counting use as a backup in the event of retrieval
failure. If such failure occurred on 5% of all trials. they reasoned. the obtained
slope could then be interpreted as an artifact of averaging across the two trial
types: direct access trials which required only a constant amount of time. and
trials on which backup counting had taken place at the rate of 400 ms/increment.
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Striking similarities between adults" addition and multiplication performance.
however. were reported by Parkman (1972): that is multiplication RTs were well
predicted by the min or the sum of the two multipliers. The difficulty with this
finding was that a straightforward extension of the min counting model to
multiplication had to claim that subjects multiplied by counting-on. using a unit
size specified by the larger multiplier; for example, for 5 X 4. counting-on by 5s
for 4 increments. Aside from the cumbersome nature of such a strategy, Miller,
Perlmutter. and Keating (1984) noted the internal inconsistency of the extension:
if multiplication problems are solved via counting-on by 5s (or any other unit
size). how could the min model restrict addition to incrementing by 1s? Parkman’s
discussion both acknowledged the limitations of the counting approach, and
suggested that a retrieval process of unknown character might be responsible for
the obtained problem size effect.

Two important points require emphasis here: first, the robustness of the
problem size effect, and second, the implications of this effect for the questions of
mental representation and processing. Concerning the robustness of the effect,
suffice it to say that every published report that has examined RTs on a
problem-by-problem basis has reported the problem size effect. The effect holds
for simple addition (e.g.. Ashcraft & Battaglia. 1978: Parkman & Groen. 1971),
subtraction (e.g.. Siegler. 1987b; Woods, Resnick. & Groen. 1975), multiplication
(e.g.. Campbell & Graham, 1985; Parkman. 1972). and division (Campbell,
1985). It is apparent using both RT and error rates as the dependent variable
(e.g.. Miller et al., 1984; Siegler. 1988b). It is obtained both in the production and
the verification tasks (Geary. Widaman, & Little. 1986: Miller et al.. 1984). And,
it characterizes performance across the entire span of ages. from kindergarten
through college adults (e.g., Hamann & Ashcraft, 1985: Koshmider & Ashcraft.
1991 Siegler. 1987a) and the elderly (Geary & Wiley, 1991).

Concerning the second point. note that the nature of the problem size effect.
its shape and temporal characteristics. is taken as evidence about the nature of the
underlying processes of mental arithmetic. The systematic increase in RT as a
function of problem size was initially, and parsimoniously, proposed to reflect
mental counting in children’s mental addition (Groen & Parkman, 1972). This
counting-on model was judged empirically inconsistent with adults™ rapid per-
formance to the addition facts. however, and was thus rejected in favor of a direct
access model. A variety of empirical reports subsequently provided evidence
against this model as well. For instance, Ashcraft and Battaglia (1978) found an
exponential increasing problem size effect in adults. The non-linearity of the
effect argued against both the min and direct access models. as did Ashcraft and
Stazyk's (1981) results. in which RTs matched the direct access model's predic-
tions only at the implausible retrieval failure rate of 50%. Instead. both papers
argued for a retrieval model of performance, one consistent with predictions
drawn from network representation models of semantic memory. Stazyk,
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Ashcraft, and Hamann (1982), as well as Miller et al. (1984). made comparable
arguments for multiplication performance. In short, the robust problem size effect
was judged inconsistent with purely counting-based explanations. but supportive
of a memory-based model of arithmetic knowledge.

By virtually all current accounts, as described below. this model involves
retrieval from an organized long-term memory representation of fact knowledge:
the characteristics of that organization remain under debate. of course (but cf.
Gallistel & Gelman, this issue). Moreover, because of the emphasis on retrieval
from memory. the term problem size is now generally considered a misnomer.
That is, it misleadingly attributes the increasing RT patterns to a structural
characteristic of the problems. such as the size or magnitude of the min, sum.
product, etc. Several authors have argued, however, that these variables are only
coincidentally found to be significant predictors of performance. because of their
relationship to a more central variable, problem difficulty (e.g., Campbell &
Graham, 1985; Stazyk et al., 1982). Measures of problem difficulty have been
taken from normative studies (Stazyk et al.. 1982). from speeded assessments of
performance (Siegler & Shrager, 1984). and from analyses of children’s classroom
performance and textbooks (e.g., Clapp, 1924; Hamann & Ashcraft, 1986:
Wheeler. 1939). In general. they provide a better fit to RT and error data than do
structural variables (e.g.. Koshmider & Ashcraft. 1991: Siegler, 1987a, 1988b).

The clear advantages of the term problem difficulty are both theoretical and
empirical. First, suggesting that, problem size is the operative variable implies.
wrongly, that something inherent in larger numbers makes them more difficult to
process. Strictly speaking, however, this should only be true if an individual is
counting. More importantly, researchers have always acknowledged a major
exception to the relationship with problem size. that tie problems like 2 +2 and
7+ 7 are routinely found to be more easily processed than the size of their
addends or sums would predict. Even Groen and Parkman (1972) suggested that
first graders must be retrieving the answers to tie problems from memory, given
the relatively flat RT function found for these problems. When problem difficulty
is the underlying variable. however, then tie problems are no longer exceptions to
the processing explanation offered for other problems. Instead, their rapid
processing is a function of their strength in memory - in other words. their low
level of difficulty.

Finally. conceptualizing the effect in terms of problem difficulty argues for
close connections between mental representations of number, as postulated in the
arithmetic models, and representations of lexical and semantic information, in
which words’ and concepts’ accessibility is conceptualized in terms of variables
such as word frequency, strength of storage, typicality, meaning dominance, and
the like (e.g., Collins & Loftus. 1975; Kintsch, 1974: Simpson. 1984). The
processing advantage for frequent words, for instance. stems from their stronger




Cogniiive arithmetic 81

or more accessible representations in memory (e.g.. Allen. McNeal. & Kvak. in
press). We advance a parallel argument in arithmetic, that problems vary in
difficulty due to differential experience, beginning at least with early formal
education if not sooner (but cf. Campbell & Oliphant. 1992). This line of
reasoning is amplified below. exploring ways of escaping the apparent tautology
that more difficult problems are processed more slowly and inaccurately.

Error effects

An early canon of the information-processing approach involved errors in per-
formance. As emphasized in Sternberg's (1969) classic work on short-term
memory scanning and Pachella’s (1974) treatise on speed-accuracy trade-off
functions. meaningful interpretation of RT effects is only possible if error rates
are uniformly low and constant across treatment conditions. A consequence of
this canon was, in retrospect. rather superficial consideration of errors in per-
formance. If speed-accuracy trade-offs could be ruled out as an explanation for
RT effects. then little more in the way of error analyses was customarily provided.

While several investigators departed from this orientation (e.g.. Resnick &
Ford. 1981: Siegler & Robinson. 1982). work by Campbell and Graham (1985),
especially. brought the importance of error patterns to the attention of re-
searchers on adults’ arithmetic processes. Campbell and Graham (see also
Campbell. 1987b; Miller et al., 1984) tested subjects’ multiplication performance
in the production task. and tabulated the kinds of errors that were committed.
For adults. more than 90% of the errors were “table errors.” that is, answers to
another basic number combination in multiplication, rather than merely values
falling within the correct range (0-81). Even more revealing, muitiples of the
problems’ operands (e.g., 32 for the problem 4 X 6). which are variously called
table-related or operand-related answers, far outnumbered errors that merely
stated a legal but unrelated answer (a table error. e.g., 35 for the same problem).
by 79.1% versus 13.5%. Essentially the same patterns, but at lower levels, were
found even for second and third-grade students. relative newcomers to formal
multiplication (see also Cooney. Swanson, & Ladd. 1988).

