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Abstract

If last decade viewed computational services as a utility then surely
this decade has transformed computation into a commodity. Compu-
tation is now progressively integrated into the physical networks in
a seamless way that enables cyber-physical systems (CPS) and the
Internet of Things (IoT) meet their latency requirements. Similar to
the concept of “platform as a service” or “software as a service”, both
cloudlets and fog computing have found their own use cases. Edge
devices (that we call end or user devices for disambiguation) play the
role of personal computers, dedicated to a user and to a set of cor-
related applications. In this new scenario, the boundaries between
the network node, the sensor, and the actuator are blurring, driven
primarily by the computation power of IoT nodes like single board
computers and the smartphones. The bigger data generated in this
type of networks needs clever, scalable, and possibly decentralized
computing solutions that can scale independently as required. Any
node can be seen as part of a graph, with the capacity to serve as a
computing or network router node, or both. Complex applications can
possibly be distributed over this graph or network of nodes to improve
the overall performance like the amount of data processed over time.
In this paper, we identify this new computing paradigm that we call
Social Dispersed Computing, analyzing key themes in it that includes
a new outlook on its relation to agent based applications. We architect
this new paradigm by providing supportive application examples that
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include next generation electrical energy distribution networks, next
generation mobility services for transportation, and applications for
distributed analysis and identification of non-recurring traffic conges-
tion in cities. The paper analyzes the existing computing paradigms
(e.g., cloud, fog, edge, mobile edge, social, etc.), solving the ambiguity
of their definitions; and analyzes and discusses the relevant founda-
tional software technologies, the remaining challenges, and research
opportunities.

1 Introduction

Social computing applications are smart applications, where the results re-
ceived by the end users or the performance that they experience is affected
by the other users using the same application. A classical example of this
kind is traffic routing, implemented by many commercial mobility planning
solutions like Waze and Google. The routes provided to the end users de-
pend upon the interaction that other users in the systems have had with
the application. An effective route planning solution will be proactive in the
sense that it will analyze the demands being made by users and will use the
dynamic demand model for effectively distributing vehicle and people across
space, time, and modes of transportation, improving the efficiency of the mo-
bility system and leading to a reduction of congestion. However, due to its
nature, this computing application requires large scale real-time data inges-
tion, analysis, and optimization. We call such applications social computing
applications.

With the burst of the cloud computing paradigm, systems requiring in-
tensive computations over large data volumes have relied on the usage of
shared data centers to which they transfer their data for processing. This is
a powerful scheme for application scenarios that benefit from deep process-
ing and data availability, but it brings in non negligible problems to meet
the time requirements of time sensitive social computing applications. While
not necessarily real-time in the strict sense, such applications have built in
penalty (user aversion) if they are not responsive; they must be low-latency;
however, the traditional cloud computing architecture is problematic in a
number of application domains that are latency sensitive. Precisely, the de-
lay incurred by data propagation across the backhaul is not suited to the
needs of applications that require (near) real-time response or high quality
of service guarantees. Backhaul data handling latency is severe in the unpre-
dictable occasions where the network throughput is limited. Furthermore, a
community deploying such smart applications often finds it difficult to scale
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the system to the cloud due to economic constraints.
To alleviate these situations, engineers have looked around towards “what

is available”, i.e., to leverage the computing power of the available near by
resources, leading to a profound discussion on the opportunistic usage of
the computing resources dispersed in the community. Out of this new sce-
nario, we have identified this new computing approach that we call “Social
Dispersed Computing”. This is a powerful paradigm that can significantly
improve the performance experienced by applications in what concerns la-
tency and available throughput that will, in turn, have an indirect impact
on other measures such as the energy consumption.

Unlike cloud computing, resource scalability comes from the participatory
nature of the system, i.e., having a larger number of users. The key driver
is the social benefit behind the achieved collaboration and the great value
obtained from the aggregation of the individual information. Users have to
perceive hardly no entry barriers to use these applications; barrier elimination
is done by fulfilling the technical requirements of these applications such
as providing low cost computation resources, reliability, and data privacy
guarantees, over a low overhead management structure that achieves low
latency in service provisioning.
Enabling Social Dispersed Computing. The next computing generation
is one in which the computing platform and the social applications will be
tightly integrated. For example, sharing computing resources can be used
as incentive for participation. Moreover, providing the users with the capa-
bility of deciding where their computations will run for security and privacy
concerns will likely be a major factor for enrolling in application usage.

