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Abstract— Predictive maintenance currently involves 

digital transformation with all the technologies developed to 

serve the latter. This maintenance strategy is believed to be an 

efficient solution to end late/early intervention issues. It is for 

this reason that machine health state monitoring by 

Remaining Useful Life prognosis is very crucial. However, in 

the literature, most studies focus on failure diagnosis more 

than the system's Remaining Useful Life. In addition, to 

prepare models to serve the prognosis, the use of actual 

machinery data is critical to assure the later scalability of the 

application. The literature about predictive maintenance has 

often evaluated data-driven approaches with machine 

learning techniques processing simulated Data rather than 

real ones. To tackle this problem, the authors propose a 

continuity of previous work treating a jaw crusher default 

diagnosis in the context of the ore mining industry. The RUL 

of the crusher components is estimated upon completion of the 

fault diagnosis data. Smart sensors Data have been pre-

processed to serve the evaluation of four regression machine 

learning models: Bayesian Linear Regression, Poisson 

Regression, Neural Network Regression, and Random Forest. 

Poisson regression and Neural Network required data 

normalization in this case study to improve their 

performance. Linear regression methods proved their 

inability to forecast the machine degradation state, while the 

bagging ensemble method, Random Forest, was able to track 

the actual values. This paper aims to enhance the Prognosis 

and Health Management of the machine while contributing to 

the literature enhancement on failure prognosis using real 

industrial data.   

Keywords— Data-driven approach, Industry 4.0, Machine 

learning, Predictive Maintenance, RUL prognosis, Smart 

sensors. 

I. INTRODUCTION 

Rotating machines play a vital role in the manufacturing 

industry. In the ore treating facilities, machines make it 

possible to produce the right quality at the right time. This 

challenge is continuous and requires machine availability 

around the clock to keep up with the steering demand.  

For a process where machines must be working 24/7 and 

undergoing rough conditions, bearings suffer from severe 

degradation over time.  

Predictive Maintenance (PdM) anticipates possible flaws 

based on degradation development trends and indicates the 

best moment for an ideal intervention [1], [2]. For this 

reason, the prognosis of rotating machines' health state has 

been the focal point of research in recent years. Hence, the 

importance of the Remaining Useful life (RUL) was 

highlighted in several works as the predictable metric for 

the health state prognosis. The RUL could serve risk 

management on equipment. Indeed, the concept of risk on 

equipment before discovering failure signals and the RUL 

are closely correlated [3]. Since then, Machine learning 

technics were associated with the RUL prognosis to serve 

PdM in time. This ambition can only be met with a data-

driven strategy to approach the system of interest. The 

prognosis and health management (PHM) idea has become 

an essential trend in the context of smart manufacturing and 

Big data from industry with the advent of "Industry 4.0." 

[4], [5]. Big data analytics have become the foundation for 

manufacturing areas such as forecasting, proactive 

maintenance, and automation [6],[7]. 

In the context of predictive maintenance integration 

under the ―Industry 4.0‖ tide, [8]'s research is developed on 

the basis of an IoT structure collecting vibrations signals 

for failure detection and forecasting. Moreover, authors in 

[9] presented a Deployment of a Smart and Predictive 

Maintenance System in an industrial metal stamping 

machine using IoT and machine learning. 

In the context of predictive maintenance integration 

under the "Industry 4.0" tide, [8] 's research is developed 

based on an IoT structure collecting vibrations signals for 

failure detection and forecasting. Moreover, the authors in 

[9] presented a Deployment of a Smart and Predictive 

Maintenance System in an industrial metal stamping 

machine using IoT and machine learning. 
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As per the literature, Linear regression, Support Vector 

Machines, Decision Trees, and Random Forest algorithms 

are the most commonly used ML technics in predictive 

maintenance [4]. In the review work of 34 Predictive 

maintenance studies conducted by [10], Random forest was 

declared the most frequently adopted algorithm, followed 

by Support vector machine and Artificial Neural Network. 

Also, authors in [11] compared the results of a proposed 

multi-stage Remaining Useful Life prediction system with 

Linear regression, Convolutional Neural Network, Long 

Short Term Memory, and Support vector Regression using 

sensory data from real manufacturing systems. The authors 

introduced a manufacturing system based on a balanced 

random survival forest. This non-parametric machine 

learning approach can combine complicated dynamic 

correlations underlying shop floor data streams to provide a 

long-term prognosis of machine breakdowns, which was 

introduced by the authors in [12],[13]. 