As described below in connection with Campbell’s model. such error patterns
have strong implications for the nature of the memory representation of arith-
metic facts. For now. the important point is that errors in arithmetic performance
have a more important status than the above comments on the problem difficulty
effect would imply. In particular. their regularity and lawfulness provide addition-
al evidence about the representation of arithmetic knowledge and the overall
architecture of the arithmetic processing system.
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Relatedness effects

Ashcraft and Battaglia (1978) reported that several of their false addition stimuli
were. by accident, correct problems under subtraction (e.g.. 6 +1=5). They
speculated that the abnormally slow and variable performance to these problems
might be due to a relatedness effect among the arithmetic problems and oper-
ations. In fact. a similar effect had been reported several years earlicr. In
Winkelman and Schmidt (1974), addition problems with answers correct under
multiplication (5 + 4 = 20) were processed more slowly and displayed higher error
rates than problems lacking this relationship (see also Zbrodoff & Logan, 1986).
Further investigation (e.g.. Stazyk et al., 1982) confirmed that the effect is not
limited to so-called “cross-operation confusions.” but is also apparent within a
single operation. In their study, Stazyk et al. found that confusion problems in
multiplication (e.g., 7X 4 =21 or 35) were significantly slowed relative to non-
confusion problems (7 X 4 = 18). by up to 200 ms or more for large problems.

In important ways, these confusion effects tap the same phenomenon as the
error effects described above — they display a general relatedness effect in per-
formance. That is. Campbell and Graham’s (1985) table-related errors. identified
in the production task. are precisely those values found by Stazyk et al. to induce
the confusion effect in verification — multiplies of the problems’ operands. In fact.
the strong tendency is for table-related answers, and for effective “‘confusion”
answers, to be adjacent or “near’ neighbors of the correct value, that is, answers
to a problem differing by =1 in one of the operands. Likewise, cross-operation
confusions occur with some frequency in production tasks (Miller et al., 1984).
and indicate a degree of relatedness between the memory representations for (at
least) addition and multiplication. Campbell in particular has demonstrated the
importance of these relatedness effects (e.g.. Campbell. 1987a: Campbell &
Clark, 1989: Campbell & Graham, 1985). and, as described below, has made this
a central feature of his model of arithmetic processing.

The similarity of these effects is important in another way as well. Stazyk et al.
suggested that their obtained confusion effect stemmed from relatedness in the
memory representation of multiplication facts. From the standpoint of processing.
however. they suggested that relatedness disrupted the yes/no decision stage
mechanism. Such a stage is a necessary component of verification performance, of
course, but is presumably not necessary in the production task (but cf. Reder’s
(1982) discussion of simultaneous fact retrieval and plausibility judgments). The
issue raises the question of whether or not the two tasks are directly comparable.
Early indications that the tasks are similar in many respects (e.g.. Ashcraft.
Fierman. & Bartolotta. 1984) have given way to explicit evidence of task
differences (Campbell. 1987b: Zbrodoff & Logan. 1990). In essence. these later
studies show that the stated answer in a verification problem alters the course.
and possibly the outcome, of retrieval.

-
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But the relatedness issue is broader than that. It also implies. for example, that
evidence on decision stage processes should be reconsidered in light of recent
arguments. In particular, our early evidence concerning decision mechanisms
involved the split effect (Ashcraft & Battaglia. 1978: Ashcraft & Stazyk. 1981),
that RT to false trials declines as the incorrect answer differs more and more from
the correct answer. But if the error and relatedness effects are both generated by
a retrieval stage phenomenon, then it is not clear that split effects in addition,
using the verification task. constitute separate evidence for a decision stage
mechanism. Instead, the split effect may be the same as the near neighbor effect
found in muitiplication errors (note, though, that addition errors cannot be
categorized as table-related, table-unrelated, and so forth. so addition data cannot
disentangle these two effects). This question cannot be resolved with currently
available data.

Strategies of processing

A clear implication in Groen and Parkman’s (1972) original results is the notion
that mental arithmetic operations change across ages. from operations that rely
heavily on counting during the first years of elementary school, to retrieval
operations later on (see for instance Ashcraft & Fierman, 1982: Cooney et al..
1988). There can be no doubt of the centrality of counting to the child's earliest
experiences with number. as Gelman and Gallistel (1978) documented. And. as
Siegler (1987b) has noted. counting provides the child a basis for understanding
and computing simple arithmetic facts early in schooling. despite teachers’
widespread discouragement of counting. Thus, the evidence indicates that both
reproductive and reconstructive processes, both retrieval and counting. coexist at
even the earliest stages of formal education.

Several studies have shown the need for two such components in models of
arithmetic processing: one devoted to basic fact retrieval, the other to procedures
like counting or other rule-based performance. For instance, Ashcraft and Stazyk
(1981, Experiment 2) found that performance to more complex addition problems
like 14 +9 involved both the basic fact retrieval processes for 4 +9 as well as a
discernible carry operation (see the description below of work by Widaman et al..
1989, who present a model of such processing). Further, the unusual RT and
error characteristics found to problems like N x0=0 (Parkman. 1972; Sokol.
McCloskey. Cohen. & Aliminosa, 1991: Stazyk et al., 1982) suggested that such
problems were being processed by a rule-based component or strategy, rather
than normal retrieval. ‘

Siegler's work (1987a. 1987b; 1988b). however, provides the most systematic
examination of this strategic component of arithmetic processing. In his studies.
children’s strategies are assessed as they complete the arithmetic tests, and the
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chronometric relationships between strategies and performance are then ex-
plored. In one study (1987a), 99% of the sample of children in grades K-2
reported using at least two strategies, and 62% of the sample reported using three
or more. When performance to individual problems was scored. 44% of the first
graders’ trials exhibited basic retrieval from memory. 38% of their trials showed
min counting, 9% showed a decomposition strategy, and only 1% showed the
inefficient count-all strategy (counting by 1s up to the first addend. then continu-
ing with the second addend). Just as interesting. each strategy had a different
time course and accuracy profile. Retrieval trials averaged 2.1s for first graders,
with a 4% error rate, compared with 6.9s, and 17% errors, for min counting,
4.1s and 8% errors for decomposition, and 16.3 s with 50% errors for count-all. -

Summary

The most basic empirical effect in studies of mental arithmetic is the problem
size/difficulty effect: as problems grow larger. they become more difficult to
process. as shown by RTs and error rates. The pattern of these increases,
furthermore. rules out counting as the single mental process by which adults
perform the basic facts of addition and multiplication.” Instead. such performance
is attributed to retrieval processes operating on an organized. long-term memory
network of fact knowledge. An important degree of relatedness among the basic
facts of arithmetic has been documented, both in the form of interference and
errors in production tasks. These effects are not only important empirical
demonstrations, but also constrain the nature of possible models. Furthermore.
there are several consequences of processing a false answer. as typically tested in
the verification task. Split effects show that an answer wrong by a small amount is
more difficult to reject than an answer wrong by a larger amount. It is not yet
clear whether this effect is due solely to a decision stage mechanism. interference
during a retrieval stage. or a combination of the two. Finally, strategies other than
retrieval (if retrieval can indeed be considered a strategy: see Ashcraft. 1990:
Bisanz & LeFevre. 1990) are amply demonstrated among young school children,
as are the contributions of other procedural or rule-based performance in adults
(e.g.. Widaman et al.. 1989).