To enable this, the corresponding transformations are already happen-
ing in the communications and persistent storage mechanisms. For example,
Software Defined Network [86] addresses the required mechanisms to create
a flexible overlay network over dispersed resources. The concept of decen-
tralized distributed ledgers like Ethereum [5] and similar distributed ledgers
enable immutable event chronology across computing resources. New con-
cepts such as the inter-planetary files system (IPFS) [29] extend blockchains
and the concept of distributed file systems to provide a shared, decentralized,
and world-wide persistent information store.

In this paper, we claim that social dispersed computing systems require
fog infrastructures to take a predominant role; fog infrastructures will support
the mobility of the users, enabling them to offload heavy tasks such as those
implying machine learning services to more powerful nodes in their vicin-
ity. However, the great push of relatively very novel computation paradigms
such as fog-, edge-, cloud, social, and dispersed computing (among other
computing paradigms) has resulted in a non-negligible level of terminology
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confusion in the community. In different research contributions, the reader
can find these terms signifying differently. This paper aims at shedding some
light by clarifying the meanings, and defining the boundaries (where possible)
of these paradigms, guided by their goals and application-level motivation.
Paper Outline. This paper is structured as follows. Section 2 defines
a number of computing paradigms that are simultaneously used nowadays;
some of these paradigms are very recent and still the scientific community
has not fully agreed on what they actually are; we clarify the paradigms and
introduce the concept of social dispersed computing. Section 3 describes the
concept of social dispersed computing and illustrates it through a set of ap-
plication scenarios in domains such as energy, social routing and distributed
traffic congestion analysis. Section 4 presents the enabling technologies that
will allow the development of social dispersed applications; for this, a se-
lected set of computational approaches are presented, followed by a selection
of supporting software tools. Section 5 compiles the main challenges for the
design and development of social dispersed applications. Finally, section 6
draws the conclusions presented as the opportunities for research.

2 Computing paradigms: Definitions and Evo-

lution

Distributed computing systems date back decades ago enabled by the first
communication schemes for remote machines. Figure 1 shows a general view
since the 90’s; a time where a number of important software and hardware
developments came together, and hardware and software schemes start to
become more sophisticated and powerful; this led to subsequent productive
decades, leading to introduction of a number of new and refined concepts
and terms, sometime over short periods of time.

Especially through the last decade, a number of keywords have appeared
that imply different computing paradigms such as cloud, mobile cloud, fog,
or edge, among others. However, the rapid proliferation of contributions on
these paradigms, even prior to the real consolidation of a wide accepted def-
inition for some of them, yielded to some confusion on their definitions. For
example, the definition of edge computing diverges across a number of works.
In [139], edge computing is defined as “any computing and network resources
along the path between data sources and cloud data centers”; whereas [147]
defines edge computing as a paradigm belonging to the sphere of the pure net-
work infrastructure that connects the user devices (that it refers to as “edge
nodes”) to the cloud. This last vision of edge computing is also shared by
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Figure 1: Evolution of Computing: A general view on the evolution of per-
sonal devices over the years

[53] although it refers to the user devices as “end nodes” in a more consistent
manner.

All these concepts have led us to the point where we are ready to realize
the potential of social computing using resources from either the cloud, the
fog, or locally dispersed computing resources. Nevertheless, it is first im-
portant to clarify the terminology and, for this reason, we initially provide
a comprehensive definition of key computing paradigms present in modern
literature, with the aim to establish a common understanding. These defini-
tions are based on the most accepted significations of the research community.
The goal is to draw a clean separation (wherever possible) among the dif-
ferent computing paradigms also explaining their evolution, motivation, and
purpose.

2.1 Cloud computing

Cloud computing (CC) is a service model where computing services that
are available remotely allow users to access applications, data, and physical
computation resources over a network, on demand, through access devices
that can be highly heterogeneous.

In cloud computing [61], resources are rented in an on demand and pay-
per-use fashion from cloud providers. Just as a huge hardware machine,
cloud computing data centers deliver an infrastructure, platform, and soft-
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ware applications as services that are available to consumers. This facilitates
offloading of highly consuming tasks to cloud servers.