In addition, an approach for RUL estimation using 

Recurrent Neural Networks (RNNs)was proposed by [14]  

to tackle some practical challenges when using data-driven 

approaches in predictive maintenance. Authors claimed that 

it is difficult to build physics-based models for health 

degradation analysis in complex machines with several 

components. Degradation trends tend to be non-

exponential, plus the unavailability of sensor data due to 

unstable communication networks or other damages. 

However, in the literature, failure prediction has not 

been addressed enough, while failure detection and 

diagnosis had more attention [10]. Nevertheless, there is 

proof that Machine Learning-based failure prediction 

models work well for several systems. Despite the 

significant work implemented as lab prototypes, few 

industrial implementations are reported in the literature, 

e.g., actual industrial data [15]. 

This paper investigates algorithms to perform RUL 

prediction in the mining industry's fixed installations. Data 

from the Authors' previous related work on fault diagnosis 

collected from smart sensors implemented on a jaw crusher 

[16] was combined with maintenance reports on actual 

interventions. Figure 1 presents the stages of the Predictive 

maintenance process where Prognosis comes after 

diagnosis in the Data analysis step. In this paper, the 

following Machine learning models were tested on 

Microsoft Azure ML studio to precise which technic is the 

most suitable in the mining context of big data: Poisson 

Regression, Bayesian Linear Regression, Neural Network 

Regression, and RF.  

 

SVR and LSTM were omitted since the ML studio 

platform does not support them. In the remaining of this 

paper, materials and methods are presented. Followed by 

results and discussion, and finally, a conclusion and 

perspective. 

 

FIGURE 1 PREDICTIVE MAINTENANCE PROCEDURE STEPS  [16] 

II. MATERIALS AND METHODS 

A. Presentation of the jaw crusher machine 

The system under consideration is a jaw crusher that 

treats sterile after screening (class > 90 mm). This machine 

smashes the blocks to break them up under 250 mm size. 

The sterile is then transferred via the trash disposal 

conveyor. This equipment is located on the extracted 

phosphate physical treatment facilities line. Only the 

rotational portions of this machine are addressed in the 

scope of this research. Table I shows the jaw crusher 

components used in a mining production line. The jaw 

crusher can be divided into two parts: driving and driving. 

On the first hand, two electric motors and two mechanical 

bearings operate the crusher drive pulley in the driving 

section. On the second hand, two bearings on the central 

axis hold the driving pulley in place. 

Figure 2 represents a diagram of the transmission chain 

from the electric motors to the crusher movable jaw 

connecting rods as previously described. 

TABLE I 

JAW CRUSHER COMPONENTS’ LISTE [16] 

Component Designation 

Comp1 Left electric motor 

Comp2 Right electric motor 

Comp3 Front bearing on left engine side 

Comp4 Front bearing on right engine side 

Comp5 Right bearing of the central axis 

Comp6 Left bearing of the central axis 
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FIGURE 2 KINEMATIC DIAGRAM OF THE JAW CRUSHER [16] 

Overall, the crusher's operating conditions are harsh 

given the load applied to it and the contaminated 

environment in which it functions. Additionally, the 

system's complexity has risen since each part of the crusher 

needs to be studied as an independent part of a whole. In 

addition, given that its primary function of reducing the 

size of mining waste is variable, modeling the jaw crusher 

is complicated, if not impossible. As a result, the load put 

on the machine is unpredictable and variable. As a result, 

the authors have decided to handle the equipment using a 

data-driven strategy rather than a model-driven one to 

acquire an overview of its state of health. 

 

B. Instrumentation and Methodology  

In this case study, the overall vibratory displacement 

values in mm / s, acceleration in g, and temperature with a 

frequency of 4 hours are collected from the wireless smart 

sensors implemented on the 6 components. The data is 

saved in the cloud and exported in CSV format. Over 20 

months, 14673 registrations were recorded. The data is then 

cleaned and processed by removing records created while 

the system was shut down. In addition, before continuing 

with the ML model building, weekly fault diagnostic 

reports are used to analyze the acquired sensor data. Figure 

3 depicts the data flow of the proposed approach.[16] 

Moreover, it was noticed that the most common faults at 

the crusher level are structure defects, misalignments, 

lubrication deficiencies, bearing problems, and fixing 

concerns. Smart sensors are used to collect the crusher's 

components signals. Jointure of the smart sensors data and 

diagnosis reports made it possible to add features such as 

downtime and runtime to achieve the RUL calculation. In 

this study, two types of failures were considered. 