*In fact, in Siegler's view (1987a, 1988b), it is erroneous to search for any single process that
characterizes all of a sample’s or even subject's performance, that averaging across subjects will
invariably and misleadingly combine across multiple strategies with different time characteristics.
Note, however, that beyond approximately the 3rd or 4th grade level, the bulk of processing for the
basic facts of addition and multiplication is generally retrieval (e.g., Ashcraft & Fierman, 1982;
Cooney et al., 1988). Indeed, in Siegler's model, there is exactly this trend toward greater and greater
reliance on retrieval.
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Three current models

I turn now to a discussion of three current models of simple arithmetic processing.
At a fairly macroscopic level. these models share several basic assumptions:
performance on simple arithmetic facts depends on retrieval from long-term
memory; the memory representation is organized and structured in terms of the
strength of individual connections. and reflects varying degrees of relatedness
among the elements; and the strength with which the elements are stored. hence
the probability or speed of retrieving information. depends critically on ex-
perience, especially acquisition, rather than on numerical characteristics inherent
in the information itself.

The models vary considerably in how they deal with the several empirical
effects reviewed above. however. and they naturally differ in emphasis and focus;
for example. Siegler’'s model is the most developmentally thorough of the three,
but the least concerned with processing effects observed in adults. The models
also differ in their complexity. Indeed, it is not inaccurate to view them, in their
chronological order. as successive revisions and elaborations. with each model
accommodating newer empirical evidence as it became available. What follows is
an exposition of these models. along with a description of their most prominent
contributions and weaknesses. Table 2, at the end of this discussion. provides a
thumbnail sketch and summary of each model.

Ashcraft’'s network retrieval model

As discussed above. my early research (Ashcraft & Battaglia. 1978; Ashcraft &
Stazyk, 1981; Stazyk et al.. 1982) revealed strong evidence against counting-based
models of adults’ performance. Instead. the results indicated that basic addition
and multiplication facts were represented in memory in an organized network of
information. accessed and retrieved from the network via a process of spreading
activation.

As proposed in Ashcraft (1982, 1987), the two most important structural
aspects of the network involved the concepts of strength and relatedness among
nodes. In the network. each problem-to-answer association was represented in
terms of strength or degree of accessibility. Furthermore. the network also coded
the degree of relatedness among problems and answers. in that adjacent. “near
neighbor” nodes were more strongly interlinked than more distant. non-adjacent
nodes. Retrieval from this network involved a spread of activation triggered by
three sources: the problem addends, the answer stated in the problem, and those
nodes in the network which had themselves been activated during retrieval.
Activation from these sources spread throughout the network in parallel, with
nodes accumulating various levels of activation depending on their strength and
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relatedness. The most highly activated node was the one selected as the answer to
the problem at the end of retrieval, and elapsed retrieval time was a direct
function of the accrued activation at that node.

Thus, as an example, the answer 24 to the problem 8 X 3 was the node in the
network standing at the intersection of the “‘parent nodes’’ 8 and 3. This answer
node was stored with a particular strength value. and with multiple pathways of
differing strength to its neighbors, essentially the answers to the other 8 times”
and *“3 times” facts. Retrieval time, described metaphorically as the “‘distance”
traversed in the network until an intersection was found, was predicted to be a
function of the strength variable, because strength was the governing value in the
accumulation of activation.

In the 1982 description of the model, there was no explicit discussion devoted
to the source of the varying strengths among nodes in the network. The paper
described the analogy between problem difficulty and the general semantic
distance effect, and suggested that either subjective ratings of difficulty or actual
problem size were indices of the underlying structure of the network. Thus. the
original speculation about a table-based memory representation (Ashcraft &
Battaglia, 1978) was abandoned, but not yet replaced with a specific proposal on
the source of problem strength or difficulty.

Within three years. however, an explicit rationale was advanced (Ashcraft,
1985; Hamann & Ashcraft, 1986), that the strength with which nodes were stored
and interconnected was a function of frequency of occurrence and practice,
especially in early education. Computationally, for its basic memory strength
values. the simulation (Ashcraft. 1987) used the Siegler and Shrager (1984)
estimates of associative strength between problems and correct answers. con-
verted to percentages. This pattern of differential strengths was corroborated by
data taken from elementary school textbooks. which showed problem size and
difficulty to be a direct function of both order and frequency of presentation
(Hamann & Ashcraft, 1986). In this tabulation, smaller problems appeared
earlier in instruction, and with far greater frequency. than larger problems. The
only apparent exceptions here were addition problems with addends of 0 and 1,
which occurred as infrequently as the large facts. Accordingly, the strength values
in the model were computed as a function of two factors: initial strength and
relative frequency of occurrence.

The most recent version of the model (1987) therefore asserted that the nature
of instruction on arithmetic during early schooling. among other influences, has a
direct effect on the strength of problem representation in long-term memory. This
effect remains in evidence across the developmental span according to the model.
given the assumption that the differences in problem frequency, apparent in early
grade school, are maintained across later experience.

In short. the model asserted a straightforward frequency-to-strength hypothesis
to account for problem difficulty effects during retrieval. Note that if some other
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factor were responsible for the RT patterns. then the correlations between
frequency of occurrence and RTs should not only be low, but in particular they
should be lower than the intercorrelations of RTs across grade levels. Instead, the
frequency-RT correlations are quite strong (sec Figure 1), and are uniformly
higher across grades than the RT intercorrelations. as shown in Table 1 (all data

Table 1.

Correlation and regression values between reaction time (RT) and

problem frequency®

Correlation of

Correlation of

Grade Slope Intercept F. RT to frequency RT to College RT
1° -228.4 13986 3263 -.699 441

4 -42.0 3960 14.52 -.547 .405

7 =223 2190 21.64 ~.624 .505

10 -21.3 1952 23.74 —.641 .555

College -6.4 1249 19.10 —.485 -

“All data from Hamann and Ashcraft (1986). Slopes and intercepts in milliseconds. The
college F is based on 1, 62 df, all others on 1, 34. All Fs and rs are significant beyond

0.05.

PAll analyses are based on the cumulative frequency of problems in grades K-3. The
corresponding regression values for first graders’ RTs correlated with problem fre-
quency in the first-grade texts only are:

—283.2

10965

39.95

-.735

441,
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from Hamann & Ashcraft. 1986).” Despite evidence favorable to the model such
as this. however, the assumption of differential problem frequency across the
entirc developmental span is apparently controversial (e.g.. McCloskey, Harley,
& Sokol, 1991). Further discussion of this point is provided in the conclusion of
the present paper.

The model also made predictions about priming effects and automaticity of
retrieval, by means of its rather straightforward assumptions about the spread and
decay of activation. In particular, once a set of nodes is activated by a problem.
the level of activation decays across some relatively short period of time. During
this period. however, RT to a subsequent problem that accesses any of these
nodes should be altered. This is an identical prediction to. for example. priming

effects in semantic memory (e.g.. Ashcraft. 1976; Loftus & Loftus, 1974). By the

same priming mechanism, advance information about an upcoming problem was
predicted to alter RT performance to the target problem. Several studies have
now confirmed these general predictions (e.g.. Campbell. 1987b, 1991; LeFevre,
Bisanz, & Mrkonjic, 1988: Stazyk et al.. 1982. Experiment 3). Koshmider and
Ashcraft (1991). further. have shown how automatic and conscious priming
effects in retrieval vary by age and problem difficulty.