The National Institute for Standard and Technology (NIST) is respon-
sible for developing standards and guidelines for providing security to all
assets. [111] provides an insight into the cloud computing infrastructure
which consists of three service models, four deployment models, and five
essential characteristics which are: on-demand self-service, broad network
access, resource pooling, rapid elasticity, and measured service.

A cloud service model represents the packaging of IT resources required
by the consumers as a service that is provided by the cloud vendor. The
three cloud service models are:

• Software as a service (SaaS): The consumers are only provided with
the capability to run the applications of the provider, but they have no
control over the cloud infrastructures like operating system, servers, or
storage.

• Platform as a service (PaaS): The consumers have the capability to
deploy either own or acquired applications to the cloud. The consumer
does not have any control on the cloud infrastructure, but has control
over the deployed application.

• Infrastructure as a service (IaaS): The consumers can use the applica-
tions provided on the cloud without the need to download the applica-
tion to the consumer’s computer. Consumers can manage the underly-
ing infrastructure at the cloud such as virtual machines, the operating
systems, and other resources.

Additionally, with the wide increase of data processing and storage in
the cloud, larger data volumes circulate on the network also increasing their
exposure to third parties and attackers. This brings in the need for data
security and privacy mechanisms. Data security in particular is a vital chal-
lenge that has been given a thought in [117]. Here, the authors have taken
a look at the security problem from the perspective of different stakeholders
like cloud provider, service provider, and consumer. It also summarizes the
security issues in each one of the service delivery models of IaaS, PaaS, and
SaaS, where some of the identified problems are responsibility of the cloud
vendor while the other issues are that of the consumers. The authors of this
work have identified the various holes in the security loop of the cloud com-
puting model, shedding light on which would make the whole model more
secure.
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By analyzing some of the existing works, it can be seen that these provide
the formal definitions of cloud computing, precisely describing the model in-
sights and some of the obstacles in implementing the cloud services. Other
than the advantage of the large amount of data storage and analytics capa-
bilities of the cloud, some of its disadvantages (e.g., unreliable data latency,
immobility and lack of location awareness) are important drawbacks in some
domains; and this has made way to other technologies like mobile cloud
computing or fog computing.

2.2 Mobile Cloud Computing

The proliferation of mobile personal devices led to Mobile Cloud Computing
(MCC). MCC appeared as a natural evolution and enhancement of cloud
computing with the goal of offering specific services to mobile users with
powerful computational and storage resources. As mobile devices are re-
source limited as compared to the cloud servers, task offloading strategies
are one of the most studied problems. As explained in [58], MCC combines
mobile computing, mobile Internet, and cloud computing for providing task
offloading.

The literature gives different definitions for MCC as explained in [80].
Infrastructure based MCC refers to a model that uses the cloud data centers
hardware to serve mobile users; and ad-hoc MCC defines the concept of
mobile cloud as made up of nearby mobile nodes acting as a resource cloud
that grants access to the Internet (including other cloud services) for other
mobile users. Using the nearby mobile users has several advantages like the
possibility of using a faster LAN network that is comparable to the available
servers interconnection inside a cloud data center. Also, MCC is “cloudlet”
based, which is defined below.

The paper [20] provides an overview of MCC along with its evolution
from cloud computing, and its advantages and disadvantages, as well as its
applications. Some of the mentioned noteworthy advantages of MCC are
flexibility, storage, cost efficiency, mobility and availability, scalability and
performance. Some discussed disadvantages are security, privacy, compli-
ance, compatibility, and dependency. The authors also enumerate a few
open challenges faced by MCC which are low bandwidth and QoS issues like
congestion, network disconnection and interoperability.

MCC has non-negligible security and privacy challenges which arise due
to the integration of mobile devices with cloud computing. Along with the
similar security concerns of cloud computing, some new issues on security
and privacy also arise as there is a wireless medium for transferring data
between the mobile device and the cloud. In [116], the authors identify the
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main security and privacy challenges as data security, virtualization secu-
rity, partitioning and offloading security, mobile cloud application security,
mobile device security, data privacy, location privacy and identity privacy,
and solutions to each of these issues have also been discussed by citing prior
literature work. Given the increase in the number of mobile users and appli-
cations, security and privacy requirements are vital for MCC; dealing with
them increases the computation and communication overhead which has to
be dealt with by the users.

