Marius-Constantin Dinu

Marius-Constantin Dinu
Johannes Kepler University Linz | JKU · Institute of Bioinformatics

About

7
Publications
584
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10
Citations
Citations since 2017
6 Research Items
10 Citations
20172018201920202021202220230123456
20172018201920202021202220230123456
20172018201920202021202220230123456
20172018201920202021202220230123456

Publications

Publications (7)
Research
Full-text available
Reinforcement Learning algorithms require a large number of samples to solve complex tasks with sparse and delayed rewards. Complex tasks can often be hierarchically decomposed into sub-tasks. A step in the Q-function can be associated with solving a sub-task, where the expectation of the return increases. RUDDER has been introduced to identify the...
Preprint
Full-text available
In lifelong learning, an agent learns throughout its entire life without resets, in a constantly changing environment, as we humans do. Consequently, lifelong learning comes with a plethora of research problems such as continual domain shifts, which result in non-stationary rewards and environment dynamics. These non-stationarities are difficult to...
Chapter
Full-text available
In reinforcement learning, an agent interacts with an environment from which it receives rewards, that are then used to learn a task. However, it is often unclear what strategies or concepts the agent has learned to solve the task. Thus, interpretability of the agent’s behavior is an important aspect in practical applications, next to the agent’s p...
Conference Paper
Full-text available
We address the unsolved algorithm design problem of choosing a justified regularization parameter in unsupervised domain adaptation. This problem is intriguing as no labels are available in the target domain. Our approach starts with the observation that the widely-used method of minimizing the source error, penalized by a distance measure between...
Preprint
Full-text available
In real world, affecting the environment by a weak policy can be expensive or very risky, therefore hampers real world applications of reinforcement learning. Offline Reinforcement Learning (RL) can learn policies from a given dataset without interacting with the environment. However, the dataset is the only source of information for an Offline RL...
Preprint
Full-text available
Reinforcement Learning algorithms require a large number of samples to solve complex tasks with sparse and delayed rewards. Complex tasks can often be hierarchically decomposed into sub-tasks. A step in the Q-function can be associated with solving a sub-task, where the expectation of the return increases. RUDDER has been introduced to identify the...

Network

Cited By

Projects

Project (1)
Archived project