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Abstract

We present a general regularization-based framework for Multi-task learning (MTL),
in which the similarity between tasks can be learned or refined using `p-norm Multiple
Kernel learning (MKL). Based on this very general formulation (including a general loss
function), we derive the corresponding dual formulation using Fenchel duality applied
to Hermitian matrices. We show that numerous established MTL methods can be de-
rived as special cases from both, the primal and dual of our formulation. Furthermore,
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we derive a modern dual-coordinate descend optimization strategy for the hinge-loss
variant of our formulation and provide convergence bounds for our algorithm. As a
special case, we implement in C++ a fast LibLinear-style solver for `p-norm MKL. In
the experimental section, we analyze various aspects of our algorithm such as predic-
tive performance and ability to reconstruct task relationships on biologically inspired
synthetic data, where we have full control over the underlying ground truth. We also
experiment on a new dataset from the domain of computational biology that we col-
lected for the purpose of this paper. It concerns the prediction of transcription start
sites (TSS) over nine organisms, which is a crucial task in gene finding. Our solvers
including all discussed special cases are made available as open-source software as part
of the SHOGUN machine learning toolbox (available at http://shogun.ml).

1 Introduction

One of the key challenges in computational biology is to build effective and efficient statis-
tical models that learn from data to predict, analyze, and ultimately understand biological
systems. Regardless of the problem at hand, however, be it the recognition of sequence
signals such as splice sites, the prediction of protein-protein interactions, or the modeling of
metabolic networks, we frequently have access to data sets for multiple organisms, tissues
or cell-lines. Can we develop methods that optimally combine such multi-domain data?

While the field of Transfer or Multitask Learning enjoys a growing interest in the Ma-
chine Learning community in recent years, it can be traced back to ideas from the mid 90’s.
During that time Thrun (1996) asked the provocative question ”Is Learning the n-th Thing
any Easier Than Learning the First?”, effectively laying the ground for the field of Transfer
Learning. Their work was motivated by findings in human psychology, where humans were
found to be capable of learning based on as few as a single example (Ahn and Brewer,
1993). The key insight was that humans build upon previously learned related concepts,
when learning new tasks, something Thrun (1996) call lifelong learning. Around the same
time, Caruana (1993, 1997) coined the term Multitask Learning. Rather than formalizing
the idea of learning a sequence of tasks, they propose machinery to learn multiple related
tasks in parallel.

While most of the early work on Multitask Learning was carried out in the context
of learning a shared representation for neural networks (Caruana, 1997; Baxter, 2000),
Evgeniou and Pontil (2004) adapted this concept in the context of kernel machines. At
first, they assumed that the models of all tasks are close to each other (Evgeniou and
Pontil, 2004) and later generalized their framework to non-uniform relations, allowing to
couple some tasks more strongly than others (Evgeniou et al., 2005), according to some
externally defined task structure. In recent years, there has been an increased interest in
learning the structure potentially underlying the tasks. Ando and Zhang (2005) proposed
a non-convex method based on Alternating Structure Optimization (ASO) for identifying
the task structure. A convex relaxation of their approach was developed by Chen et al.
(2009). Zhou et al. (2011) showed the equivalence between ASO and Clustered Multitask
Learning (Jacob et al., 2008; Obozinski et al., 2010) and their convex relaxations. While the
structure between tasks is defined by assigning tasks to clusters in the above approaches,
Zhang and Yeung (2010) propose to learn a constrained task covariance matrix directly and
show the relationship to Multitask Feature Learning (Argyriou et al., 2007, 2008a,b; Liu
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et al., 2009). Here, the basic idea is to use a LASSO-inspired (Tibshirani, 1996) `2,1-norm
to identify a subset of features that is relevant to all tasks.

A challenge remains to find an adequate task similarity measure to compare the multi-
ple domains and tasks. While existing parameter-free approaches such as Romera-Paredes
et al. (2013) ignore biological background knowledge about the relatedness of the tasks, in
this paper, we present a parametric framework for regularization-based multitask learning
that subsumes several approaches and automatically learns the task similarity from a set of
candidates measures using `p-norm Multiple Kernel learning (MKL) see, for instance, Kloft
et al. (2011). We thus provide a middle ground between assuming known task relation-
ships and learning the entire task structure from scratch. We propose a general unifying
framework of MT-MKL, including a thorough dualization analysis using Fenchel duality,
based on which we derive an efficient linear solver that combines our general framework
with advances in linear SVM solvers and evaluate our approach on several datasets from
Computational Biology.

This paper is based on preliminary material shown in several conference papers and
workshop contributions (Widmer et al., 2010a,c,b, 2012; Widmer and Rätsch, 2012), which
contained preliminary aspects of the framework presented here. This version additionally
includes a unifying framework including Fenchel duality analysis, more complete derivations
and theoretical analysis as well as a comparative study in multitask learning and genomics,
where we brought together genomic data for a wide range of biological organisms in a
multitask learning setting. This dataset will be made freely available and may serve as a
benchmark in the domain of multitask learning. Our experiments show that combining data
via multitask learning can outperform learning each task independently. In particular, we
find that it can be crucial to further refine a given task similarity measure using multitask
multiple kernel learning.

The paper is structured as follows: In Section 2 we introduce a unifying view of multi-
task multiple kernel learning that covers a wide range loss functions and regularizers. We
give a general Fenchel dual representation and a representer theorem, and show that the
formulation contains several existing formulations as special cases. In Section 3 we propose
two optimization strategies: one that can be applied out of the box with any custom set
of kernels and another one that is specifically tailored to linear kernels as well as string
kernels. Both algorithms were implemented into the Shogun machine learning toolbox. In
Section 4 we present results of empirical experiments on artificial data as well as a large
biological multi-organism dataset curated for the purpose of this paper.

2 A Unifying View of Regularized Multi-Task Learning

In this section, we present a novel multi-task framework comprising many existing formu-
lations, allowing us to view prevalent approaches from a unifying perspective, yielding new
insights. We can also derive new learning machines as special instantiations of the gen-
eral model. Our approach is embedded into the general framework of regularization-based
supervised learning methods, where we minimize a functional

R(w) + C L(w) ,
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which consists of a loss-term L(w) measuring the training error and a regularizer R(w)
penalizing the complexity of the model w. The positive constant C > 0 controls the trade-
off of the criterion. The formulation can easily be generalized to the multi-task setting,
where we are interested in obtaining several models parametrized by w1, . . . ,wT , where T
is the number of tasks.

In the past, this has been achieved by employing a joint regularization term
R(w1, . . . ,wT ) that penalizes the discrepancy between the individual models (Evgeniou
et al., 2005; Agarwal et al., 2010),

R(w1, . . . ,wT ) + C L(w1, . . . ,wt) .

A common approach is, for example, to set R(w1, . . . ,wT ) = 1
2

∑T
s,t=1 qst ‖ws −wt‖2 ,

where Q = (qst)a≤s,t≤T is a task similarity matrix. In this paper, we develop a novel,
general framework for multi-task learning of the form

min
W ,θ

R(W ,θ) + CL(W ) ,

where W = (Wm)1≤m≤M , Wm = (wm1, . . . ,wmT ). This approach has the additional
flexibility of allowing us to incorporate multiple task similarity matrices into the learning
problem, each equipped with a weighting factor. Instead of specifying the weighting fac-
tor a priori, we will automatically determine optimal weights from the data as part of the
learning problem. We show that the above formulation comprises many existing lines of
research in the area; this not only includes very recent lines but also seemingly different
ones. The unifying framework allows us to analyze a large variety of MTL methods jointly,
as exemplified by deriving a general dual representation of the criterion, without making as-
sumptions on the employed norms and losses, besides the latter being convex. This delivers
insights into connections between existing MTL formulations and, even more importantly,
can be used to derive novel MTL formulations as special cases of our framework, as done
in a later section of this paper.

2.1 Problem Setting and Notation

Let D = {(x1, y1), . . . , (xn, yn)} be a set of training pattern/label pairs. In multitask learn-
ing, each training example (xi, yi) is associated with a task τ(i) ∈ {1, . . . , T}. Furthermore,
we assume that for each t ∈ {1, . . . , T} the instances associated with task t are indepen-
dently drawn from a probability distribution Pt over a measurable space Xt×Yt. We denote
the set of indices of training points of the tth task by It := {i ∈ {1, . . . , n} : τ(i) = t}.
The goal is to find, for each task t ∈ {1, . . . , T}, a prediction function ft : X → R. In
this paper, we consider composite functions of the form ft : x 7→

∑M
m=1〈wmt, ϕm(x)〉,

1 ≤ t ≤ T , where ϕm : X → Hm, 1 ≤ m ≤ M , are mappings into reproducing Hilbert
spaces H1, . . . ,HM , encoding multiple views of the multi-task learning problem via ker-
nels km(x, x̃) = 〈ϕm(x), ϕm(x̃)〉, and W := (wmt)1≤m≤M, 1≤t≤T , wmt ∈ Hm are parameter
vectors of the prediction function.