With the integration of mobile devices and cloud computing, MCC over-
comes the limitation of immobility and lack of location awareness in cloud
computing; also, it provides an attractive and convenient technology of mov-
ing all the data rich mobile computation to the cloud. However advantageous
this idea of MCC may look, there are still open issues like the associated high
network latency and power consumption of data transmission from the mo-
bile devices to the cloud, which are not handled by MCC.

2.3 Cloudlet

Cloudlet is defined as resource rich and trusted computing devices near the
vicinity of mobile users which can be used to process data sent to them over
a local area network. It is a major technological enabler for MCC, defined
at the convergence of MCC and cloud computing. It defines a virtualized
architecture [135] as a computational resource accessible by mobile users at
range, i.e., within their physical vicinity; this has the objective of empow-
ering mobile devices providing them the capabilities to access computation-
ally intensive services that could not be run by their own limited resources.
Examples of such as services are speech recognition, processing of natural
language, machine learning, or augmented reality.

As discussed in [135], even with the increased computation and storage
capacity, mobile devices are not able to process rich media content locally
with their own resources. MCC aimed at solving the above issue by offloading
all the data from the mobile device to the cloud for computation. However,
this is not feasible for applications with tight latency requirements (i.e., real
time applications) that led to giving way to the concept of cloudlet.

Additionally, as discussed in [149], mobile users can utilize the cloudlets
VM to run the required software applications closer to the mobile devices.
Apparently, this idea of cloudlet aims to solve the latency issues by moving
the virtual machine closer to the mobile devices; however, there is a notable
drawback of mobile users being dependent on network service providers to
deploy cloudlets into the LAN network for the mobile devices to utilize them.
The authors in [149] also provide insight into the architecture of cloudlets
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where the applications are managed at the component level; also this paper
classifies the architecture into two categories of ad hoc cloudlet and elastic
cloudlet. The idea of the discussed architecture is evaluated by implementing
it for a use case of augmented reality.

Effectively, [149] and [135] discuss the evolution of the cloudlet and place
it between cloud computing and MCC paradigms. Briefly, in cloudlet, the
jobs of the mobile users are not transmitted all the way to the cloud but
to a nearby cloudlet; this fact tends to reduce the power consumption of
mobile devices and also the transmission delay. Thus, cloudlet makes an
advantageous evolution from MCC.

Additionally, [77] merges the concepts of MCC and cloudlet to reduce the
mobile device power consumption and also the network communication la-
tency. The proposed architecture merges both MCC and cloudlet, providing
an advantage as real time processing can be run on the cloudlet and other
non-real time data processing and storage could be run on the cloud. [77]
provides the statistics to support the claim of reduced power consumption
and transmission delay.

2.4 Internet of Things

Internet of Things (IoT, that includes IoE – Internet of Everything) is an
extension of the classical sensor network paradigm, providing support for
large scale sensor data aggregation and cloud based data processing and
decision support systems.

The concept of pervasive computing emerged before IoT to refer to the
provisioning of computation anytime, anywhere. One of the novelties of this
concept was the fact that computation devices could be personal devices,
among others. This idea was also expressed and referred to as ambient in-
telligence or everywhere.

IoT is a similar concept except that in IoT the emphasis is placed on the
physical object. The range of possible devices in IoT was enlarged as com-
pared to those considered in pervasive computing. As technology improved,
IoT vision was to flood the market with computation nodes that were deeply
immersed in the environment: from sensors to small embedded computers
that could be connected to the Internet as direct and uniquely addressable
end points.

The primary evolution in the IoT paradigm compared to the sensor net-
works is support for complex event processing (CEP) [47] which is typically
executed on the integrated cloud platform. CEP engines can be run over the
intermediate IoT node resources in the network and queries can be placed
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on the incoming continuous data streams from the end devices1 like (e.g.
sensors, RFID). As compared to the previous paradigm where end nodes
sent data streams to the cloud that processes them, performing such pro-
cessing on the available IoT nodes could reduce the latency and bandwidth
requirements of the IoT network.