Likewise. the model accounted for split and confusion effects on the basis of
activation. Consider the false problem 8 x 3 =32. If x and y are. respectively. the
answer stated in the problem (32) and the answer retrieved from memory (24).
then the decision stage mechanism has to discriminate between these values,
based on their respective levels of activation. Neighbor nodes that received
especially high levels of activation during search, for example 32. should disrupt
decision processing to a greater degree. given that the discrimination is more
difficult as the levels of activation of x and y converge. Again. a variety of studies
have presented evidence of the split and confusion effects (e.g., Ashcraft &
Stazyk, 1981: Stazyk et al.. 1982;: Winkelman & Schmidt, 1974: Zbrodoff &
Logan. 1986). although a purely retrieval-based explanation has also been
proposed (Campbell, 1987a, 1987b). _

Finally. and especially relevant for younger subjects. the entire retrieval and
decision process was said to occur in parallel with a procedural-based solution
attempt. in which counting or other reconstructive processes began simultaneous-
ly with retrieval. Only among younger subjects. however, would retrieval process-
ing be expected to be slow or to fail with any regularity. conditions under which
the “horse race”” between declarative (retrieval) and procedural routes might
indeed be won by procedural processing (as noted above. procedural-based
performance was also expected for problems with addends equal to 0 or 1).

*I wish to thank an anonymous reviewer for suggesting this line of reasoning and evidence. Note
that these correlations and scatterplots exclude problems with addends equal to 0 and 1, given that
these problems are generally conceded to be performed via rules rather than network retrieval.

——-i
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Siegler's distribution of associations model

Two shortcomings of the network retrieval model. as well as a theoretically
motivated dissatisfaction with prevailing methods of data analysis. were promi-
nent among Siegler's reasons for proposing his distribution of associations model
(Siegler. 1988b: Siegler & Shrager, 1984). The first shortcoming involved the
relatively underdeveloped procedural knowledge component of the network
retrieval model. Because retrieval was its primary focus, the model described in
Ashcraft (1987) made explicit reference only to min counting as the method by
which problems could be reconstructed (but cf. Hamann & Ashcraft, 1985).
Siegler’s empirical work. however, demonstrated clearly that children possess a
variety of solution strategies. He described their “‘uncanny ability.” further. to
rely on one of these overt strategies in just those cases where overt strategies are
most helpful, that is, on problems especially prone to error, on which simpler
retrieval is especially difficult, and the like. Thus, Siegler's distribution of
associations model contains explicit machinery to invoke these overt solution
strategies. Notice that strategic solutions were proposed to occur after a failed
retrieval attempt in Siegler’s original model, instead of in parallel with retrieval as
is the case in Ashcraft (1987).

The second shortcoming involved the errors that subjects make. In its focus on
retrieval. against the then prevailing preference for counting approaches. the net-
work retrieval model failed to address the error effects necessary for a complete
understanding of performance. Indeed. it had to appeal, in post hoc fashion, to
the pattern of activation after retrieval in order to suggest that incorrect answers
would be essentially those nodes with elevated levels of activation.

In contrast, Siegler and Shrager (1984) proposed that the memory representa-
tion of arithmetic facts contains both correct and incorrect answers. In this
scheme, associations between problems and answers (and, later, multipliers. etc.)
are formed each time a child encounters an arithmetic problem. regardless of the
setting. and regardless of the correctness or incorrectness of the answer. In other
words, if a child mistakenly computes (say via counting-on) 7 as the answer to
4+ 2. then an association is formed between that problem and the mistaken
answer. For reasons related to highly practiced counting associations, children
may mistakenly offer 5 as the answer to 3+ 4. which would again store that
association in memory. An explanation of retrieval errors, thus. was quite natural
within the model: either the retrieval process accessed one of the incorrect
associations stored in memory, or the overt strategy that governed performance
operated inaccurately.

The interesting consequence of the varied learning history of different prob-
lems and answers is that associations vary considerably with respect to their
strength (and, obviously, their accuracy). That is, problems like 2 + 2 are rarely
solved incorrectly. so relatively few associations to incorrect answers are stored in
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memory. The distribution of associations here is said to be “‘peaked,” in that
strength to the correct answer 4 is quite high. and strengths of associations to
other answers. if there are any, are uniformly low. In such a situation, retrieval
occurs rapidly and smoothly. Few if any interfering associations disrupt the
retrieval process. and the retrieval probability of the correct association. the ratio
of its strength to the sum of associative strengths for all answers to the problem.
seldom falls below the child's confidence criterion for responding. A problem like
5 +9, however, experiences far more counting-related errors during acquisition,
and hence yields a relatively “flat” distribution of associations. In this case. the
associative strength to the correct answer 14 may only be slightly higher than
strengths to other, incorrect answers. Retrieval here is far more likely to access an
incorrect answer, and/or to yield a strength well below the confidence criterion.
In such cases, retrieval may be reattempted and/or abandoned in favor of some
overt strategy.

Finally. the Siegler model is quite explicit about the matter of strategy choice.
In Siegler’'s view, the decision to abandon a retrieval attempt and initiate a
counting process is not a matter of metacognitive, conscious choice. Instead, the
model predicts this choice to be a rather mechanistic one, based on two adjustable
internal values: the confidence criterion and search length parameters. The
confidence criterion is an internal threshold above which retrieval probability
must fall before the child offers an answer. As indicated above. this probability is
the strength of the answer relative to the strengths of all answers associated with
the problem. Thus, if a child sets the confidence criterion at a value like 0.50, and
then retrieves an answer with a retrieval probability of 0.80, the answer will be
stated. If the retrieved answer’s probability value falls below the criterion, then
repeated attempts are made at retrieval. but only if the subject’s search length
(number of scarches) has not been exceeded. Once the number of retrieval
attempts exhausts the search length parameter, then the problem is reformulated;
that is, its representation is elaborated, say. by representing the addends phys-
ically with one’s fingers. Then, some counting process is initiated. and the result
of the count is stated as the answer to the problem.

The major change in Siegler's recent revision (Siegler & Jenkins, 1989)
involves a strategy choice mechanism. In the revision, retrieval is no longer the
default strategy for a first attempt at solution. Instead. the model first selects a
strategy based on the distribution of “strategy strengths™ stored individually with
each problem. and then attempts to execute that strategy. The strength of a
strategy reflects both its accuracy and its speed of execution.’ Thus, problems with

*The selection mechanism for a strategy is computed in the same fashion as a retrieval probability,
that is, the strategy's strength divided by the summed strengths of all strategies. A difference,
however, is that retrieval probability is specific to a single problem, whereas a strategy’s probability of
selection is based on its speed and accuracy for that problem and all others with similar characteristics,
for example, same or similar first addend. This necessitates considerable “record keeping™ on the part
of the memory representation, since the stored strengths must be continually updated based on the
speed and accuracy outcomes of strategies, both for specific problems and for problems in general.
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flat distributions of associations will presumably be attempted with a counting or
reconstructive procedure: that is the strength of the retrieval strategy for such
problems would probably be lower than the strengths of other strategies. Prob-
lems with higher strengths for the retrieval strategy, and with more peaked
distributions, are commonly retricved, subject to the same search length parame-
ter as before. Despite the modifications in the model, it is still the case that
retrieval eventually dominates processing. With experience. the strength of
retrieval and the strength of correct answer associations tend to overpower other
strategies and associations.