For simplicity of notation, we concentrate on binary prediction, i.e., Y = {−1, 1}, and en-
code the loss of the prediction problem as a loss term L(W ) :=

∑n
i=1 l(yifτ(i)(xi)), where l :

R→ R∪{∞} is a loss function, assumed to be closed convex, lower bounded and finite at 0.
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To consider sophisticated couplings between the tasks, we introduce so-called task-similarity

matrices Q1, . . . , QM ∈ GLn(R) with Qm = (qmst)1≤s,t≤T , Q−1
m =

(
q

(−1)
mst

)
1≤s,t≤T and con-

sider the regularizer Rθ(W ) = 1
2

∑M
m=1 ‖Wm‖2Qm

/θm (setting 1/0 := ∞, 0/0 := 0) with

‖Wm‖Qm
:= tr(WmQmW

∗
m) =

√∑T
s,t=1 qmst 〈wms,wmt〉, where Wm = (wm1, . . . ,wmT ) ∈⊕T

t=1Hm =: HTm with adjoint W ∗m and tr(·) denotes the trace class operator of the tensor

Hilbert space Hm ⊗Hm. Note that also the direct sum H :=
⊕M

m=1HTm is a Hilbert space,
which will allow us to view W ∈ H as an element in a Hilbert space. The parameters
θ = (θm)1≤m≤M ∈ Θp, Θp := {θ ∈ RM : θm ≥ 0, 1 ≤ m ≤ M, ‖θ‖p ≤ 1}, are adaptive

weights of the views, where ‖θ‖p = p

√∑M
m=1 |θm|p denotes the `p-norm. Here θ � 0 denotes

θm ≥ 0, m = 1, . . . ,M .
Using the above specification of the regularizer and the loss term, we study the following

unifying primal optimization problem.

Problem 1 (Primal problem). Solve

inf
θ∈Θp,W∈H

Rθ(W ) + C L
(
A(W )

)
,

where

Rθ(W ) :=
1

2

M∑
m=1

‖Wm‖2Qm

θm
, ‖Wm‖2Qm

:= tr(WmQmW
∗
m)

L(A(W )) :=
n∑
i=1

l
(
Ai(W )

)
, A(W ) := (Ai(W ))1≤i≤n , Ai(W ) := yi

M∑
m=1

〈
wmτ(i), ϕm(xi)

〉
.

2.2 Dualization

Dual representations of optimization problems deliver insight into the problem, which can
be used in practice to, for example, develop optimization algorithms (so done in Section 3 of
this paper). In this section, we derive a dual representation of our unifying primal optimiza-
tion problem, i.e., Problem 1. Our dualization approach is based on Fenchel-Rockafellar
duality theory. The basic results of Fenchel-Rockafellar duality theory for Hilbert spaces are
reviewed in Appendix A. We present two dual optimization problems: one that is dualized
with respect to W only (i.e., considering θ as being fixed) and one that completely removes
the dependency on θ.

2.2.1 Computation of Conjugates and Adjoint Map

To apply Fenchel’s duality theorem, we need to compute the adjoint map A∗ of the linear
map A : H → Rn, A(W ) =

(
Ai(W )

)
1≤i≤n, as well as the convex conjugates of R and L.

See Appendix A for a review of the definitions of the convex conjugate and the adjoint map.
First, we notice that, by the basic identities for convex conjugates of Prop. 10 in Appendix
A, we have that(

CL(α)
)∗

= CL∗(α/C) = C
(∑n

i=1
l(αi/C)

)∗
= C

∑n

i=1
l∗(αi/C) .
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Next, we define A∗ : Rn → H by A∗(α) =
(∑

i∈It αiyiϕm(xi)
)

1≤m≤M,1≤t≤T . Recall that
the mapping between tasks and examples may be expressed in one of two ways. We may use
index set It to retrieve the indices of training examples associated with task t. Alternatively,
we may use task indicator τ(i) ∈ {1, . . . , T} to obtain the task index τ(i) associated with
ith training example. Using this notation, we verify that, for any W ∈ H and α ∈ Rn, it
holds

〈W , A∗(α)〉 =
〈(
wmt

)
1≤m≤M,1≤t≤T ,

(∑
i∈It

αiyiϕm(xi)
)

1≤m≤M,1≤t≤T

〉
=

M∑
m=1

T∑
t=1

∑
i∈It

αiyi 〈wmt, ϕm(xi)〉

=
n∑
i=1

M∑
m=1

αiyi
〈
wmτ(i), ϕm(xi)

〉
= 〈A(W ),α〉 .

Thus, A∗ as defined above is indeed the adjoint map. Finally, we compute the conjugate of
R with respect to W , where we consider θ as a constant (be reminded that Qm are given).
We write rm(Wm) := 1

2 ‖Wm‖2Qm
and note that, by Prop. 10,

R∗θ(W ) =

(
M∑
m=1

θ−1
m rm(Wm)

)∗
=

M∑
m=1

θ−1
m r∗m(θmWm) .

Furthermore,

r∗m(Wm) = sup
Vm∈HT

m

〈Vm,Wm〉 −
1

2
tr(VmQmVm)︸ ︷︷ ︸

=:ψ(Vm)

. (1)

The supremum is attained when ∇Vmψ(Vm) = 0 so that in the optimum Vm = Q−1
m Wm.

Resubstitution into (1) gives r∗m(Wm) = 1
2 tr(WmQ

−1
m Wm) = 1

2 ‖Wm‖2Q−1
m

, so that we have

R∗θ(W ) =
1

2

M∑
m=1

θm ‖Wm‖2Q−1
m
.

2.2.2 Dual Optimization Problems

We may now apply Fenchel’s duality theorem (cf. Theorem 9 in Appendix A), which gives
the following dual MTL problem:

Problem 2 (Dual problem—partially dualized minimax formulation). Solve

inf
θ∈Θp

sup
α∈Rn

−R∗θ(A∗(α)) − C L∗(−α/C) , (2)

where

R∗θ(A∗(α)) =
1

2

M∑
m=1

θm ‖A∗m(α)‖2
Q−1

m
, L∗(α) =

n∑
i=1

l∗(αi) ,

A∗(α) := (A∗m(α))1≤m≤M , A∗m(α) =
(∑

i∈It
αiyiϕm(xi)

)
1≤t≤T

.

(3)
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The above problem involves minimization with respect to (the primal variable) θ and
maximization with respect to (the dual variable) α. The optimization algorithm presented
later in this paper will optimize is based on this minimax formulation. However, we may
completely remove the dependency on θ, which sheds further insights into the problem,
which will later be exploited for optimization, i.e., to control the duality gap of the computed
solutions.

To remove the dependency on θ, we first note that Problem 2 is convex (even affine) in
θ and concave in α and thus, by Sion’s minimax theorem, we may exchange the order of
minimization and maximization:

Eq. (2) = inf
θ∈Θp

sup
α∈Rn

− 1

2

M∑
m=1

θm ‖A∗m(α)‖2
Q−1

m
− C L∗(−α/C)

= sup
α∈Rn

− sup
θ∈Θp

1

2

M∑
m=1

θm ‖A∗m(α)‖2
Q−1

m
+ C L∗(−α/C)

= sup
α∈Rn

− 1

2

∥∥∥∥(‖A∗m(α)‖2
Q−1

m

)
1≤m≤M

∥∥∥∥
p∗

+ C L∗(−α/C)

where the last step is by the definition of the dual norm, i.e., supθ∈Θp

〈
θ, θ̃

〉
=
∥∥θ̃∥∥

p∗
and

p∗ := p/(p − 1) denotes the conjugated exponent. We thus have the following alternative
dual problem.

Problem 3 (Dual problem—completely dualized formulation). Solve

sup
α∈Rn

− 1

2

∥∥∥∥(‖A∗m(α)‖2
Q−1

m

)
1≤m≤M

∥∥∥∥
p∗

+ C L∗(−α/C)

where

L∗(α) =

n∑
i=1

l∗(αi) , A∗m(α) =
(∑

i∈It
αiyiϕm(xi)

)
1≤t≤T

.

2.3 Representer Theorem

Fenchel’s duality theorem (Theorem 9 in Appendix A) yields a useful optimality condition,
that is,

(W ?,α?) optimal ⇔ W ? = ∇g∗(A∗(α?)) ,

under the minimal assumption that g ◦ A∗ is differentiable in α?. The above requirement
can be thought of as an analog to the KKT condition stationarity in Lagrangian duality.
Note that we can rewrite the above equation by inserting the definitions of g and A from
the previous subsection; this gives, for any m = 1, . . . ,M ,

∀m = 1, . . . ,M : W ?
m = θmQ

−1
m

(∑
i∈It

α?i yiϕm(xi)
)

1≤t≤T
,

which we may rewrite as

∀m = 1, . . . ,M, t = 1, . . . , T : w?
mt = θm

n∑
i=1

q
(−1)
mτ(i)tα

?
i yiϕm(xi) . (4)
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The above equation gives us a representer theorem (Argyriou et al., 2009) for the optimal
W ?, which we will exploit later in this paper for deriving an efficient optimization algorithm
to solve Problem 1.

2.4 Relation to Multiple Kernel Learning

Evgeniou et al. (2005) introduce the notion of a multi-task kernel. We can generalize this
framework by defining multiple multi-task kernels

k̃m(xi, xj) := q
(−1)
mτ(i)τ(j)km(xi, xj) , m = 1, . . . ,M . (5)

To see this, first note that the term ‖A∗m(α)‖2Q−1 can alternatively be written as

‖A∗m(α)‖2
Q−1

m
= tr

(
A∗m(α)Q−1

m A∗m(α)∗
)

= tr

((∑
i∈Is

αiyiϕm(xi)
)

1≤s≤T
Q−1
m

(∑
i∈It

αiyiϕm(xi)
)∗

1≤t≤T

)
=

T∑
s,t=1

q
(−1)
mst

〈∑
i∈Is

αiyiϕm(xi),
∑

i∈It
αiyiϕm(xi)

〉

=

T∑
s,t=1

q
(−1)
mst

∑
i∈Is,j∈It

αiαjyiyj ϕm(xi)ϕm(xj)︸ ︷︷ ︸
= km(xi,xj)

=
n∑

i,j=1

αiαjyiyj q
(−1)
mτ(i)τ(j)km(xi, xj)︸ ︷︷ ︸

k̃m(xi,xj)

.