An overview of CEP for IoT and its applications is provided in [42],
consisting of a deep insight into the distributed CEP architecture based on
client-server model which can be realized on the IoT devices to perform
queries like filtering, passing data, and placing windows on the incoming
data. Some of the advantages of using CEP over IoT are: (1) distributed
CEP in the network will balance the workload better; (2) ease of CEP engine
deployment; and (3) the data traffic can be significantly reduced by removing
unwanted data using queries of filtering, data passing, etc.

Additionally, there are other works like [66] which are dealing with the
idea of distributing the data analytics between the IoT nodes and the cloud.
For example, they use genetic algorithms to optimize the query mapping
to the end devices. While the integration of IoT and CEP is a well stud-
ied concept, the challenges of security, privacy, adaptability, scalability and
interoperability still remain.

To deal with the complexity and heterogeneity of IoT environments, a
number of high level flexible layered architectures have been contributed.
Heterogeneity has led to different sets of requirements, with different needs
for complexity and varied performance, which has affected the design of archi-
tectures. This has led to a scenario in which solutions have not yet converged
to a reference model, that causes limited interoperability across systems [87].

2.5 Cyber-physical Systems

Cyber-Physical Systems (CPS) are networked systems in which the com-
putational (cyber) part is tightly integrated with the physical components.
That is, the computational components sense the state of the system and
then provide continuous feedback for controlling the system. Physical com-
ponents include energy sources, transmission and distribution lines, loads,
and control devices. Cyber components include energy management sys-
tems (EMS), supervisory control and data acquisition (SCADA) systems,
and embedded implementations of control algorithms. The interplay of com-
putational and physical systems yields new capabilities. The network is a

1By end devices, we refer to the nodes at the leaf position of the information flow graph,
typically intelligent sensors, smartphones, embedded computers, etc.
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key component in cyber-physical systems as it provides the backplane that
guarantees timely transmission of the information (from the physical to the
computational world) and of the commands (from the computation to the
physical world).

Traditionally, these systems had been mostly self-contained in the sense
that they have included all needed computational elements with little inter-
action with external elements. For example, the traditional architecture for
the Smart Grid transfers all SCADA data to centralized utility servers [145].
An evolution of design of such systems arrived with the arrival of the cloud
computing paradigm as many of the analytics functions were deployed in
the cloud [142]. However, even with the availability of on-demand resources
in the cloud, the critical CPS often are unable to transfer the time-critical
control tasks to the cloud due to communication latencies [37][39]. This cen-
tralized SCADA architecture is changing with recent developments like Fog
Computing [156][67], which have advertised the use of dual purpose sens-
ing and computation nodes (i.e., end nodes) that are closer to the physical
phenomenon that is observed or analyzed. For example, the SCALE-2 [30]
platform provides the capability to run air-quality monitoring sensors, the
Paradrop architecture [150] provides the capability to run containerized ap-
plications in network routers.

As a direct consequence of the evolution of the computing paradigm from
‘central data-centers’ to ‘shared cloud computing resources’ to ‘distributed
edge (end) computing resources plus shared cloud resources’, critical CPS
like Smart Grids can distribute the intelligence further down into the net-
work, away from the centralized utility servers. For example, this capabil-
ity provides us with the means to build energy management applications of
the future that are both distributed and coordinated, with heavy reliance
on communication and coordination among local sensing and control algo-
rithms, while also obeying strategic energy management decisions made on
a higher level of the control hierarchy. We discuss this concept of providing
“scalable” and “extensible” computation services near the physical process
— fog computing— next.

2.6 Fog Computing

Fog computing (FC) was introduced to solve the problem of having billions of
IoT devices and cyber physical systems that cannot operate by simply having
connectivity to servers in the cloud; instead, computations are pushed closer
to these end nodes/devices. Unlike the traditional computation model, the
fog computing model, pioneered by the Open Fog Consortium, suggests the
use of shared computation servers, similar to the vision of cloudlet described
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by [135]. However, the key difference lies in the software as a service pioneered
by fog computing. For example, instead of just providing the computation
resources, a fog computing machine often provides machine learning stack as
a service [7]. Also, a difference with respect to cloud is that fog computing
supports user mobility. Nevertheless, fog and cloud are not independent
paradigms as in a fog computing environment there is the need for interacting
with the cloud to achieve coherent data management.