A major advantage of Siegler's model is that it provides a more plausible
explanation of errors in processing than the network retrieval model. not only
because of the absence of error mechanisms in the latter, but also because of the
learning mechanism Siegler discusses: any erroneous solution — and there are
many of these in childhood — has an effect on the memory representation, with
repeated errors or relatively infrequent correct solutions yielding a flat dis-
tribution of associative strength, hence slower and more error-prone perform-
ance. Furthermore, the model does an admirable job in predicting the various
latency. error, and solution strategy results obtained in children’s addition
(Siegler & Shrager, 1984). subtraction (Siegler. 1987b), and multiplication (Sieg-
ler, 1988b). It has also fared well in discussing strategy choices in other domains,
for example, spelling (Siegler, 1986). And finally, it is now being applied rather
successfully to the performance of different subgroups of children, notably
Siegler’s “‘perfectionists™ (1988a), Geary's (1990) mathematics-disabled children,
and Geary, Fan, and Bow-Thomas's (in press) Chinese and American first
graders. As an example. Geary (see also Geary. Brown, & Samaranayake. 1991)
reported that normal children exhibited a strategy shift from counting-on to
retrieval during first grade, as well as an improvement in their rate of strategy
execution. A sample of math-disabled children who showed no academic im-
provement across the year displayed no tendency toward more frequent retrieval,
and no improvement in their rate of counting.

Despite this support. however, there are still some difficulties with Siegler’s
model as a general explanation of mental arithmetic performance. It is not
entirely clear, for example, that the distribution of associations model deals
plausibly with the problem difficulty effect beyond the early stages of elementary
education. That is, the most apparent explanation for the problem difficulty effect
in children is the averaging of performance across problems and subjects, which in
Siegler’s (1987a) analysis of young children’s performance clearly confounds
problem difficulty with multiple strategy use. This averaging, in fact, was the
source of Siegler’s dissatisfaction with then prevailing methods of data analysis
and resultant theorizing.

But for older children and adults, the continued significance of the problem
difficulty effect is less explainable in the model, because their performance is
admittedly due to retrieval the vast majority of the time. For instance, Siegler and
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Jenkins' (1989) simulation reaches the point at which 99% of the trials are
accomplished by retrieval; Geary and Wiley (1991) found that retrieval accounted
for 88% of their college students’ performance. It is safe to assume that the
associative strengths for correct answers are, for the typical adult. large enough to
exceed the confidence criterion, even though those strengths tend to be lower for
larger, more difficult problems. And yet. the model does not predict RT to be a
function of associative strength. Instead, the solution time on retrieval is pre-
dicted to be “'proportional to . . . the number of searches on each problem before
an answer is stated’ (Siegler & Shager, 1984, p. 250). A straightforward reading
of the model. then. suggests that since associative strength will be relatively high.
the need for repeated searches would be correspondingly low. If so. then most re-
trieval trials would require only one search. predicting no RT increase at all. And
even at the highest reasonable values for the search length parameter, say 4 or 5, it
is not clear that this variation alone could predict the full problem difficulty effect.
Thus. the model’s account for problem difficulty effects may be somewhat implaus-
ible beyond the ages at which overt. reconstructive strategy use is common.

Note that Siegler’s model does not explicitly discuss the verification task, or
how the model predicts performance on that task. As such. the interference
nature of verification effects is not generated directly by his model. Instead. the
model's adequacy in dealing with the relatedness effects must be considered from
a different perspective: would it generate the same kinds of errors in simulating
the production task that have been shown to disrupt processing in verification
performance? The answer to this question is yes. Siegler's model provides an
explicit basis for the relatedness effect, in terms of each problem’s associations to
both correct and (potentially many) incorrect answers. There is thus a strong
likelihood that a related answer. say 24 for 4 X 8. will match one of the stored.
incorrect answers in memory. Thus, a fairly minor addition to the model.
involving some sort of procedure for checking the stated answer against stored
associations. might generate the interference effects that have been reported. The
same mechanism would also predict the split effects described above. since
incorrect addition answers wrong by a small amount are far more likely to have
been stored in memory than answers wrong by a larger amount. In fact. if this
additional mechanism does not violate the spirit of the model. the variations in
associative strength to incorrect answers would provide a more detailed basis for
prediction than simple levels of split. As an example, the incorrect association
3+4=35 has considerably more strength than 3+ 4 =9. though both problems
have a split equal to 2. The model should therefore predict greater disruption of
performance to the former problem. No such specific tests have been reported.
however.

Campbell’s network interference model

Campbell's model of arithmetic performance (1987a: Campbell & Graham. 1985)




Cognitive arithmetic 93

represents an important modification of both Ashcraft’s and Siegler's frameworks,
although it is not a wholesale departure from those approaches. For example, it
shares the important notions of spreading activation and strength of stored nodes
with Ashcraft’s model. It shares with Siegler’s the conviction that the nature of
errors committed by subjects is critically informative about the underlying mem-
ory representation: that is. errors provide an index of the relatedness among
stored elements. Unlike the other two approaches. Campbell’s unique contribu-
tions are his focus on interference as an unavoidable part of the retrieval process.
and his elaboration of the kinds of stored connections that are potent influences
on adults’ RT performance.

The telling pattern of errors in multiplication, discussed previously. and its
implication for the structure of the memory representation, form the core of
Campbell’s new perspective on mental arithmetic. There is no doubt, of course.
that retrieval is “operand driven,” that the mechanism of accessing stored
information is activated and shaped by the operands in the problem. In other
words, Campbell’'s model makes the uncontroversial claim that the values in a
problem trigger the retrieval process. As in the simpler network retrieval model.
this process is conceived as a spread of activation through the network, with
nodes activated to different degrees by virtue of their different associative
strengths.

Campbell notes. however, that retrieval cannot be influenced solely by the two
separate operands in a problem. If only the operands trigger the spread of
activation. then the system will retrieve both 24 and 32 as answers to 8 X 4, since
both answers have associations to both operands (c.g., Campbell & Graham,
1985, p. 352); this is the case under Campbell's assumption that answers are not
stored redundantly in the network (i.e., there is only one 32 node; but cf.
Ashcraft. 1987). Thus. in Campbell’s proposed network. there are not only
associations or pathways from individual operands to answers. but also associa-
tions from whole problems to answers. Thus. in a straightforward production
task. the outcome of retrieval will depend on two distinct kinds of parallel
activation spreads. one originating from the individual operands. and one from
the problem as a whole.

Because the spread of activation from operands will activate not only the
correct answer but also the entire set of multiples from each operand, Campbell’s
model speaks of the “candidate set” of answers. that is, the set of nodes activated
during retrieval. For the most part, the candidate set will contain table-related
(operand-related) values. Because of the cumulative ‘effects of errors across
development, however, there:will: also be some spurious and incorrect associa-
tions coded in the network. Edth such connection, if activated during retrieval.
will “promote™ another value into the candidate set. at a level dictated by the
strength of that connection.