(6)

so it follows

R∗θ(A∗(α)) =
1

2

n∑
i,j=1

αiαjyiyj

M∑
m=1

θmk̃m(xi, xj)

and thus Problem 2 becomes

inf
θ∈Θp

sup
α∈Rn

− 1

2

n∑
i,j=1

αiαjyiyj

M∑
m=1

θmk̃m(xi, xj) − C L∗(−α/C) , (7)

which is an `p-regularized multiple-kernel-learning problem over the kernels k̃1, . . . , k̃M
(Kloft et al., 2008b, 2011).

2.5 Specific Instantiations of the Framework

In this section, we show that several regularization-based multi-task learning machines are
subsumed by the generalized primal and dual formulations of Problems 1–2. As a first
step, we will specialize our general framework to the hinge-loss, and show its primal and
dual form. Based on this, we then instantiate our framework further to known methods
in increasing complexity, starting with single-task learning (standard SVM) and working
towards graph-regularized multitask learning and its relation to multitask kernels. Finally,
we derive several novel methods from our general framework.
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loss l(a), a ∈ R dual loss l∗(a)

hinge loss max(0, 1− a)

{
a, if − 1 ≤ a ≤ 0

∞, elsewise

logistic loss log(1 + exp(−a)

{
−a log(−a) + (1 + a) log(1 + a), if − 1 ≤ a ≤ 0

∞, elsewise

Table 1: Examples of loss functions and corresponding conjugate functions. See Ap-
pendix B.

2.5.1 Hinge Loss

Many existing multi-task learning machines utilize the hinge loss l(a) = max(0, 1 − a).
Employing the hinge loss in Problem 1, yields the loss term

L(A(W )) =

n∑
i=1

max

(
0, 1− yi

∑M

m=1

〈
wmτ(i), ϕm(xi)

〉)
.

Furthermore, as shown in Table 1, the conjugate of the hinge loss is l∗(a) = a, if −1 ≤ a ≤ 0
and ∞ elsewise, which is readily verified by elementary calculus. Thus, we have

−C L∗(−α/C) = −C
n∑
i=1

l∗(−αi/C) =
n∑
i=1

αi, (8)

provided that ∀i = 1, . . . , n : 0 ≤ αi ≤ C; otherwise we have −C L∗(−α/C) = −∞. Hence,
for the hinge-loss, we obtain the following pair of primal and dual problem.

Primal:

inf
θ∈Θp

W∈H

1

2

M∑
m=1

‖Wm‖2Qm

θm
+ C

n∑
i=1

max

(
0, 1− yi

∑M

m=1

〈
wmτ(i), ϕm(xi)

〉)
(9)

Dual:

inf
θ∈Θp

sup
0�α�C

− 1

2

n∑
i,j=1

αiαjyiyj

M∑
m=1

θmk̃m(xi, xj) +
n∑
i=1

αi . (10)

2.5.2 Single Task Learning

Starting from the simplest special case, we briefly show how single-task learning methods
may be recovered from our general framework. By mapping well understood single-task
methods onto our framework, we hope to achieve two things. First, we believe this will
greatly facilitate understanding for the reader who is familiar with standard methods like
the SVM. Second, we pave the way for applying efficient training algorithms developed in
Section 3 to these single-task formulations, for example yielding a new linear solver for
non-sparse Multiple Kernel Learning as a corollary.
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Support Vector Machine In the case of the single-task (W = w, Q = 1), single kernel
SVM (M = 1), the primal from Equation 9 and dual from Equation 2.5.1 can be greatly
simplified:

inf
w∈H

1

2
‖w‖2 + C

n∑
i=1

max
(
0, 1− yi

〈
w, ϕ(xi)

〉)
,

which corresponds to the well-established linear SVM formulation (without bias). Similarly,
the dual is readily obtained from Equation 2.5.1 and is given by

sup
0�α�C

− 1

2

n∑
i,j=1

αiαjyiyjk(xi, xj) +

n∑
i=1

αi .

MKL `p-norm MKL (Kloft et al., 2011) is obtained as a special case of our framework.
This case is of particular interest, as it allows to obtain a linear solver for `p-norm MKL,
as a corollary. By restricting the number of tasks to one (i.e., T = 1), Wm becomes wm

and Q = 1. Equation (9) reduces to:

inf
θ∈Θp,W∈H

1

2

M∑
m=1

‖wm‖2

θm
+ C

n∑
i=1

max

(
0, 1− yi

∑M

m=1

〈
wm, ϕm(xi)

〉)
.

In agreement with Kloft et al. (2009a), we recover the dual formulation from Equation 2.5.1.

inf
θ∈Θp

sup
0�α�C

− 1

2

n∑
i,j=1

αiαjyiyj

M∑
m=1

θmkm(xi, xj) +

n∑
i=1

αi .

2.5.3 Multitask Learning

Here, we first derive the primal and dual formulations of regularization-based multitask
learning as a special case of our framework and then give an overview of existing variants that
can be mapped onto this formulation as a precursor to novel instantiations in Section 2.6.
In this setting, we deal with multiple tasks t, but only a single kernel or task similarity
measure Q (i.e., M = 1). The primal thus becomes:

inf
W∈H

1

2
‖W‖2Q + C

n∑
i=1

max
(
0, 1− yi

〈
wτ(i), ϕ(xi)

〉)
, (11)

with corresponding dual

sup
0�α�C

− 1

2

n∑
i,j=1

αiαjyiyj k̃(xi, xj) +

n∑
i=1

αi , (12)

where the definition of k̃ is given in Equation 5. As we will see in the following, the above
formulation captures several existing MTL approaches, which can be expressed by choosing
different encodings Q for task similarity.
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Frustratingly Easy Domain Adaptation An appealing special case of Graph-
regularized MTL was presented by Daumé (2007). They considered the setting of only
two tasks (source task and target task), with a fix task relationship. Their frustratingly
easy idea was to assign a higher similarity to pairs of examples from the same task than
between examples from different tasks. In a publication titled Frustratingly Easy Domain
Adaptation, Daumé (2007) present a simple, yet appealing special case of graph-regularized
MTL. They considered the setting of only two tasks (source task and target task), with a
fix task relationship (i.e., the influence of the two tasks on each other was not determined
by their actual similarity). Their idea was to assign a higher base-similarity to pairs of
examples from the same task than between examples from different tasks. This may be
expressed by the following multitask kernel:

k̃(x, z) =

{
2k(x, z) τ(x) = τ(z)

k(x, z) else .

From the above, we can readily read off the corresponding Q−1 (and compute Q).

Q−1 =

(
2 1
1 2

)
, Q =

(
2
3 −1

3
−1

3
2
3

)
.

Given the above, we can express this special case in terms of Equation (11) and (12). With
some elementary algebra, this method can be viewed as pulling weight vectors of source ws

and target wt towards a common mean vector w̄ by means of a regularization term. If we
generalize this idea to allow for multiple cluster centers, we arrive at task clustering, which
is described in the following.

Task Clustering Regularization Here, tasks are grouped into M clusters, whereas
parameter vectors of tasks within each cluster are pulled towards the respective cluster
center w̄m = 1

Tm

∑Tm
t=1wt, where Tm is the number of tasks in cluster m (Evgeniou et al.,

2005). To understand what Q and Q−1 correspond to in terms of Equations 11 and 12,
consider the definition of the multitask regularizer R for task clustering.

R(w1, . . . ,wT ) =
1

2

(
T∑
t=1

λ ‖wt‖2 +

M∑
m=1

(
ρ ‖w̄m‖2 +

T∑
t=1

ρtm ‖wt − w̄m‖2
))

(13)

=
1

2

 T∑
t=1

λ ‖wt‖2 +

T∑
s,t=1

Gs,t〈ws,wt〉

 (14)

=
1

2
tr
(
W (λI +G)W>

)
, (15)

where M is the number of clusters, ρtm ≥ 0 encodes assignment of task t to cluster m, ρ
controls regularization of cluster centers w̄m and G are given by

Gs,t =

M∑
m=1

(
ρtmδst −

ρsmρ
t
m

ρ+
∑T

r=1 ρ
r
m

)
.
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If any task t is assigned to at least one cluster m (i.e., ∀t∃m : ρtm > 0) G is positive definite
(Evgeniou et al., 2005) and we can express the above in terms of our primal formulation
in Equation 11 as Q = (λI + G) and the corresponding dual as Q−1 = (λI + G)−1, even
for λ = 0. We note that the formulation given in Section 2.5.3 may by expressed via task
clustering regularization, by choosing only one cluster (i.e., M = 1) and setting λ = 0,
ρ = 1 and ρsource

1 = ρtarget
1 = 1, we get Gs,t = δs,t− 1

3 , equating to the task similarity matrix
Q from the previous section.