As mentioned in [155], the unresolved issues in cloud computing of latency
and mobility have been overcome by providing services and elastic resources
at the end of the information chain, close to the sensors. [155] defines fog
computing and discusses the issues related to it like fog networking, quality of
service (QoS), interfacing and programming model, computation offloading,
accounting, billing and monitoring, provisioning and resource management,
and security and privacy. Along with providing insights into the issues related
to fog computing, it also mentions paradigmatic applications like augmented
reality (AR) and Real-time video analytics, content delivery and caching,
and mobile big data analytics which will promote fog computing.

All of the computation paradigms discussed have big security and privacy
challenges. Some of the main security issues faced by FC [119] are trust, au-
thentication, secure communication, end user’s privacy, and malicious insider
attacks. A number of papers have contributed to identifying the security and
privacy concerns of FC, and similarly a number of solutions for each of the
above stated security challenges have also been analyzed in the literature.

Similar to [119], the paper [144] mentions different security issues in FC.
All smart appliances (e.g. fog computing nodes like smart meters) have an
IP address and here authentication problems are a big threat; a malicious
attacker may try to hack the device and tamper the data (e.g. in case of
smart meter, provide false meter reading) associated with it. Similar to au-
thentication problems, man-in-the-middle attack is also a prominent type of
attack on fog computing nodes (FCN), where the devices may be compro-
mised or replaced by fake ones. This problem arises due to the fact that the
FCN under this type of attack utilize only a small amount of the processor
and memory, and normal intrusion/ anomaly detection techniques will not
be able to detect it. The authors also provide an insight into the solution to
the man-in-the-middle attack. Privacy issues in fog computing and different
solutions available in the literature have also been mentioned in this work.

Overall, it must be acknowledged that fog computing provides a number
of advantages that are of key importance for most applications: low latency,
location awareness, real time operation, heterogeneity, and end device mobil-
ity; all these make it an attractive computation paradigm. But, the security
and privacy challenges of trust, authentication and man-in-the-middle at-
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tack discussed above makes it challenging to implement the FCN in daily life
applications.

2.7 Edge Computing

Edge computing (EC) is an overloaded concept, defined differently across
the literature. The most commonly mentioned meaning of edge is that of
end, meaning that edge computing is carried out by the end devices (also
called edge devices in the associated works). Although this concept pulls the
focus away from the network elements and their associated challenges, it is
probably the most extended definition up to the present time.

However, the networking community has started to use edge computing to
refer to the computation performed by the network elements. If we view the
Internet as a graph that connects computation nodes (computers), the edge
meaning is assigned to the connecting line between the central nodes (cloud
servers) and the leaf nodes (the devices at the end of the network). Here,
edge computing refers to the computation done at the network backhaul.

After presenting both usages of edge computing, we use this term in the
networking sense, so that we refer to end devices (or user devices) as the leaf
nodes of the Internet and to edge computing as to the computation done at
the network elements and backhaul that will support to off load and speed
up the service time to end devices by partly performing heavy computations
in the network segments.

In the first meaning of the term, the idea behind edge computing is to
perform computation and storage locally within the resources available at
the end devices. For this type of nodes, [139] targets at addressing the
potential issues of response time requirements, battery life constraints, data
security and privacy, and bandwidth reduction; this paper also discusses the
evolution of the edge computing from the concepts of cloud computing and
IoT, providing a definition for edge computing and several case studies that
support this paradigm and show the inherent advantages that it offers.

Similarly, paper [53] provides an insight into EC along with the compar-
ison among the different EC implementations of fog computing, mobile edge
computing, and cloudlets. Some simple differences among the three are:

• Characteristics of nodes: Fog computing nodes use off-the-shelf devices
and provide them with computation and storage capabilities which
make them slower as compared to the dedicated devices of mobile edge
computing and cloudlets.

• Proximity to end devices: Fog computing nodes may not be the first
hop for end devices due to the use of off-the-shelf computing devices;
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whereas for MEC and cloudlet, the devices can connect directly to the
end nodes using WiFi for cloudlets and mobile base station for mobile
edge computing.