The pervasive influence of interference during routine retrieval is quite appar-
ent in this scheme. Each act of retrieval activates a large number of associations.
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and a set of candidate responses. The retrieval process here must therefore
discriminate among the elements of the candidate set, selecting the most strongly
activated value from the entire set. Thus, reminiscent of a pandemonium-like
system (Selfridge, 1959), accurate performance rests on greater activation of the
correct answer than any of the remaining candidates. Interference effects, of
course, result from retrieving an erroneous but related node, with a probability
depending on the strength of that erroneous association and hence its level of
activation.

Campbell's scheme has been criticized recently as less parsimonious than might
be desirable, in its profusion of the different types of associations embedded into
the network (e.g., McCloskey et al., 1991). It is indeed difficult to ascertain in the
predictive sense what the exact chronometric or error characteristics of per-
formance will be, since independent assessments of the strength of the various
associations are not provided in the model (but see Campbell & Oliphant's (1992)
description of their simulation model). On the other hand, Campbell's empirical
demonstrations, especially the error priming effect, argue strongly that such a
“tangle” of associations is justified.’ In error priming. activation stemming from
one trial influences the speed and accuracy of a subsequent trial. Thus, Campbell
(1987a,1991) found that retrieving an answer that is also a strong but false
associate to a subsequent problem will in fact increase the likelihood that the false
association governs the subsequent retrieval. For example, 56 is a frequent error
to the problem 7 X 9. When it is correctly retrieved for the problem 7 X 8, that
retrieval of 56 increases the probability that subjects will erroneously respond
“56” to the problem 7 X 9 on a subsequent trial. In effect, the 56 has been primed
by the earlier retrieval, and its residual activation interferes with the subsequent
retrieval for 7 x 9.

Note that this error priming effect parallels inter-trial effects found elsewhere,
for example in the semantic memory literature (e.g., Loftus & Loftus, 1974). As
such, Campbell's demonstrations (1987a; Campbell & Clark, 1989) are important
for two reasons. First, they expand the scope of the relatedness effect. In
particular, relatedness can lead to either facilitation or disruption of performance,
and not only within a particular trial (e.g.. the confusion effect). but also across
trials; at short lags between related trials, recently retrieved answers are inhibited,
but then are promoted as errors at longer lags (Campbell, 1990. 1991). And
second, they indicate the suitability, or even necessity, of spreading activation
models in arithmetic performance. That is, these inter-trial influences on per-
formance imply that a general carry-over mechanism is insufficient. The carry-
over is specific to the information accessed in the previous trials, and hence
implicates the continued influence of that specific information. Precisely such

*Campbell and Graham (1985) also draw an analogy between learning the basic arithmetic facts
and paired-associate learning, with the parallel expectation that the similarities among arithmetic facts
would generate substantial interference during acquisition.
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patterns are characteristic of spreading activation models (as indeed are data
indicating an influence of the answer in a verification task: e.g., Campbell. 1987b;
Zbrodoff & Logan. 1990). :

The network interference model holds an advantage over Siegler’s framework
because of its elaborated assumptions about network storage and retrieval
processes: automatic retrieval cffects are expected in Campbell’s model. but not
discussed directly by Siegler. Campbell postulates a network structure in which
spreading activation accumulates and persists across time, but nothing in Siegler’s
model suggests a role for spreading activation. or predicts trial-to-trial effects.
The role of answers in influencing RT is also clear in Campbell’s model. As stated
above, Siegler does not discuss how verification performance might operate within
his model. and the Ashcraft model was completely silent on error effects.
Conversely, Campbell's model is essentially silent on the issue of strategies other
than retrieval, and their influence on processing. Just as Siegler’s special focus has
been on children’s strategies. Campbell’s has been on adults” RT effects.

Towards an integrated model

As indicated in the review, and in Table 2, the three current models show broad
agreement on several fundamental principles: arithmetic facts are stored in an
interrelated memory representation; the stored associations differ in their
strength; retrieval has a central role in performance. even for young children; and
strategy-based processing, especially common among younger children. yields
substantially to retrieval across development. While not minimizing the dis-
crepancies. it would seem that a judicious borrowing of features across models
could integrate the models. What follows is a sketch of how such borrowing might
modify the network retrieval model; for obvious reasons, I do not suggest
modifications of others’ models.

Consider the Ashcraft (1987) network retrieval model with the following two
changes and elaborations:

(a) Each operand has stored pathways or associations to a variety of answers.
correct as well as incorrect; that is, Siegler’s and Campbell’s assumption. These
associations. which will vary in strength as a function of experience. will tend to
reflect the error, confusion. and possibly the split characteristics described above.

(b) The procedural knowledge component is elaborated to capture the variety
of strategies observed among children, as well as the more idiosyncratic strategies
that are sometimes invented (e.g., the variety of specific methods that fall under
the “‘decomposition™ or ‘“‘solve from known facts” strategies; see Hamann &
Ashcraft. 1985; Siegler. 1987a). Notice that. as in the original model. some
associations in the network will be of very low strength. such that functionally the




Table 2.

Summary of arithmetic models
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Modecl

Mental representation
of facts

Hypothesized
mental processes

Effects predicted

Effects not predicted

A. Groen and Parkman's
min model (1972)

B. Groen and Parkman’s
direct access

C. Ashcraft’s nctwork
retricval
(1982, 1987)

©

Siegler and Jenkins
distribution of
associations

(1989)

m

Cambell (1987)
network
interference

N/A

Unspecified

Interrelated
network

Problem and
strategy
associations

Interrelated
network

Counting; increment
by Is

Direct memory
retricval plus
backup counting
Retrieval via
spreading
activation

Retrieval and
strategies via
associations,
confidence
criterion, search
length

Retrieval via
spreading
activation

Counting; lincar
RT increase

Retrieval and
counting; lincar

RT increase

Problem difficulty;
relatedness; retrieval
and counting; priming;
automaticity

Problem difficulty in
children; mixture of
strategies; errors

Problem difficulty;
relatedness; priming;
automaticity; errors

Retricval; errors;
relatedness; mixture of
strategies, priming
Errors; relatedness;
mixture of strategies;
priming

Errors; non-counting
strategies

Problem difficulty on
retrieval trials;
priming, automaticity

Mixture of
strategics
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relevant problem may always be solved by a rule rather than by retrieval (e.g..
N % 0), Siegler's strategy strength mechanism may in fact operate in exactly this
fashion. :

Such a revision, note. maintains the notion that retrieval and strategy solutions
are triggered in parallel, with the faster route governing performance. This may
be most easily thought of in terms of Siegler's strategy associations, in which
individual problems also have associative connections. of varying strengths. to
strategies that have proved successful in previous circumstances. Note. however.
that this proposal is still fundamentally different from Siegler's, in which only one
association is operative at any given moment. Instead, this revision claims that
strategy associations are accessed via spreading activation, as are answer associa-
tions. according to their individual strengths. Thus, all associations. regardless of
their strength. receive activation during processing. but of course the degree of
activation will depend on association strength. This is virtually identical to
conventional network assumptions regarding semantic relatedness, typicality, etc.
(e.g.. Collins & Loftus, 1975).