Graph-regularized MTL Graph-regularized MTL was established by Evgeniou et al.
(2005) and constitutes one of the most influential MTL approaches to date. Their method is
based on the following multi-task regularizer, which also forms one of the main inspirations
for our framework:

R(w1, ...,wT ) =
1

2

(∑T

t=1
‖wt‖2 +

∑T

s,t=1
ast ‖ws −wt‖2

)
(16)

=
1

2

(∑T

t=1
‖wt‖2 +

∑T

s,t=1
ls,t〈ws,wt〉

)
(17)

=
1

2
tr
(
W (I + L)W>

)
, (18)

where A = (ast)1≤s,t≤T ∈ RT×T is a given graph adjacency matrix encoding the pairwise
similarities of the tasks, L = D − A denotes the corresponding graph Laplacian, where
Di,j := δi,j

∑
k Ai,k, and I is a T × T identity matrix. Note that the number of zero

eigenvalues of the graph Laplacian corresponds to the number of connected components.
We may view graph-regularized MTL as an instantiation of our general primal problem,
Problem 1, where we have only one task similarity measure Q1 = I + L (i.e., M = 1). As
the graph Laplacian L is not invertible in general, we use its pseudo-inverse L† to express
the dual formulation of the above MTL regularizer.

Q−1
s,t = L†s,t =

r∑
i=1

σiv
T
isvit, (19)

where r is the rank of L, σi are the eigenvalues of L and V = (vs,t) is the orthogonal matrix
of eigenvectors.

Multi-task Kernels In contrast to graph-regularized MTL, where task relations are
captured by an adjacency matrix or graph Laplacian as discussed in the previous paragraph,
task relationships may directly be expressed in terms of a kernel on tasks Ktasks. This
relationship has been illuminated in Section 2.4, where we have seen that the kernel on tasks
corresponds to Q−1 in our dual MTL formulation. A formulation involving a combination
of several MTL kernels with a fix weighting was explored by Jacob and Vert (2008) in the
context of Bioinformatics. In its most basic form, the authors considered a multitask kernel
of the form

K((x, t), (z, s)) = Kbase(x, z) ·Ktasks(t, s).

Furthermore, the authors considered a sum of different multi-task kernels, among them the
corner cases KDirac(t, s) = δs,t (independent tasks) and the uniform kernel KUni(t, s) = 1

12



(uniformly related tasks). In general, their dual formulation is given by

K((x, t), (z, s)) =
M∑
m=1

Kbase(x, z) ·K
(m)
tasks(t, s).

The above is a very interesting special case and can easily be expressed within our
general framework. For this, consider the dual formulation given in Equation 2.5.1 for

Q(m)−1 = K
(m)
tasks and θ1 = . . . = θM = 1. In other words, the above also constitutes a form

of multitask multiple kernel learning, however, without actually learning the kernel weights

Θm. Nevertheless, the choice and discussion of different multitask kernels K
(m)
tasks in Jacob

and Vert (2008) is of high relevance with respect to the family of methods explored in this
work.

2.6 Proposing Novel Instances of Multi-task Learning Machines

We now move ahead and derive novel instantiations from our general framework. Most
importantly, we go beyond previous formulations by learning or refining task similarities
from data using MKL as an engine.

+ +

(a) Multigraph MT-MKL

+ +

(b) Hierarchical MT-MKL
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(c) Smooth MT-MKL

Figure 1: Learning additive transformations of task similarities: (a) Multigraph MT-MKL
where one combines similarities from multiple independent graphs (which includes the ap-
proaches proposed in Widmer et al. (2010c); Jacob and Vert (2008)); (b) Hierarchical MT-
MKL where one uses a tree to generate specific similarity matrices (as proposed in Widmer
et al. (2010a,c); Görnitz et al. (2011); Widmer et al. (2012)); and (c) Smooth MT-MKL
where one uses multiple transformations of an existing similarity matrix for linear combi-
nation.
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2.6.1 Multi-graph MT-MKL

One of the most popular MTL approaches is graph-regularized MTL by Evgeniou and Pontil
(2004). We have seen in Section 2.5.3, that such a graph is expressed as a adjacency matrix A
and may alternatively be expressed in terms of its graph Laplacian L. Our extension readily
deals with multiple graphs encoding task similarity Am = (amst)1≤s,t≤T ∈ RT×T , which is
of interest in cases where - as in Multiple kernel learning - we have access to alternative
sources of task similarity and it is unclear which one is best suited. This concept gives rise
to the multi-graph MTL regularizer

R(W ) =
1

2
tr

(∑M

m=1
Wm(I + Lm)W>m

)
,

where Lm denotes the graph Laplacian corresponding to Am. As before, we learn a weighting
of the given graphs, therefore determining which measures are best suited to maximize
prediction accuracy.

2.6.2 Hierarchical MT-MKL

Recall that in task clustering, parameter vectors of tasks within the same cluster are cou-
pled (Equation 13). The strength of that coupling, however, has be be chosen in advance
and remains fixed throughout the learning procedure. We extend the formulation of task
clustering by introducing a weighting θm to task cluster m and tuning this weighting using
our framework. We decompose G over clusters and arrive at the following MTL regularizer

R(w1, . . . ,wT ) =
1

2

(∑M

m=1
‖wm‖2 +

∑M

m=1
θm
∑T

s,t=1
Gms,t〈ws,wt〉

)
(20)

=
1

2

∑M

m=1
tr
(
θmW (I +Gm)W>

)
, (21)

where Gm is given by

Gms,t = ρtmδst −
ρsmρ

t
m

ρ+
∑T

r=1 ρ
r
m

.

Note that, if not all tasks belong to the same cluster, Gm will not be invertible. Therefore,
we need to express the mapping onto the dual of our general framework from Equation 2.5.1
in terms of the pseudo-inverse (see Equation 19) of Gm: Q−1

m = G†m.

An important special case of the above is given by a scenario where task relationships
are described by a hierarchical structure G (see Figure 1(b)), such as a tree or a directed
acyclic graph. Assuming hierarchical relations between tasks is particularly relevant to
Computational Biology where often different tasks correspond to different organisms. In
this context, we expect that the longer the common evolutionary history between two
organisms, the more beneficial it is to share information between these organisms in a
MTL setting. The tasks correspond to the leaves or terminal nodes and each inner node
nm defines a cluster m, by grouping tasks of all terminal nodes that are descendants of
the current node nm. As before, task clusters G can be used in the way discussed in the
previous section.
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2.6.3 Smooth hierarchical MT-MKL

Finally, we present a variant that may be regarded as a smooth version of the hierarchical
MT-MKL approach presented above. Here, however, we require access to a given task
similarity matrix, which is then subsequently transformed by squared exponentials with

different length scales, for instance, Q
(m)
st = exp(Ast/σm). We use MT-MKL to learn

a weighting of the kernels associated with the different length scales, which corresponds
to finding the right level in the hierarchy to trade off information between tasks. As an
example, consider Figure 1(c), where we show the original task similarity matrix and the
transformed matrices at different length scales.

3 Algorithms

In this section, we present efficient optimization algorithms to solve the primal and dual
problems, i.e., Problems 1 and 2, respectively. We distinguish the cases of linear and
non-linear kernel matrices. For non-linear kernels, we can simply use existing MKL imple-
mentations, while, for linear kernels, we develop a specifically tailored large-scale algorithm
that allows us to train on problems with a large number of data points and dimensions,
as demonstrated on several data sets. We can even employ this algorithm for non-linear
kernels, if the kernel admits a sparse, efficiently computable feature representation. For
example, this is the case for certain string kernels and polynomial kernels of degree 2 or 3.
Our algorithms are embedded into the COFFIN framework (Sonnenburg and Franc, 2010)
and integrated into the SHOGUN large-scale machine learning toolbox (Sonnenburg et al.,
2010).

3.1 General Algorithms for Non-linear Kernels

A very convenient way to numerically solve the proposed framework is to simply exploit
existing MKL implementations. To see this, recall from Section 2.4 that if we use the
multi-task kernels k̃1, . . . , k̃M as defined in (5) as the set of multiple kernels, the completely
dualized MKL formulation (see Problem 3) is given by,

inf
θ∈Θp

sup
α∈Rn:

∑n
i=1 αiyi=0

− 1

2

∥∥∥∥∥
(

n∑
i,j=1

αiαjyiyj

M∑
m=1

θmk̃m(xi, xj)

)
1≤m≤M

∥∥∥∥∥
p∗

− C L∗(−α/C) .

An efficient optimization approach is by Vishwanathan et al. (2010), who optimize the
completely dualized MKL formulation. This implementation comes along without a θ-step,
but any of the αi-steps computations of the αi-steps are more costly as in the case of vanilla
(MT-)SVMs.

Further, combining the partially dualized formulation in Problem 2 with the definition
of multi-task kernels from (5), we arrive at an equivalent problem to (7), that is,

inf
θ∈Θp

sup
α∈Rn

− 1

2

n∑
i,j=1

αiαjyiyj

M∑
m=1

k̃m(xi, xj) − C L∗(−α/C) ,
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which is exactly the optimization problem of `p-norm multiple kernel learning as described
in Kloft et al. (2011). We may thus build on existing research in the field of MKL and
use one of the prevalent efficient implementations to solve `p-norm MKL. Most of the `p-
norm MKL solvers are specifically tailored to the hinge loss. Proven implementations are,
for example, the interleaved optimization method of Kloft et al. (2011), which is directly
integrated into the SVMLight module (Joachims, 1999) of the SHOGUN toolbox such that
the θ-step is performed after each decomposition step, i.e., after solving the small QP
occurring in SVMLight, which allows very fast convergence (Sonnenburg et al., 2006).

For an overview of MKL algorithms and their implementations, see the survey paper by
Gönen and Alpaydin (2011).