• Access/communication mechanisms between the devices: Fog comput-
ing nodes can use WiFi, Bluetooth or even mobile networks; mobile
edge computing devices can only utilize mobile networks; and Cloudlets
use WiFi.

• Diversity and heterogeneity in the off-the-shelf devices: the Fog com-
puting paradigm requires an abstraction layer; whereas mobile edge
computing and cloudlets do not require this because of the dedicated
connections that devices they use.

Additionally, the authors have also mentioned the use case based selection
of the three edge computing implementations in terms of power consumption,
access medium, context awareness, proximity, and computation times.

As a result from the literature analysis, it appears that the genesis of
EC has made way to other EC implementations of fog computing, mobile
edge computing, and cloudlets which tend to tackle the disadvantages of
CC and MCC. However, there are several open issues [98] of EC which are
security and privacy, resilience, robustness, openness in the network and,
multi-services and operation.

2.8 Mobile Edge Computing

Mobile-Edge Computing (MEC) was motivated by the growth of the network
traffic generated by the proliferation of smart phones and their applications
that require intensive data exchange and processing. MEC intends to re-
duce the latency and to support location awareness in order to increase the
capacity of the applications that run on mobile devices. MEC started devel-
opment in 2014 led by ETSI2 for achieving a sustainable business strategy
[135]; for this, it brought together mobile operators, service providers, mobile
users, and over-the-top (OTT) players. Different metrics can be improved
by deploying services over MEC. On the functional side: latency, energy
efficiency, throughput, goodput, packet loss, jitter, and QoS. On the non-
functional side: service availability, reliability, service load, and number of
invocation requests. MEC servers are located near the base stations. Smart
devices offload activities and the cellular data and offloaded activities are

2European Telecommunications Standards Institute. www.etsi.org
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processed on such servers; them, the edge servers decrease the traffic and
congestion on the backhaul.

As discussed above, MEC aims at placing the computational and stor-
age resources at the mobile base stations so that mobile users can widely
use the additional features it has to provide. [27] provides technical insight
into MEC along with its limitations by identifying the applications of MEC.
Various applications and use cases of content scaling, offloading, augmenta-
tion, edge content delivery, aggregation and local connectivity are evaluated
in terms of power consumption, delay, bandwidth and scalability. A few of
the listed advantages of MEC for different stakeholders of end users, net-
work operators and application service providers are: (1) End users bene-
fit from reduced communication delay; (2) Network operators benefit with
bandwidth reduction and scalability; (3) Application service providers ben-
efit with faster service and scalability; and (4) Augmentation enables the
application providers to integrate cellular network specific information into
the application traffic.

A comprehensive overview of MEC is found in [107] that gives an in-
troduction to features of MEC along with its paradigm shift from MCC. A
comparison of MEC and MCC has been made to support the advantages of
paradigm shift from MCC. The advantages of MEC like low latency, mo-
bile energy saving, context awareness and, privacy/ security enhancement
are discussed along with examples. Some of the mentioned technical chal-
lenges of MEC are: security, network integration, application portability,
performance, regulatory and legal consideration, resilience and operation.
The literature also mentions some use scenarios of MEC like video stream
analysis, augmented reality, IoT, and connected vehicles.

In contrast to cloudlet which is available to specific users in the vicinity of
the cloudlet, MEC is available to all mobile users as MEC servers are deployed
in mobile base stations to deliver additional features such as location and
mobility information.

Fog or cloudlet nodes are managed typically by individuals and can be
deployed at any location that they judge convenient. MEC servers are owned
by mobile operators; servers have to be deployed near the base stations to
facilitate that users have access to the mobile network over the RAN [134].
MEC model has been prototyped on a few scenarios such as edge video
orchestration in which users access live video streams enabled by an orches-
tration application running on a MEC server. MEC servers can be deployed
at different locations on the networking infrastructure: an LTE base station
3, 3G Radio Network Controllers (RNC), or a mix of both.

3Long-Term Evolution (LTE) is a telecommunications standard –a registered trademark
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Security and privacy issues are shared by fog, cloud, and MEC. Moreover,
in MEC the congestion of a server may affect the service provided to a number
of mobile users, resulting in high monetary costs. Therefore, increasing the
computation power at the edge servers is a real need.