According to the diagnosis reports, alignment correction 

was performed at both electrical motors and front bearings 

left and right. In addition, all the mechanical bearing were 

greased. As for the other defaults no further intervention 

was reported. These assumptions lead to deal only with 

greasing and alignment failures while excluding the 

remaining other crusher defects for field information lack. 
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FIGURE 3 DATA FLOW DIAGRAM [16]

A data-driven approach was used to predict the 

remaining useful life before the next failure. Infact, 

predicting the class of an instance as a failure or regular 

operation is insufficient in predictive maintenance whereas 

appropriately estimating the remaining time far before the 

probable breakdown is more important. Therefore, the 

problem was handled as a regression model rather than a 

classification task. In the following, hyperparameters, also 

known as machine learning multiple configurations are 

studied to comprehend the predictive modeling issue. 

Matching the right hyperparameters and the algorithms 

help optimize a model. According to the literature, 

hyperparameter optimization can be used to regulate the 

learning process. Different search algorithms, including 

grid and random search, can be used to carry out this 

optimization [17]. 

For each component, multiple models were built, mainly 

by evaluating four algorithms: Random Forest, Neural 

Network, Poisson Regression and Bayesian Linear 

Regression. These algorithms were considered for 

regression applicability, prediction power evaluation and 

scalability in high-dimensional data.  

Another reason for these algorithms is the ability to fit 

the application in the matter of Data type and volume, 

needed prediction interval, and historical availability. Data 

were normalized for the Bayesian linear Regression and the 

neural Network models to avoid overfitting issues. 

The development environment is Microsoft Azure 

machine learning platform where input dataset was divided 

using the 60-20-20% train-test-evaluate ratio.  To tune the 

model hyperparameter, the adopted parameter sweeping 

mode was random with 50 runs as a maximum number for 

cost computation optimization and increasing efficiency.  

The following settings were found to be best under the 

required conditions after examining numerous alternative 

possibilities inside the hyperparameter sweeping for the 

models. The chosen regularization weight of the Bayesian 

Linear was 1. Poisson Regression model sweeps results 

showed an optimization tolerance of 3e-06, a L1Weight of 

0.023, a L2 weight of 0.106 and a memory Size of 44. By 

the same token, the neural network algorithm learning rate 

of 0.01 proved to be fit to de dataset while the Loss 

function and the number of iterations were varying 

according to the component as listed in Table1.  
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Last, Random Forest was set to a bagging resampling 

method, 8 decision trees with 128 as the number of random 

splits per node. 

TABLE II 

ANN REGRESSION HYPERPARAMETERS SWEEP RESULTS 

Component LossFunction Iterations number 

Comp1 CrossEntropy 464 

Comp2 CrossEntropy 493 

Comp3 CrossEntropy 498 

SquaredError 494 

Comp4 CrossEntropy 499 

CrossEntropy 472 

Comp5 CrossEntropy 473 

Comp6 CrossEntropy 462 

After evaluating the most extensively used ML 

algorithms for signal-based predictive maintenance, the 

precision calculation must be highlighted to assess the 

algorithm. Several metrics, including Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE) and R-squared 

(R²) were used to evaluate the model. 

MAE determines how well forecasts match actual 

results. To avoid negative and positive residuals canceling 

each other out, the average error is calculated by taking the 

average of all residuals. MAE is defined by Eq. 1, where 

the symbol  denotes the predicted value of the models 

and the actual value of the test dataset is denoted by the 

symbol . 

 

For the prediction accuracy evaluation, the RMSE is a 

single value that summarizes the model’s Error. The RMSE 

ignores over and under prediction through difference 

squaring, as shown by Eq.2. 

 

R² measures the model's ability to predict and ranges 

from 0 to 1. R² denotes the model's attribute variability 

minimization. In contrast to the MAE measure, a higher R² 

value indicates a better overall fit for the model. R² is 

defined as follows, as seen in Eq. 3. 