3.2 A Large-scale Algorithm for Linear or String Kernels and Beyond

For specific kernels such as linear kernels and string kernels—and, more generally, any kernel
admitting an efficient feature space representation—, we can derive a specifically tailored
large-scale algorithm. This requires considerably more work than the algorithm presented
in the previous subsection.

3.2.1 Overview

From a top-level view, the upcoming algorithm underlies the core idea of alternating the
following two steps:

1. the θ step, where the kernel weights are improved

2. the W step, where the remaining primal variables are improved.

Algorithm 1 (Blueprint of the large-scale optimization algorithm). The MKL
module (θ step) is wrapped around the MTL module (W step).

1: input: data x1, . . . , xn ∈ X and labels y1, . . . , yn ∈ {−1, 1} associated with tasks
τ(1), . . . , τ(n) ∈ {1, . . . , T}; feature vectors φ1(xi), . . . , φM (xi); task similarity matrices
Q1, . . . , QM ; optimization precision ε

2: initialize θm := p
√

1/M for all m = 1, . . . ,M , initialize W = 0
3: while optimality conditions are not satisfied within tolerance ε do

4: W descent step: compute new W such that the obj. Rθ(W ) + C L(W ) decreases

5: W := argmin
W̃

Rθ(W̃ ) + C L(W̃ )

6: θ step: compute minimizer θ := argminθ̃∈Θp
Rθ̃(W ) + C L(W ) according to (22)

7: end while
8: output: ε-accurate optimal hypothesis W and kernel weights θ

These steps are illustrated in Algorithm Table 1. We observe from the table that the vari-
ables are split into the two sets {θm|m = 1, . . . ,M} and {wmt|m = 1, . . . ,M, t = 1, . . . , T}.
The algorithm then alternatingly optimizes with respect to one or the other set until the
optimality conditions are approximately satisfied. We will analyze convergence of this op-
timization scheme later in this section. Note that similar algorithms have been used in the
context of the group lasso and multiple kernel learning by, for instance, Roth and Fischer
(2008), Xu et al. (2010), and Kloft et al. (2011).
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3.2.2 Solving the θ Step

In this section, we discuss how to compute the update of the kernel weights θ as carried
out in Line 6 of Algorithm 1. Note that for fixed W ∈ H it holds

arginf
θ∈Θp

Rθ(W ) + C L
(
A(W )

)
= arginf

θ∈Θp

Rθ(W ) ,

where Rθ(W ) = 1
2

∑M
m=1

tr(WmQmWm)
θm

. Furthermore, by Lagrangian duality,

inf
θ∈Θp

1

2

M∑
m=1

tr(WmQmWm)

θm
= max

λ≥0
inf
θ�0

1

2

M∑
m=1

tr(WmQmWm)

θm
+ λ

M∑
m=1

θpm

= inf
θ�0

1

2

M∑
m=1

tr(WmQmWm)

θm
+ λ∗

M∑
m=1

θpm︸ ︷︷ ︸
=:ψ(θ)

,

where we denote the optimal λ in the above maximization by λ?. The infimum is either
attained at the boundary of the constraints or when ∇θψ(θ) = 0, thus the optimal point

θ? satisfies θ?m = (tr(WmQmWm)/λ?)1/(p+1) for any m = 1, . . . ,M . Because θ? ∈ Θp,

i.e., ‖θ‖p = 1, it follows λ? =
(∑M

m=1 tr(WmQmWm)p/(p+1)
)(p+1)/p

, under the minimal

assumption that W 6= 0. Thus, because tr(WmQmWm) =
∑T

s,t=1 qmst 〈wms,wmt〉,

∀m = 1, . . . ,M : θ?m =

p+1

√∑T
s,t=1 qmst 〈wms,wmt〉(∑M

m=1
p+1

√∑T
s,t=1 qmst 〈wms,wmt〉

p
)1/p

. (22)

3.2.3 Solving the W Descent Step

To solve the W step as carried out in Line 4 of Algorithm 1, we consider the kernel weights
{θm|m = 1, . . . ,M} as being fixed and optimize solely with respect to W . In fact, we
perform the W descent step in the dual, i.e., by optimizing the dual objective of Problem 2,
i.e., solving

sup
α∈Rn

−R∗θ(A∗(α)) − C L∗(−(α)/C) .

Although our framework is also valid for other loss functions, for the presentation of the
algorithm, we make a specific choice of a proven loss function, that is, the hinge loss l(a) =
max(0, 1− a), so that by (8), the above task becomes

sup
α∈Rn:0�α�C

−R∗θ(A∗(α)) +
n∑
i=1

αi . (23)

Our algorithm optimizes (23) by dual coordinate ascent, i.e., by optimizing the dual vari-
ables αi one after another (i.e., only a single dual variable αi is optimized at a time),

sup
d∈R: 0≤αi+d≤C

−R∗θ(A∗(α+ dei)) +
n∑
i=1

αi + d ,
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where we denote the unit vector of ith coordinate in Rn by ei. As we will see, this task can
be performed analytically; however, performed purely in the dual involves computing a sum
over all support vectors which is infeasible for large n. Our proposed algorithm is, instead,
based on the application of the representer theorem carried out in Section 2.3: recall from
(4) that, for all m = 1, . . . ,M and t = 1, . . . , T , it holds

wmt = θm

n∑
i=1

q
(−1)
mτ(i)tαiyiϕm(xi) .

The core idea is to express the update of the αi in the coordinate ascent procedure solely
in terms of the vectors wmt. While optimizing the variables αi one after another, we keep
track of the changes in the vectors wmt. This procedure is reminiscent of the dual coordinate
ascent method, but differs in the way the objective is computed. Of course, this implies that
we need to manipulate feature vectors, which explains why our approach relies on efficient
infrastructure of storing and computing feature vectors and their inner products. If the
infrastructure is adequate so that computing inner products in the feature space is more
efficient than computing a row of the kernel matrix, our algorithm will have a substantial
gain.

Expressing the update of a single variable αi in terms of the vectors wmt As
argued above, our aim is to express the (analytical) computation of

sup
d∈R: 0≤αi+d≤C

−R∗θ(A∗(α+ dei)) +

n∑
i=1

αi + d .

solely in terms of the vectors wmt. To start the derivation, note that, by (3),

R∗θ(A∗(α+ dei)) =
1

2

M∑
m=1

θm ‖A∗(α+ dei)‖2Q−1
m

with, by (6),

‖A∗(α+ dei)‖2Q−1
m

=

n∑
j,j̃=1

αjαj̃yjyj̃ k̃m(xj , xj̃) + 2dyi

n∑
j=1

αjyj k̃m(xi, xj) + d2km(xi, xi) ,

where
k̃m(xi, xj) = q

(−1)
mτ(i)τ(j)km(xi, xj)

is the mth multi-task kernel as defined in (5). Thus,

argsup
d∈R: 0≤αi+d≤C

−R∗θ(A∗(α+ dei)) +

n∑
i=1

αi + d

= argsup
d∈R: 0≤αi+d≤C

d − dyi

n∑
j=1

αjyj

(∑M

m=1
θmk̃m(xi, xj)

)
− 1

2
d2

(∑M

m=1
θmk̃m(xi, xi)

)

= argsup
d∈R: 0≤αi+d≤C

d − dyi

(∑M

m=1

〈
wmτ(i), ϕm(xi)

〉)
− 1

2
d2

(∑M

m=1
θmk̃m(xi, xi)

)
︸ ︷︷ ︸

=:ψ(d)

.
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The optimum of ψ(d) is either attained at the boundaries of the constraint 0 ≤ αi + d ≤ C
or when ψ′(d) = 0. Hence, the optimal d? can be expressed analytically as

d? = max

(
−αi , min

(
C − αi ,

1− yi
∑M

m=1 θm
〈
wmτ(i), ϕm(xi)

〉∑M
m=1 θmk̃m(xi, xi)

))
. (24)

Whenever we update an αi according to

αnew
i := αold

i + d?

with d computed as in (24), we need to also update the vectors wmt, m = 1, . . . ,M ,
t = 1, . . . , T , according to

wnew
mt := wold

mt + dθmq
(−1)
mτ(i)tyiϕm(xi) , (25)

to be consistent with (4). Similarly, we need to update the vectors wmt after each θ step
according to

wnew
mt :=

(
θnew
m /θold

m

)
wold
mt . (26)

To avoid recurrences in the iterates, a θ-step should only be performed if the primal objective
has decreased between subsequent θ-steps. Thus, after each α epoch, the primal objective
needs to be computed in terms of W . As described above, the algorithm keeps W up to
date when α changes, which makes this task particular simple.

The resulting large-scale algorithm is summarized in Algorithm Table 2. Data and the
labels are input to the algorithm as well as a sub-procedure for efficient computation of
feature maps (cf. Section 3.2.4). Lines 2 and 3 initialize the optimization variables. In
Line 4 the inverses of the task similarity matrices are pre-computed. Algorithm 2 iterates
over Lines 7–16 until the stopping criterion falls under a pre-defined accuracy threshold ε.
In Lines 7–11 the line search is computed for all dual variables. Lines 14 and 15 update
the primal variables and kernel weights to be consistent with the representer theorem, only
if the primal objective has decreased since the last θ-step. We stop Algorithm 2 when the
relative change in the objective o is less than ε. Notice that we do not optimize the W step
to full precision, but instead alternate between one pass over the αi and a θ step.