One prediction of the parallel operation of retrieval and procedural processes
might be that trials being processed via a strategy may be disrupted by retrieval-
based interference, and vice versa. This issue, among others, simply cannot be
decided yet. largely for lack of evidence. For example. evidence on the relative
independence of retrieval and procedural components (see the discussion of
modularity below, based on evidence from brain-damaged individuals) might
argue against such interference across components. Interference might, however.
be a natural prediction within, say, a neural network approach (e.g.. Churchland,
1990; McCloskey & Lindemann, 1992). It of course remains to be seen whether
an integration of the models. such as that sketched here, will yield new insights
into these issues.

Two larger issues
Rules of arithmetic

This review, like the bulk of the research. has focused on the simple, basic facts of
arithmetic, especially addition and multiplication. Yet clearly. our understanding
of arithmetic and mathematical cognition is impoverished if we neglect more
complex computations, and the rules of arithmetic by which the computations are
performed. That is, for problems like 147 + 259 or 90 X 94, there is a sequencing
of steps or components, including retrieval of course, but also operations such as
carrying or borrowing, keeping track of place in the sequence, maintaining
intermediate answers, and so forth. Consider the following lines of research,
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presented only briefly here, as examples of this larger scope of arithmetic
investigations.

Work by Widaman et al. (1989; also Geary & Widaman, 1987) has examined
adults’ processing in complex arithmetic situations. in particular evaluating RT to
verification problems in terms of a componential model of performance. The
model assesses the relative contributions of several elementary information
processes, including simple fact retrieval, the encoding of multiple digits, and
carrying.® For a problem like 48 + 16 = 64, for instance. total RT is composed of
fact retrieval time for the 8 + 6 = 14 step, an increment of time for comparing the
4 in the ones column to the value stated in the problem. time for carrying the 1 to
the tens column, and so forth. The analyses also included a self-terminating
decision component, to reflect subjects’ shorter RTs to incorrect problems in
which the error appears in the 1s column versus the 10s column of the answer
(e.g.. faster RT to 46 x 8 =366 vs. 358).

Part of the strength of this work is that it relates performance on the separate
components of RT to more traditional measures of ability and performance, for
example, assessments of working memory capacity or resources, perceptual or
spatial abilities, and the like (e.g., Geary & Widaman. 1987). Such demonstra-
tions confirm the utility of RT tasks and models for discovering the underlying
cognitive bases of arithmetic skills, and also provide an exploitable avenue of
investigation for studies of mathematics disabilities; for example, the Geary et al.
(1991) study of math-disabled children.

A second approach to this broader class of ‘‘rules of arithmetic” is the now
classic work by Brown and Burton (1978; Brown & VanLehn, 1980; VanLehn,
1990) on children’s subtraction. This research, and the cognitive modeling based
on it, relies on extensive analysis of the patterns of errors that children commit
when working complex subtraction problems in a pencil-and-paper task. In
particular, the approach diagnoses bugs in children’s procedural or rule knowl-
edge — (mis)understandings of one or another component of the complete set of
subtraction rules. )

Consider the problem 42-3. to which a child might respond with the answer 41.
Brown and Burton’s analysis claims that the given answer reflects a bug in the
child’s understanding of the borrowing rule: “‘subtract the smaller from the larger
value”, i.e.. subtract 2 from 3. A more subtle bug is apparent in the problem

*The table-retrieval network model proposed for fact retrieval by Widaman et al. was not
considered in the Current models section because it fails to specify a number of important mecha-
nisms. For example, a problem is retrieved by a spread of activation into the area of the network
defined by its operators; for 7 X 6, the entire area beginning at the origin (0, 0), bounded by the (7)
column and (6) row and the intersection at (7,6). The explication of the model does not indicate,
however, whether all the intersections contained in the activated area are themselves activated, and
thus whether any problem within that area would be facilitated as a target of the activation spread. If
they are activated, then the model predicts much wider priming effects than are found; if they are not
activated, then no apparent mechanism predicts the error and relatedness effects reviewed above.
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801 — 158 = 553. Here. the bug avoids borrowing from zero. by taking both
borrows from the leftmost column. the 8 in 801.

The important point here is that children will sometimes err not in their simple
performance on facts. but instead on the procedural aspects of the operation. that
is, on the rules for borrowing. Such demonstrations are rich in empirical and
educational implications, of course. For present purposes, though, note that the
theoretical ramifications are especially interesting. The Brown and VanLehn
research. along with the work by Widaman et al.. adds significantly to the
evidence for two classes of arithmetic knowledge. facts and procedures. each with
its own characteristics for accuracy, each acting in at least partial autonomy from
the other. In ways just beginning to be explored. this evidence speaks to the
overall organization and architecture of the cognitive arithmetic system.

Architecture

Reconsider for a moment the simple rules for adding or multiplying with an
operand of 0 or 1. The evidence from RT studies was somewhat equivocal on the
nature of processing these problems. Some evidence indicated that these prob-
lems were retrieved in the same way as larger facts, and some indicated they were
processed via special rules. Stazyk et al. (1982; also Parkman, 1972) found that
verification performance to N X 0 problems was especially slow and error prone.
They concluded that *zero problems” are routinely performed by means of a rule.
rather than straightforward retrieval. On the other hand. Miller et al. (1984)
found that these problems were not performed unusually slowly in a production
task. Adults’ normative judgments indicate that these are low-difficulty problems.
On the other hand, these problems appear with substantially lower frequency in
arithmetic textbooks than problems with non-zero small operands (Hamann &
Ashcraft. 1986).

Research by McCloskey and his colleagues (e.g.. McCloskey, this issue;
McCloskey et al.. 1985; Sokol et al., 1991) has found that performance to the
zero problems in multiplication can be very informative about the architecture of
the mental arithmetic system. In their case studies of patients with brain damage.
intriguing patterns of dissociations between fact retrieval and rule-based per-
formance suggest that these two components may in fact be autonomous modules
in the arithmetic system (see also Luria, 1980; Warrington, 1982, presents
evidence of a similar dissociation).

The case studies reported in Sokol et al. (1991; also McCloskey, Aliminosa. &
Sokol, 1991) are particularly informative. One of these patients (PS), with left
temporal lobe damage, erred fairly frequently in basic fact retrieval — for non-zero
problems. approximately 15% errors. Her performance on complex multiplication
showed frequent errors in basic fact retrieval but hardly any errors on the
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procedures of multiplying (e.g., carrying, shifting columns). Remarkably, she was
almost always inaccurate on N X 0 problems in early test sessions (97.5% error
rate). and yet was 100% correct on the zero problems embedded in multi-column
multiplication problems, for example, 90 X 94.

The Sokol et al. analysis of this pattern involved two steps. First. the similarity
of PS's errors in simple and complex multiplication suggested that a basic fact
retrieval component was common to both problem types. and was fairly impaired
in PS’s case. Her accuracy on the multiplication algorithm. however. suggested
that a rule-based component was relatively unimpaired. with one exception. This
exception appeared to be the special case rule N X0=0. In some fashion, PS
seemed to have “lost” this rule, accounting for the 97.5% error rate. In
multi-column multiplication. however, she followed a different method. the
common “bring down the zero” rule, and thus avoided her incorrect N X 0 rule.
Sokol et al.’s second case study also demonstrated uniform inaccuracy on N X0
facts (both patients advanced N as the answer to these problems). yet very
accurate computational performance when the multi-digit problem involved a
zero (93%).