 

III. RESULTS AND DISCUSSION 

In this section, the models training results are presented 

and discussed. The evaluation metrics of each Machine 

learning model are grouped in TABLE III. For a better 

interpretation, figure 4 enables the comparison of 

components’ R² measure. As a result, the best performance 

was obtained using Random Forest model with a R² score 

of at least 0.9176(comp 4 for RUL to greasing failure) and 

at most 0.9903 (comp 3 for RUL to alignment failure). By 

contrast, the neural network model, recorded different 

ratings for each instance. This model demonstrated 

outstanding performance in Alignment failure in 

components 3 and 4 vs components 1 and 2, where the 

precision did not surpass 0.56 R². Regarding the linear 

regression models, Poisson Regression and Bayesian 

Linear Regression showed a poor performance not 

exceeding R² of 0.3354, specially for RUL to greasing 

related failure of components 5 and 6. 

(1) 

(1) 

(2) 

(3) 
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FIGURE 4 ML MODELS R-SQUARED SCORE COMPARISON OF THE JAW CRUSHER COMPONENTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
International Journal of Emerging Technology and Advanced Engineering 

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 10, October 2022) 

128 

TABLE III 

MACHINE LEARNING REGRESSION MODELS METRICS 

Component Default Algorithm MAE RMSE R² 

Comp1 Alignment Bayesian Linear Regression 0.6973 0.8653 0.2596 

Poisson Regression 290.8621 363.7549 0.2772 

Neural Network Regression 0.4961 0.6678 0.5589 

Random Forest Regression 30.8548 104.4739 0.9404 

Comp2 Alignment Bayesian Linear Regression 0.6678 0.8169 0.3354 

Poisson Regression 288.8864 350.1983 0.3411 

Neural Network Regression 0.4984 0.6677 0.5560 

Random Forest Regression 29.5879 68.1115 0.9751 

Comp3 Greasing Bayesian Linear Regression 0.7755 0.9228 0.1300 

Poisson Regression 181.8412 228.6540 0.4260 

Neural Network Regression 0.3243 0.4990 0.7225 

Random Forest Regression 21.1459 60.9879 0.9626 

Alignment Bayesian Linear Regression 0.7435 0.9114 0.1890 

Poisson Regression 452.7349 559.3382 0.1732 

Neural Network Regression 0.0208 0.0521 0.9973 

Random Forest Regression 11.8345 61.6702 0.9903 

Comp4 Greasing Bayesian Linear Regression 0.7708 0.9119 0.1504 

Poisson Regression 232.3633 278.2426 0.1500 

Neural Network Regression 0.2425 0.4307 0.7933 

Random Forest Regression 23.8209 90.4781 0.9176 

Alignment Bayesian Linear Regression 0.7352 0.9104 0.1908 

Poisson Regression 474.1094 605.8081 0.0653 

Neural Network Regression 0.0171 0.0406 0.9983 

Random Forest Regression 14.0363 72.2812 0.9867 

Comp5 Greasing Bayesian Linear Regression 0.7775 0.9365 0.1263 

Poisson Regression 278.3077 335.3647 0.1420 

Neural Network Regression 0.3222 0.4914 0.7553 

Random Forest Regression 19.6136 60.5517 0.9720 

Comp6 Greasing Bayesian Linear Regression 0.8160 0.9727 0.0575 

Poisson Regression 294.7092 351.6171 0.0568 

Neural Network Regression 0.2885 0.4474 0.7971 

Random Forest Regression 21.7020 62.1571 0.9705 
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Figures 5, 6, 7, 8, 9, 10, and 11 illustrate the comparison 

of the models’ performance using randomly picked data 

points from the evaluation set (20% of the original Data). It 

is obvious on the figures that the results obtained by 

Random Forest model followed by Neural Network 

Regression are the closest predictions to the actual values.  

Due to the non-linear nature of the crusher model, the 

linear regression techniques performed badly. These 

algorithms failed to detect any variation in the data and 

could not outperform forecasting the sample dataset's mean 

RUL. 