3.2.4 Details on the Implementation

We have implemented the optimization algorithms described in the previous section into
the general framework of the SHOGUN machine learning toolbox (Sonnenburg et al., 2010).
Besides the described implementations for binary classification, we also provide implemen-
tations for novelty detection and regression. Furthermore, the user may choose an opti-
mization scheme, that is, decide whether one of the classic, non-linear MKL solvers shall
be used (either the analytic optimization algorithm of Kloft et al. (2011), the cutting plane
method of Sonnenburg et al. (2006), or the Newton algorithm by Kloft et al. (2009a)), or
the novel implementation for efficiently computable feature maps. Our implementation can
be downloaded from http://www.shogun-toolbox.org.

In the more conventional family of approaches, the wrapper algorithms, an optimiza-
tion scheme on θ wraps around a conventional SVM solver (for instance, LIBSVM and
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Algorithm 2 (Dual-coordinate-ascent-based MTL training algorithm). Gener-
alization of the LibLinear training algorithm to multiple tasks and multiple linear kernels.

1: input: data x1, . . . , xn ∈ X and labels y1, . . . , yn ∈ {−1, 1} associated with tasks
τ(1), . . . , τ(n) ∈ {1, . . . , T}; efficiently computable feature maps ϕ1, . . . , ϕM ; task similarity
matrices Q1, . . . , QM ; optimization precision ε

2: for all i ∈ {1, . . . , n} initialize αi = 0
3: for all m ∈ {1, . . . ,M} and t ∈ {1, . . . , T}, initialize wmt according to (4)

4: for all m ∈ {1, . . . ,M}, compute inverse Q−1
m =

(
q

(−1)
mst

)
1≤s,t≤T

5: initialize primal objective o = nC
6: while optimality conditions are not satisfied do
7: for all i ∈ {1, . . . , n}
8: compute d according to (24)
9: update αi := αi + d

10: for all m ∈ {1, . . . ,M} and t ∈ {1, . . . , T}, update wmt according to (25)
11: end for
12: store primal objective oold = o and compute new primal objective o
13: if primal objective has decreased, i.e., o < oold

14: for all m ∈ {1, . . . ,M}, compute θm from wm1, . . . ,wmT according to (22)
15: for all m ∈ {1, . . . ,M} and t ∈ {1, . . . , T}, update wmt according to (26)
16: end if
17: end while
18: output: ε-accurate optimal hypothesis W = (wmt)1≤m≤M,1≤t≤T and kernel weights θ =

(θm)1≤m≤M

SVMLIGHT are integrated into SHOGUN) using a single multi-task kernel. Effectively,
this results in alternatingly solving for α and θ. For the θ-step, SHOGUN offers the three
choices listed above. The second, much faster approach performs interleaved optimization
and thus requires modification of the core SVM optimization algorithm. This is currently
either integrated into the chunking-based SVRlight and SVMlight module. Lastly, the
completely new optimization scheme as described in Algorithm Table 2 is implemented and
connected with the module for computing the θ-step.

Note that the implementations for non-linear kernels come with the option of either
pre-computing the kernel or computing the kernel on the fly for large-scale data sets. For
truly large-scale MT-MKL, a linear or string kernel should be used. This is implemented
as an internal interface the COFFIN module of SHOGUN (Sonnenburg and Franc, 2010).

3.3 Convergence Analysis

In this section, we establish convergence of Algorithm 1 under mild assumptions. To this
end, we build on the existing theory of convergence of the block coordinate descent method.
Classical results usually assume that the function to be optimized is strictly convex and
continuously differentiable. This assertion is frequently violated in machine learning when,
for instance, the hinge loss is employed. In contrast, we base our convergence analysis on the
work of Tseng (2001) concerning the convergence of the block coordinate descent method.
The following proposition is a direct consequence of Lemma 3.1 and Theorem 4.1 in Tseng
(2001).
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Proposition 4. Let f : Rd1+···+dR → R ∪ {∞} be a function. Put d = d1 + · · · + dR.
Suppose that f can be decomposed into f(a1, . . . ,ar) = f0(a1, . . . ,ar) +

∑R
r=1 fr(ar) for

some f0 : Rd → R ∪ {∞} and fr : Rdr → R ∪ {∞}, r = 1, . . . , R. Initialize the block
coordinate descent method by a0 = (a0

1, . . . ,a
0
R). Let (rk)k∈N ⊂ {1, . . . , R} be a sequence of

coordinate blocks. Define the iterates ak = (ak1, . . . ,a
k
R), k > 0, by

ak+1
rk
∈ argmin

A∈Rdrk

f
(
ak+1

1 , · · · ,ak+1
rk−1,A,a

k
rk+1, · · · ,akR

)
, ak+1

r := akr , r 6= rk , k ∈ N0 .

(27)
Assume that

(A1) f is convex and proper (i.e., f 6≡ ∞)

(A2) the sublevel set A0 := {a ∈ Rd : f(a) ≤ f(a0)} is compact and f is continuous on A0

(assures existence of minimizer in (27))

(A3) dom(f0) := {a ∈ Rd : f0(a) < ∞} is open and f0 is Gâteaux differentiable (for
instance, continuously differentiable) on dom(f0)
(yields regularity—i.e., any coordinate-wise minimum is a minimum of f)

(A4) it exists a number T ∈ N so that, for each k ∈ N and r ∈ {1, . . . , R}, there is
k̃ ∈ {k, . . . , k + T} with rk̃ = r .
(ensures that each coordinate block is optimized “sufficiently often”)

Then the minimizer in (27) exists and any cluster point of the sequence (ak)k∈N minimizes
f over A.

Corollary 5. Assume that

(B1) the data is represented by φm(xi) ∈ Rem, i = 1, . . . , n, em <∞, m = 1, . . . ,M .

(B2) the loss function l is convex, finite in 0, and continuous on its domain dom(l)

(B3) the task similarity matrices Q1, . . . , QT are positive definite

(B3) any iterate θ = (θ1, . . . , θM ) traversed by Algorithm 1 has θm > 0, m = 1, . . . ,M

(B4) the exact search specified in Line 5 of Algorithm 1 is performed

Then Algorithm 1 is well-defined and any cluster point of the sequence traversed by the
Algorithm 1 is a minimal point of Problem 1.

Proof. The corollary is obtained by applying Proposition 4 to Problem 1, that is,

inf
W ,θ: θ∈Θp

1

2

M∑
m=1

‖Wm‖2Qm

θm
+ C

n∑
i=1

l

(
yi

M∑
m=1

〈
wmτ(i), ϕm(xi)

〉)
, (28)

where Θp = {θ ∈ RM : θm ≥ 0,m = 1, . . . ,M, ‖θ‖p ≤ 1} and, by (B1), W ∈ ReT ,
e = e1 + · · ·+ eM . Note that (28) can be written unconstrained as

inf
W ,θ

f(W ,θ) , where f(W ,θ) := f0(W ,θ) + f1(W ) + f2(θ) , (29)
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by putting

f0(W ,θ) :=
1

2

M∑
m=1

‖Wm‖2Qm

θm
+ I{θ�0}(θ)

as well as

f1(W ) := C
n∑
i=1

l

(
yi

M∑
m=1

〈
wmτ(i), ϕm(xi)

〉)
, f2(θ) := I{‖θ‖p≤1}(θ) , (30)

where I is the indicator function, IS(s) = 0 if s ∈ S and IS(s) =∞ elsewise. Note that we
use the shorthand θ � 0 for θm > 0, m = 1, . . . ,M .

Assumption (B4) ensures that applying the block coordinate descent method to (28)
and (29) problems yields precisely the sequence of iterates. Thus, in order to prove the
corollary, it suffices to validate that (29) fulfills Assumptions (A1)–(A4) in Proposition 4.

Validity of (A1) Recall that Algorithm 1 is initialized with W 0 = 0 and θ0
m =

p
√

1/M , m = 1, . . . ,M , so it holds

f(W 0,θ0) = f0(W 0,θ0)︸ ︷︷ ︸
=0

+ f1(W 0)︸ ︷︷ ︸
=Cn l(0)

+ f2(θ0)︸ ︷︷ ︸
=0

= Cn l(0) < ∞ , (31)

hence f 6≡ ∞, so f is proper. Furthermore, dom(f0) = {(W ,θ) : θ � 0} is convex, and f0

is convex on dom(f0), so f0 is a convex function. By (B2), the loss function l is convex, so
f1 is a convex function. The domain dom(f2) = {θ : ‖θ‖p ≤ 1} is convex, and f2 ≡ 0 on
its domain, so f2 is a convex function. Thus the sum f = f0 + f1 + f2 is a convex function,
which shows (A1).

Validity of (A2) Let (W̃ , θ̃) ∈ A0 := {(W ,θ) : f(W ,θ) ≤ f(W 0,θ0)}. We have
f0, f1, f2 ≥ 0, so, for all m = 1, . . . ,M ,

‖W̃m‖Qm

2θm
≤ f0(W̃ , θ̃) ≤ f0(W̃ , θ̃) + f1(W̃ )︸ ︷︷ ︸

≥0

+ f2(θ̃)︸ ︷︷ ︸
≥0

by (29)
= f(W̃ , θ̃)

≤ f(W 0,θ0)
by (31)

≤ Cn l(0) ,

(32)

which implies ‖W̃m‖2Qm
≤ 2θmCn l(0). Similar, because f0 ≥ 0, we have f2(W̃ , θ̃) ≤

Cn l(0) < ∞, which, by (30), implies ‖θ̃‖p ≤ 1 and thus θ̃m ≤ 1, m = 1, . . . ,M . Hence,

by (32), ‖W̃m‖2Qm
≤ 2Cn l(0), m = 1, . . . ,M . Because Q1, . . . , QM are positive definite,

ν := minm=1,...,M tr(Qm) > 0. Thus, for any m = 1, . . . ,M ,

‖W̃m‖2 = tr(W̃ ∗mW̃m) = tr(W̃ ∗mW̃m) tr(Qm)/ tr(Qm) ≤ tr(W̃ ∗mWmQm)/ tr(Qm)

≤ ν−1 tr(W̃ ∗mW̃mQm) = ν−1 tr(W̃mQmW̃
∗
m) = ν−1 ‖W̃m‖2Qm

≤ 2ν−1Cn l(0) .