As described elsewhere (e.g.. McCloskey, this issue: see also Deloche &
Seron. 1987). these two patients are not by any means the only source of evidence
for such dissociations in arithmetic performance. For the present review, how-
ever, this evidence is sufficient to make the following point. Theories and models
in mental arithmetic have long speculated that fact retrieval, procedures such as
carrying and borrowing. and special rules like N X 0 =0, reflect separate compo-
nents in the overall processing system. Yet. standard methodologies gave only
indirect and somewhat inconclusive evidence about this division of labor. The
reports of dissociations among neurologically impaired individuals. however,
indicate quite strongly that separate, autonomous systems are responsible for
retrieval and computation-based performance.

McCloskey et al. (1985), in fact. offer a strong interpretation of these data,
claiming they are evidence for a clearcut modularity in number and arithmetic
processing (see also McCloskey. this issue: McCloskey. Sokol, & Goodman. 1986:
Sokol. Goodman-Schulman. & McCloskey, 1989; Sokol et al., 1991). One of the
modules in the normal system, termed Arithmetic Facts, accomplishes those
functions attributed to the long-term memory representation discussed earlier.
Note that McCloskey et al. (1991) expressed serious reservations about the three
current models discussed earlier, yet did not make a theoretical commitment to
any alternative set of representation and processing assumptions for their Arith-
metic Fact component (but see McCloskey & Lindemann, 1992). A second
autonomous module. Calculation Procedures. involves the various carrying.
borrowing, sequencing. and other procedural rules discussed earlier. Sokol et al.’s
two patients. according to this interpretation. experienced neurological damage
that affected one of the modules but not, for the most part, the other.
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Suggestions of modular cognitive architecture, based on the selective pattern of
impairments shown by brain-damaged patients. and case histories on such impair-
ments (see Deloche & Seron. 1987, for a collection of reviews) are not new. of
course. although such effects in arithmetic are certainly less widely known than
those on language disruptions. This by no means indicates that a modular
approach to arithmetic processing is universally accepted. however. In particular,
Campbell and Clark (1988; Clark & Campbell, 1991) have presented arguments
against the McCloskey et al. modular theory, and especially against the proposal
that a single, abstract semantic representation underlies all processing. Such a
proposal. Clark and Campbell (1991) argue. ignores data that show format-
specific effects; for example, different error patterns to multiplication problems
presented in digit versus word format imply the opposite of a format-free, abstract
representation.

Regardless of the specific strengths or weaknesses of either approach, a few
more general comments may be abstracted from this debate. First. it is probably
premature to make strong claims about modularity of processing, or the lack
thereof. given our current understanding of number representation and calcula-
tion. and of their neurological realization. After all. even existing data pose some
difficulties for a strictly modular explanation.” Thus. modularity might be viewed
as an appropriate and useful working hypothesis. a framework to be explored and
exploited. and to be discarded (Sokol et al.. 1989) if and when evidence
accumulates that the assumptions are no longer useful.

Concluding remarks

In my earliest paper on cognitive arithmetic (Ashcraft & Battaglia. 1978), 1
challenged the Groen and Parkman min model on intuitive grounds; I asked in
essence. ““Why would adults continue to count in order to solve the basic addition
facts, even after years of experience?” The answer. “They don’t,” led to a
productive set of new questions, “Well, what do they do, and how do children
eventually get to that level?” This paper has described the history of that set of
questions. and the answers that can now be offered.

A related question is still a puzzle: why is there a problem size/difficulty
effect? Why. after so many years of experience. are larger problems difficult
enough that even adults continue to show this effect in their performance?

I suspect that larger problems are at a somewhat permanent disadvantage.

Midway through the testing sessions, PS apparently noticed her inconsistency on zero problems,
and thereafter was 94.8% correct on these problems. Sokol et al. speculated that she may have then
reformulated the previously incorrect N X 0 rule. While altogether plausible, the explanation also
raises the question of how communication and feedback take place among and within the presumably
autonomous modules.
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They clearly occur less frequently, and are acquired somewhat later than their
smaller counterparts. in the early years of formal schooling (Hamann & AshFraft.
1986). It may be that this relative imbalance continues. as we experience
problems naturally across the years. thus explaining the effect. Such an argument
advances the analogy between problem difficulty and the well-known effects of
word frequency. Just as frequently occurring words enjoy a privilege in lexical and
semantic access, frequent problems enjoy an advantage in the memory system for
arithmetic,

Two objections can be raised to this line of reasoning. The first is that we are
merely guessing about a ‘“continued imbalance.” That is, perhaps it is just as
likely that later schooling and adult experience will counteract, rather than
perpetuate, the early imbalance. In other words, a bias in first-grade texts “‘does
not imply that such a bias is present in the full set of problems that college-age
adults have encountered in their experience with arithmetic facts”” (McCloskey et
al., 1991, p. 382). Of course, if later experience roughly equates the problems on
frequency, then the current models are robbed of their explanation of the
problem size/difficulty effect, unless some other appeal, say to age of acquisition,
is made.

This counterargument is possibly true. And yet, there is at least suggestive
evidence that the assumption of imbalance and the analogy to word frequency are
both tenable. Dehaene and Mehler (1992: see also Benford, 1932), for example,
tabulated the frequency of occurrence of numbers across many naturally occurring
samples (and across several different languages). They found that frequency is
generally a decreasing function of magnitude. Further, we have recently tabulated
the frequency of basic addition and multiplication facts in textbooks from grades 3
through 6 (Ashcraft & Christy, 1991), thus extending the earlier tabulation for
grades kindergarten through 3 (Hamann & Ashcraft, 1986). The same patterns
were found; smaller facts, both in isolation and as components to larger problems.
occurred more frequently than larger ones, and facts with zeros occurred the least
frequently of all. Thus, numbers appear naturally as a decreasing function of
magnitude, as do arithmetic problems, at least as they are represented in texts
through sixth grade.

The second objection involves the apparent tautology that more difficult
problems are processed more slowly. That is, when subjects rate problems as
more difficult, is this a legitimate predictor of RT, or are the ratings instead based
on subjects’ subjective awareness of how long it took to solve the problem? (See
Washburne & Vogel, 1928, for an earlier illustration of truly circular reasoning;
some problems were judged “inherently more difficult” because children made
more errors to them.) I argue here that the textbook data provide at least a
partial escape from the circular logic. That is, the correlation between strength in
memory, as indexed by difficulty ratings, and RT cannot disentangle the cause—
effect relationship we need. But consider a completely plausible causal pathway,
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and the supporting analogy to word frequency. Differential frequency of expo-
sure, especially in elementary school, and possibly in adult experience as well,
causes differential memory strength. Memory strength, the inverse equivalent of
problem difficulty. in turn influences the duration of-retrieval. If this causal
pathway is supported with additional normative data, and if direct manipulations
of frequency show a lawful frequency-difficulty—performance relationship, then
the hypothesis will hold.

I suspect that this will be the case. The literature claims repeatedly that
arithmetic processing is similar to language processing, but has the interesting
characteristic that its learning and development are more easily investigated
because they are deliberately. formally taught. If this claim is true, and if the
word frequency-problem difficulty analogy holds. then the area of cognitive
arithmetic could suggest answers to any number of questions about language, and
about the overall human cognitive system. In particular, via manipulation of
problem frequency. we may not only discover important information about
knowledge of number and arithmetic, we may also be able to investigate other
effects, confounded or correlated in normal experience. that shape the contents
and procedures of human memory and cognition.
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