 

FIGURE 5 : COMP1 ACTUAL RUL TO ALIGNMENT DEFAULT VS PREDICTIONS (A) BAYESIAN LINEAR REGRESSION (B) POISSON REGRESSION (C) ANN 

REGRESSION (D) RANDOM FOREST REGRESSION 
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FIGURE 6: COMP2 ACTUAL RUL TO ALIGNMENT DEFAULT VS PREDICTIONS (A) BAYESIAN LINEAR REGRESSION (B) POISSON REGRESSION (C) ANN 

REGRESSION (D) RANDOM FOREST REGRESSION 

 

FIGURE 7: COMP3 ACTUAL RUL TO GREASING DEFAULT VS PREDICTIONS (A) BAYESIAN LINEAR REGRESSION (B) POISSON REGRESSION (C) ANN 

REGRESSION (D) RANDOM FOREST REGRESSION 
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FIGURE 8: COMP3 ACTUAL RUL TO ALIGNMENT DEFAULT VS PREDICTIONS (A) BAYESIAN LINEAR REGRESSION (B) POISSON REGRESSION (C) ANN 

REGRESSION (D) RANDOM FOREST REGRESSION 

 

FIGURE 9: COMP4 ACTUAL RUL TO GREASING DEFAULT VS PREDICTIONS (A) BAYESIAN LINEAR REGRESSION (B) POISSON REGRESSION (C) ANN 

REGRESSION (D) RANDOM FOREST REGRESSION 
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FIGURE 10: COMP4 ACTUAL RUL TO ALIGNMENT DEFAULT VS PREDICTIONS (A) BAYESIAN LINEAR REGRESSION (B) POISSON REGRESSION (C) ANN 

REGRESSION (D) RANDOM FOREST REGRESSION 

 

FIGURE 11:COMP5 ACTUAL RUL TO GREASING DEFAULT VS PREDICTIONS (A) BAYESIAN LINEAR REGRESSION (B) POISSON REGRESSION (C) ANN 

REGRESSION (D) RANDOM FOREST REGRESSION 
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FIGURE 12: COMP6 ACTUAL RUL TO GREASING DEFAULT VS PREDICTIONS (A) BAYESIAN LINEAR REGRESSION (B) POISSON REGRESSION (C) ANN 

REGRESSION (D) RANDOM FOREST REGRESSION 

Different machine learning models were investigated to 

test the approach performance in the RUL prediction. The 

machine learning techniques are employed because of their 

applicability and cost effectiveness. 

 The findings confirmed the literature affirmation 

showing that models built using Random Forest performed 

better than those built using just the Neural Network 

Regressor and Linear Regression algorithms [10] despite 

the applied data normalization and the hyperparameters 

tuning attempts. 

Thus far, this research has added to the literature on 

developing machine learning models based on actual data 

gathered from installed intelligent sensors on the complex 

Jaw crusher machine. Additionally, this machine learning 

approach is used in the ore mining industry, where there 

has not yet been a similar application. It is commonly 

known that the ore mining industry is a harsh environment 

where old-fashioned practices are preferred, such as 

running to failure. Corrective Maintenance activities inflict 

additional and unexpected costs. The impact is further huge 

in the case of continuous process production industries as 

assets are influenced and the production plan.  

 

Another traditional maintenance approach is periodic 

maintenance ahead of planned maintenance based on the 

manufacturer's recommendations which do not prevent late 

interventions. The gap lies in the inability to consider the 

totality of the production chain and underestimating the 

system's complexity. 

So, this work's motivation consists of performing 

prognosis using diagnosis data to fulfill the PdM process. It 

is also crucial to emphasize that this artificial intelligence 

method was developed using accurate data, making it 

scalable and effective in the field of significant amounts of 

data. One should not deny this approach's important role in 

investing more in IoT sensors implementation serving 

predictive maintenance and other production-oriented 

purposes. Conversely, the race to implement digital 

transformation has promoted the usage of IoT platforms to 

deliver real-time data for preventative maintenance. It is the 

case of this study where Data from rotating parts of the jaw 

crusher are delivered to forecast the system's right 

intervention time. This strategy aim is to enhance assets 

and production continuity and quality.  

 

 



 
International Journal of Emerging Technology and Advanced Engineering 

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 10, October 2022) 

134 

Regardless, this study was limited as the data were 

collected from only one machine. Nonetheless, this 

machine's rotating and other equipment parts are alike, 

making this approach possible to generalize over fixed 

installations. Furthermore, such a system could also be 

implemented in other ore mining fixed installations. Due to 

the rarity of the other failure categories, the RUL prediction 

could only accurately anticipate two types of failure: 

greasing and alignment. However, this approach could be 

customized with minor modifications to fit new rotating 

machines applications datasets. 