Thus
‖(W̃ , θ̃)‖2 = ‖W̃ ‖2 + ‖θ̃‖2 ≤ 2ν−1CMn l(0) +M < ∞ .

Thus sup
(W̃ ,θ̃)∈A0 ‖(W̃ , θ̃)‖ < ∞, which shows that A0 is bounded. Furthermore, A0 ⊂

dom(f) = dom(f0) ∩ dom(f1) ∩ dom(f2) and f0, f1, f2 are continuous on their respective
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domains. Thus f is continuous on dom(f) and thus also on its subset A0. It holds A0 =
f−1

(
]−∞, f(W 0,θ0)]

)
, i.e., A0 is the preimage of closed set under a continuous function;

thus A0 is closed. Any closed and bounded subset of Rd is compact. Thus A0 is compact,
which was to show.

Validity of (A3) and (A4) Clearly, dom(f0) = {(W ,θ) : θ � 0} is open and f0

is continuously differentiable on dom(f0). Thus it is Gâteaux differentiable on dom(f0).
Finally, assumption (A4) is trivially fulfilled as Algorithm 1 employs a simple alternating
rule for traversing the blocks of coordinates.

In summary, Proposition 4 can thus be applied to Problem 1, which yields the claim of
the corollary.

Remark 6. In this paper, we experiment on finite-dimensional string kernels, so Assump-
tion (B1) is naturally fulfilled. Note that, more generally, φ(xi) ∈ Rdm for all i = 1, . . . , n,
m = 1, . . . ,M , can be enforced also for infinite-dimensional kernels, as, for any finite sam-
ple x1, . . . , xn, there exists a n-dimensional feature representation of the sample that can be
explicitly computed in terms of the empirical kernel map (Schölkopf et al., 1999).

4 Applications

We demonstrate the performance of different facets of our framework with several experi-
ments ranging from well-controlled toy data to a large scale experiment on a highly relevant
genomes data set, where we combine data from a diverse set of organisms using multitask
learning. We start with a review of our prior experimental work based on algorithms that
are closely related to the ones described in this work.

4.1 Previous work

The theoretical framework presented in this paper is a generalization of the methods success-
fully used in our previous work. Special cases of the above framework were investigated in
the context of genomic signal prediction (Schweikert et al., 2008; Widmer et al., 2010a), se-
quence segmentation with structured output learning (Görnitz et al., 2011), computational
immunology (Widmer et al., 2010b,c; Toussaint et al., 2010) and problems from biological
imaging (Lou et al., 2012; Widmer et al., 2014; Lou et al., 2014). Further, we have inves-
tigated an efficient algorithm to solve special cases of our method on a large number of
machine learning data sets in Widmer et al. (2012). We have previously summarized some
of our earlier work in (Widmer and Rätsch, 2012; Widmer et al., 2013a,b). An example of
earlier results from Widmer et al. (2010a) is given in Figure 2. It illustrates an applica-
tion of the MTL algorithm to a case where we have multiple datasets associated with 15
organisms. Their evolutionary relationship is assumed to be known and is used for inform-
ing task relatedness in the algorithm that is described in Section 2.5.3 and Widmer et al.
(2010a). This experiment exemplifies the successful application of MTL to applications in
computational biology for the joint-analysis of multiple related problems.

In the two experiments that will be described in the sequel, we will go beyond our
previous work by investigating our framework in its full generality.
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Figure 2: Results from multitask learning on several organisms. Shown is a subset of the
results reported in Widmer et al. (2010a), where we combined splice site data from 15 or-
ganisms. We compared a multitask learning approach to baseline methods individual (each
task is learned independently) and union (all data is simply pooled). As for multitask learn-
ing, we used only a single, fix similarity measure, which we inferred from the evolutionary
history of the organisms at hand. These and other results in Schweikert et al. (2008); Wid-
mer et al. (2010a); Görnitz et al. (2011); Widmer et al. (2010b,c); Toussaint et al. (2010);
Lou et al. (2012); Widmer et al. (2014); Lou et al. (2014) illustrate the power multitask
learning in related tasks in computational biology.

4.2 Experiments on Biologically Motivated Controlled Data

In this section, we evaluate Hierarchical MT-MKL as described in Section 2.6.2 on an
artificial data set motivated by biological evolution. At the core of this example is the
binary classification of examples generated from two 100-dimensional isotropic Gaussian
distributions with a standard deviation of σ = 20. The difference of the mean vectors
µpos and µneg is captured by a difference vector µd. We set µpos = 0.5µd and µneg =
−0.5µd. To turn this into a MTL setting, we start with a single µd = (1, . . . , 1)T and
apply mutations to it. These mutations correspond to flipping the sign of m dimensions
in µd, where m = 5. Inspired by biological evolution, mutations are then applied in a
hierarchical fashion according to a binary tree of depth 4 (corresponding to 24 = 32 leaves).
Starting at the root node, we apply subsequent mutations to the µd at the inner nodes of the
hierarchy and work down the tree until each leaf carries its own µd. We sample 10 training
points and 1, 000 test points for each class and for each of the 32 tasks. The similarity
between the µd at the leaves is computed by taking the dot product between all pairs and
is shown in Figure 3(a). Clearly, this information is valuable when deciding which tasks
(corresponding to leaves in this context) should be coupled and will be referred to as the
true task similarity matrix in the following. We use Hierarchical MT-MKL as described in
Section 2.6.2 by creating adjacency matrices for each inner node and subsequently learning
a weighting using MT-MKL.
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We compare MT-MKL with p = 1, 2, 3 to the following baseline methods: Union that
combines data from all tasks into a single group, Individual that treats each task separately
and Vanilla MTL that uses MTL with the same weight for all matrices. We report the
mean (averaged over tasks) ROC curve for each of the above methods in Figure 3(b).
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(b) Performance of Hierarchical MT-MKL vs. Base-
line methods

Figure 3: Illustration of Hierarchical MT-MKL on an artificial dataset: In 3(a), we show
the similarity matrix between all 32 tasks as generated by a biologically inspired scheme,
where generating parameters are mutated according to a given tree structure (see main text
for details). Comparison of MT-MKL to baselines Vanilla MTL, Union, Individual is shown
in 3(b), where ROC curves are averaged over the 32 tasks for each method. MT-MKL with
p = 2 and p = 3 perform best for this task.

From Figure 3(b) we observe that the baseline Individual performs worst by a large
margin, suggesting that combining information from several tasks is clearly beneficial for
this data set. Next, we observe that a simple way of combining tasks (i.e., Union) already
considerably improves performance. Furthermore, we observe that learning weights of hi-
erarchically inferred task grouping in fact improves performance compared to Vanilla for
non-sparse MT-MKL (i.e., p = 2, 3). Of all methods, non-sparse MT-MKL is most accurate
for all recall values.

4.3 Genomic Signal - Transcription Start Site (TSS) Prediction

In this experiment, we consider an application from genome sequence analysis. The goal
is to accurately identify the genomic signal called transcription start site (TSS) based on
the surrounding genomic sequence. TSS is the genomic location where transcription, the
process whereby the RNA copies are made from regions of the genome, is initiated at the
genome sequences. We have obtained genomic data from ENSEMBL (Hubbard et al., 2002),
a community resource that brings together genomic sequences and their annotations. From
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this, we compiled a data set for nine organisms (E. caballus, C. briggsae, M. musculus,
C. elegans, D. rerio, D. simulans, V. vinifera, A. thaliana, and H. sapiens), where we
took annotated instances of transcription starts as positive examples and sequences around
randomly selected positions in the genome as background. We use our framework to jointly
learn models for different organisms, treating different organisms as different tasks.

Task similarity To generate an initial task similarity matrix, we extracted the phyloge-
netic similarity between different organisms based on their genomic sequences. In particular,
we computed the Hamming distance between well-conserved 16S ribosomal RNA regions
(i.e., stretches of genomic sequence with low degree of change during evolution) between
different classes of organisms (Isenbarger et al., 2008). Subsequently, we either used this
similarity directly in our multitask learning algorithms (MTL) or attempted to refine it
further using MT-MKL. To create a set of task similarities to be weighted by MT-MKL,
we applied exponential transformations to the base task similarity at different length-scales
(σ = {0.1, 7.55, 15.0}; see Section 2.6.3).

Experimental Setup and Results We have collected 4,000 TSS signal sequences for
each organism, which includes 1,000 positive and 3,000 negative label sequences for training
and testing. Both ends of the TSS signal label sequence consist of 1, 200 flanking nucleotides.
On this data set, we evaluated the two baseline methods, MTL and MT-MKL. In the used
evaluation scheme, we split the data in training set, validation set and testing set for each
organism. We use ten splits. The best regularization constant is selected on the validation
split for each organism. In Figure 4 we report the average area under the ROC curve (AUC)
over the ten test sets, for each of which the best regularization parameter was chosen on a
separate evaluation set.