IV. CONCLUSION AND PERSPECTIVES 

In this paper, Machine learning models were developed 

for estimating the RUL of a previous fault diagnosis case 

study of an ore mining industry equipment based on IoT 

sensors data and diagnosis reports. According to the 

maintenance reports, only alignment and greasing related 

failures were fixed at the study’s data acquisition time 

range. As a result, each component's remaining useful life 

for the two failures was anticipated. Thus, Bayesian Linear 

Regression, Poisson Regression, Neural Network 

Regression and Random Forest algorithms were evaluated 

in the context of this work using the Microsoft Azure ML 

Studio. To meet this objective Data was preprocessed by 

removing records during the jaw crusher downtime. As 

well as that, each component was treated individually.  

Components Datasets were normalized and went through 

hyperparameter tuning processes in the case of Neural 

Network and Poisson Regression to improve their 

performances. Afterward, Data were split into training test 

and evaluation sets. Random Forest outperformed other 

algorithms with an average R² of 0.96 followed by Neural 

Network with an average score of 0.78 R². Unlikely, Linear 

Regression algorithms techniques were found to be 

insufficient in this scenario due to the nonlinearity of the 

data. Machine learning (ML) approaches have mostly been 

incorporated into data-driven initiatives. They require less 

historical data, are simpler and less expensive, and are 

more relevant while offering a compromise between 

complexity, cost, precision, and application [18]. 

This study would contribute to the body of literature in 

the context of the ore mining sector digital transformation 

because big data analytics will be a crucial foundation for 

forecasting manufacture, the fleet of machines, and 

preventive maintenance [9].  

 

 

Authors plan to extend work on other failure types. In 

addition, there is an ambition to develop and redefine spare 

parts acquisition strategy and optimize maintenance 

activities by incorporating Predictive maintenance into the 

mining facilities. This goal will enable us to fulfill the 

specifications listed in the modeling of the authors' 

PdMSys, a predictive maintenance system for mining 

facilities[19]. 

REFERENCES 

[1] R. Ahmad and S. Kamaruddin, ―Computers & Industrial Engineering 
An overview of time-based and condition-based maintenance in 

industrial application q,‖ Comput. Ind. Eng., vol. 63, no. 1, pp. 135–

149, 2012, doi: 10.1016/j.cie.2012.02.002. 

[2] M. Pertselakis, F. Lampathaki, and P. Petrali, Predictive 

Maintenance in a Digital Factory Shop-Floor : Data Mining on 
Historical and Operational Data Coming from Manufacturers ’ 

Information Systems, vol. 1. Springer International Publishing, 

2019. 

[3] Y. He, Y. Zhao, X. Han, D. Zhou, and W. Wang, ―Functional risk-

oriented health prognosis approach for intelligent manufacturing 

systems,‖ Reliab. Eng. Syst. Saf., vol. 203, no. January, p. 107090, 
2020, doi: 10.1016/j.ress.2020.107090. 

[4] W. Zhang, D. Yang, and H. Wang, ―Data-Driven Methods for 
Predictive Maintenance of Industrial Equipment: A Survey,‖ IEEE 

Syst. J., vol. 13, no. 3, pp. 2213–2227, 2019, doi: 

10.1109/JSYST.2019.2905565. 

[5] S. Sajid, A. Haleem, S. Bahl, M. Javaid, T. Goyal, and M. Mittal, 

―Data science applications for predictive maintenance and materials 
science in context to Industry 4.0,‖ Mater. Today Proc., vol. 45, pp. 

4898–4905, 2021, doi: 10.1016/j.matpr.2021.01.357. 

[6] J. Wang, W. Zhang, Y. Shi, S. Duan, and J. Liu, ―Industrial Big Data 
Analytics: Challenges, Methodologies, and Applications,‖ pp. 1–13, 

2018. 

[7] R. Sahal, J. G. Breslin, and M. I. Ali, ―Big data and stream 

processing platforms for Industry 4.0 requirements mapping for a 

predictive maintenance use case,‖ J. Manuf. Syst., vol. 54, no. 
November 2019, pp. 138–151, 2020, doi: 

10.1016/j.jmsy.2019.11.004. 

[8] Z. Li, Y. Wang, and K. S. Wang, ―Intelligent predictive maintenance 
for fault diagnosis and prognosis in machine centers: Industry 4.0 

scenario,‖ Adv. Manuf., vol. 5, no. 4, pp. 377–387, 2017, doi: 

10.1007/s40436-017-0203-8. 

[9] F. Alves et al., ―Deployment of a Smart and Predictive Maintenance 

System in an Industrial Case Study,‖ IEEE Int. Symp. Ind. Electron., 
vol. 2020-June, pp. 493–498, 2020, doi: 

10.1109/ISIE45063.2020.9152441. 

[10] J. Leukel, J. González, and M. Riekert, ―Adoption of machine 
learning technology for failure prediction in industrial maintenance: 

A systematic review,‖ J. Manuf. Syst., vol. 61, no. September, pp. 

87–96, 2021, doi: 10.1016/j.jmsy.2021.08.012. 

[11] J. Y. Wu, M. Wu, Z. Chen, X. Li, and R. Yan, ―A joint 

classification-regression method for multi-stage remaining useful life 
prediction,‖ J. Manuf. Syst., vol. 58, no. PA, pp. 109–119, 2021, doi: 

10.1016/j.jmsy.2020.11.016. 

 



 
International Journal of Emerging Technology and Advanced Engineering 

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 10, October 2022) 

135 

[12] N. Kolokas, T. Vafeiadis, D. Ioannidis, and D. Tzovaras, 
―Forecasting faults of industrial equipment using machine learning 

classifiers,‖ 2018 IEEE Int. Conf. Innov. Intell. Syst. Appl. INISTA 

2018, pp. 1–6, 2018, doi: 10.1109/INISTA.2018.8466309. 

[13] N. Kolokas, T. Vafeiadis, D. Ioannidis, and D. Tzovaras, ―A generic 

fault prognostics algorithm for manufacturing industries using 
unsupervised machine learning classifiers,‖ Simul. Model. Pract. 

Theory, vol. 103, p. 102109, 2020, doi: 

10.1016/j.simpat.2020.102109. 

[14] N. Gugulothu, V. TV, P. Malhotra, L. Vig, P. Agarwal, and G. 

Shrof, ―Predicting Remaining Useful Life using Time Series 

Embeddings based on Recurrent Neural Networks,‖ arXiv. pp. 1–10, 
2017. 

[15] S. Proto et al., ―PREMISES, a Scalable Data-Driven Service to 
Predict Alarms in Slowly-Degrading Multi-Cycle Industrial 

Processes,‖ Proc. - 2019 IEEE Int. Congr. Big Data, BigData Congr. 

2019 - Part 2019 IEEE World Congr. Serv., pp. 139–143, 2019, doi: 
10.1109/BigDataCongress.2019.00032. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[16] M. Guerroum, M. Zegrari, A. A. Elmahjoub, M. Berquedich, and M. 
Masmoudi, ―Machine Learning for the Predictive Maintenance of a 

Jaw Crusher in the Mining Industry,‖ in 2021 IEEE International 

Conference on Technology Management, Operations and Decisions 
(ICTMOD), 2021, pp. 1–6, doi: 

10.1109/ICTMOD52902.2021.9739338. 

[17] G. Luo, ―A review of automatic selection methods for machine 

learning algorithms and hyper-parameter values,‖ Netw. Model. 

Anal. Heal. Informatics Bioinforma., vol. 5, no. 1, pp. 1–16, 2016, 
doi: 10.1007/s13721-016-0125-6. 

[18] C. Ferreira and G. Gonçalves, ―Remaining Useful Life prediction 

and challenges: A literature review on the use of Machine Learning 
Methods,‖ J. Manuf. Syst., vol. 63, pp. 550–562, 2022, doi: 

https://doi.org/10.1016/j.jmsy.2022.05.010. 

[19] M. Guerroum, M. Zegrari, H. Amalik, and A. A. Elmahjoub, 

―Integration of MBSE into Mining Industry : Predictive Maintenance 

System,‖ vol. 12, no. 04, pp. 170–180, 2022, doi: 
10.46338/ijetae0422. 

 