From Figure 4, we observe that four out of nine organisms the single-task SVM (individ-
ual) outperforms the SVM that is trained on training instances from all organisms pooled
(union). From which we conclude that the learning tasks are substantially dissimilar. On
the other hand, we observe that for some organisms (M. musculus, D. rerio, V. vinifera,
and H. sapiens), there is an improvement by union over individual, which indicates that
these tasks are more similar than the remaining tasks. This is an indicator that MTL may
be beneficial for this data. See also discussion in Widmer et al. (2013b). Indeed, MTL
improves (at least marginally) over Union and Individual in seven and five out of nine or-
ganisms, respectively. But it is surpassed by Individual for three organisms (A. thaliana,
C. briggsae, C. elegans, and D. simulans). While the overall performance of of MTL is
slightly better than Union and Individual, the differences are minor which we attribute
a possibly suboptimally chosen task similarity matrix. (In fact, practically speaking, we
find that selecting a good task similarity matrix is the most difficult aspect of Multitask
learning.)

The proposed MT-MKL on the other hand, improves over individual on eight out of
nine organisms (and is not much worse on the nineth task). It improves over MTL by close
to 5% AUC for some organisms. On average, it performs about 2.5% better than any other
considered algorithm. MT-MKL achieves this by refining task similarities and thus is able
to improve classification performance.
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Figure 4: Average AUC achieved by the proposed MT-MKL as well as the baseline methods,
on the gene-start dataset (TSS). MT-MKL improves the mean accuracy considerably. In
addition, the accuracy of MT-MKL is best in eight out of the nine organisms.

In summary, we are able to demonstrate that multitask learning and MT-MKL strategies
are beneficial when combining information from several organisms and we believe that this
setting has potential for tackling future prediction problems in computational biology, and
potentially also to other application domains of multitask and multiple kernel learning such
as computer vision (Lou et al., 2012; Kloft et al., 2009b; Binder et al., 2012; Widmer et al.,
2014; Lou et al., 2014) and computer security (Kloft et al., 2008a; Kloft and Laskov, 2012;
Görnitz et al., 2013).

5 Conclusion

We presented a general regularization-based framework for Multi-task learning (MTL),
in which the similarity between tasks can be learned or refined using `p-norm Multiple
Kernel learning (MKL). Based on this very general formulation (including a general loss
function), we derived the corresponding dual formulation using Fenchel duality applied to
Hermitian matrices. We showed that numerous established MTL methods can be derived
as special cases from both, the primal and dual of our formulation. Furthermore, we derived
an efficient dual-coordinate descend optimization strategy for the hinge-loss variant of our
formulation and provide convergence bounds for our algorithm. Combined with our efficient
integration into the SHOGUN toolbox using the COFFIN feature hashing framework, the
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approach could be used to process a large number of training points. The solver can also be
used to solve the vanilla `p-norm MKL problem in the primal very efficiently, and potentially
extended to more recent MKL approaches (Cortes et al., 2013). Our solvers including all
discussed special cases are made available as open-source software as part of the SHOGUN
machine learning toolbox.

In the experimental part of this paper, we analyzed our algorithm in terms of predictive
performance and ability to reconstruct task relationships on toy data, as well as on prob-
lems from computational biology. This includes a study at the intersection of multitask
learning and genomics, where we analyzed 9 organisms jointly. In summary, we were able
to demonstrate that the proposed learning algorithm can outperform baseline methods by
combining information from several organisms.

In the future we would investigate the theoretical foundations of the approach (a good
starting point to this end is the work by Kloft and Blanchard (2011, 2012)), extensions
to structured output prediction (Görnitz et al., 2011), and to apply the method to further
problems from computational biology and the biomedical domain. These settings have great
potential; for instance, a Bayesian adaption of our approach was very recently shown to be
the leading model in an international comparison of 44 drug prediction methods for breast
cancer (Costello et al., 2014).
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A Fenchel Duality in Hilbert Spaces

In this section, we review Fenchel duality theory for convex functions over real Hilbert
spaces. The results presented in this appendix are taken from Chapters 15 and 19 in
Bauschke and Combettes (2011). For complementary reading, we refer to the excellent
introduction of Bauschke and Lucet (2012). Fenchel duality for machine learning has also
been discussed in Rifkin and Lippert (2007) assuming Euclidean spaces. We start the
presentation with the definition of the convex conjugate function.

Definition 7 (Convex conjugate). Let H be a real Hilbert space and let g : H → R ∪ {∞}
be a convex function. We assume in the whole section that g is proper, that is, {w ∈
H | g(w) ∈ R} 6= ∅. Then the convex conjugate g∗ : H → R ∪ {∞} is defined by g∗(w) =
supv∈H〈v,w〉 − g(v).

As the convex conjugate is a supremum over affine functions, it is convex and lower semi-
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continuous. We have the beautiful duality

g = g∗∗ ⇔

{
g is convex and

lower semi-continuous .

This indicates that the “right domain” to study conjugate functions is the set of convex,
lower semi-continuous, and proper (“ccp”) functions. In order to present the main result of
this appendix, we need the following standard result from operator theory.

Proposition 8 (Definition and uniqueness of the adjoint map). Let H be a real Hilbert space
and let A : H → H̃ be a continuous linear map. Then there exists a unique continuous linear
map A∗ : H̃ → H with 〈A(w),α〉 = 〈w, A∗α〉, which is called adjoint map of A.

For example, in the Euclidean case, we have H = Rm, H̃ = Rn, and A ∈ Rm×n so that
simply the transpose A∗ = A> ∈ Rn×m. We now present the main result of this appendix,
which is known as Fenchel’s duality theorem:

Theorem 9 (Fenchel’s duality theorem). Let H, H̃ be real Hilbert spaces and let g : H →
R ∪ {∞} and h : H̃ → R ∪ {∞} be ccp. Let A : H → H̃ be a continuous linear map. Then
the primal and dual problems,

p∗ = inf
w∈H

g(w) + h(A(w))

d∗ = sup
α∈H̃

−g∗(A∗(α))− h∗(−α) ,

satisfy weak duality (i.e., d∗ ≤ p∗). Assume, furthermore, that A(dom(g)) ∩ cont(h) 6= ∅,
where dom(f) := {w ∈ H : g(w) <∞} and cont(h) := {α ∈ H̃ : h continuous in α}. Then
we even have strong duality (i.e., d∗ = p∗) and any optimal solution (w?,α?) satisfies

w? = ∇g∗(A∗(α?)) ,

if g∗ ◦A∗ is (Gâteaux) differentiable in α?.

When applying Fenchel duality theory, we frequently need to compute the convex conjugates
of certain functions. To this end, the following computation rules are helpful.

Proposition 10. The following computation rules hold for the convex conjugate:

1. Let g : H → R ∪ {∞} be a proper convex function on a real Hilbert space H. Then,
for any λ > 0 and w ∈ H, we have (λg)∗(w) = λh∗(w/λ).

2. Furthermore, assume that H = H1
⊕
H2 and g(w) = g1(w1) + g2(w2), where g1 :

H1 → R ∪ {∞} and g2 : H2 → R ∪ {∞}, are proper convex functions on Hilbert
spaces H1 and H2, respectively. Then, for any w = (w1,w2) ∈ H1

⊕
H2, we have

g∗(w) = g∗1(w1) + g∗2(w2).

29



B Conjugate of the Logistic Loss

The following lemma gives the convex conjugate of the logistic loss.

Lemma 11 (Conjugate of Logistic Loss). The conjugate of the logistic loss, defined as
l(a) = log(1 + exp(−a), is given by

l∗(a) = −t log(−a) + (1 + a) log(1 + a) .

Proof. By definition of the conjugate,

l∗(a) = sup
b∈R

ab − log(1 + exp(−b))︸ ︷︷ ︸
=:ψ(b)

.

Note that the problem is unbounded for a < −1 and a > 0. For a ∈]− 1, 0[, the supremum
is attained when ψ′(b) = 0, which translates into b = − log(−a/(1 + a)) and 1 + exp(−b) =
1/(1 + a). Thus

l∗(a) = −a log(−a/(1 + a))− log(1/(1 + a)) = −a log(−a) + (1 + a) log(1 + a) ,

which was to show
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X. Lou, M. Kloft, G. Rätsch, and F. A. Hamprecht. Structured Learning from Cheap Data,
chapter 12, page 281ff. MIT Press, 2014.

G. Obozinski, B. Taskar, and M. Jordan. Joint covariate selection and joint subspace
selection for multiple classification problems. Statistics and Computing, 20(2):231–252,
2010.

32



R. M. Rifkin and R. A. Lippert. Value Regularization and Fenchel Duality. Journal of
Machine Learning Research, 8:441–479, 2007. ISSN 15324435.

B. Romera-Paredes, H. Aung, N. Bianchi-Berthouze, and M. Pontil. Multilinear multitask
learning. In Proceedings of The 30th International Conference on Machine Learning,
pages 1444–1452, 2013.

V. Roth and B. Fischer. The group-lasso for generalized linear models: uniqueness of
solutions and efficient algorithms. In Proceedings of the Twenty-Fifth International Con-
ference on Machine Learning (ICML 2008), volume 307, pages 848–855. ACM, 2008.

B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K. R. Müller, G. Rätsch, and A. J.
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