2.9 Mist Computing

Mist Computing is a concept explained in [128]. There is lack of consensus as
to the precise definition of mist computing. In some works, mist computing
is defined as the paradigm that takes advantage of every processing capacity
available everywhere, from the end nodes (sensors and actuators) to the
cloud servers. Some of these works also provide definitions for other concepts
that collide with the mainstream trend, e.g., edge computing acquires fog
computing capabilities [76]. As there is no clean definition of what mist
actually provides, we are inclined to either use cloud, fog, or edge.

As in [129], fog computing performs the computation at the network
using the gateway devices, but in mist computing this is performed by the
actual end devices, i.e., sensors and actuators. We know that the closer the
computation is to the end devices, the bigger is the decrease in the network
latency and transmission delay, which improves the user experiences in real
time applications.

2.10 Social Computing

Social Computing [81] is a paradigm for analyzing and modeling social be-
haviors of users on media and platforms to extract added value informa-
tion and create intelligent and interactive applications and data. It involves
a multi-disciplinary approach that encompases computing, sociology, social
psychology, communication theory, computer-science, and human-machine
interaction (HMI). For this purpose, social computing focuses essentially on
studying the relations among people within a group to analyze how the in-
formation flows; the collaboration manner to extract positive and negative
patterns; and how communities are built and how grouping is achieved. The
target systems for analysis are social media, social networks, social games,
social bookmarking and tagging systems, social news and knowledge sharing,
among others.

of ETSI– for high-speed wireless communication in mobile devices and data terminals; it
increases the capacity and speed by using a different radio interface together with core
network improvements
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Among these scenarios, social computing and social software are capa-
ble of providing big data that can be processed and analyzed with complex
algorithms and computation techniques [81] capable of extracting essential
social knowledge that creates high value for society, industry, or individu-
als. Social computing is a part of computer science at the confluence area
between social behavior and computational systems. By means of using soft-
ware systems and computer science technology, social computing recreates
social conventions and social contexts. Software applications for social com-
munication and interaction are the building block of social computing and
illustrate this concept. Among these software elements, one may find public
web based content, blogs, email, instant messaging, social network services,
wikis, social tagging and bookmarking.

Since the wide availability of Internet and powerful personal computers,
social computing took a phenomenal growth. This paradigm shifts the com-
puting towards the end of the network for the end users to engage in social
communities, share information and ideas, and collectively build and use
new tools. Social communities with common ideas, tools and interests are
formed which can improve the experience of using tools and sharing common
problems and solutions. As an example, Wikipedia is an open source ency-
clopedia that works like an information sharing tool formed by collaborative
authoring which can be reviewed and changed upon the feedback of users.
Though this social tool helps the community in sharing information through
a common platform called wiki, the credibility of information is at stake, as
it is an open source tool with collaborative authorship. Some other notable
examples of social computing platforms are YouTube, Word press, Tumblr,
Facebook, Twitter, or LinkedIn.

2.11 Dispersed Computing

Dispersed computing [18] involves algorithms and protocols for mission-aware
computation and communication across broad-scale, physically dispersed ob-
jects for designing scalable, secure, and robust decision systems that are
collectively driven by a global mission. These systems can operate under
highly variable and unpredictable (possibly also degraded) network connec-
tivity conditions. For this reason, dispersed computing envisions opportunis-
tic and convenient design of mobile code and data relations as needed by the
users, the applications, or the mission.

For cloud computing and mobile computing, users offload the real time
data on to the cloud for processing and data analytics. We have also discussed
a few limitations of high network latency and transmission delay, that lead
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to the genesis of the different paradigms of edge computing, fog computing
and MEC which is based on the idea of utilizing the computational resources
of the edge devices in the network to process the data locally. Similar to this
idea, dispersed computing seeks to provide a scalable and robust computing
system which collectively uses heterogeneous computing platforms to process
large data volumes. This paradigm is typically deployed in situations where
there is degraded network connectivity that leads to higher data latency and
transmission delay.

Among the first works on dispersed computing, we find [143] that defines
the term as an alternative model derived from the consolidation of a number
of contributions on data transmission, data storage and code execution. Still
that work is very preliminary and very much targeted to surveying the ex-
isting distributed computing models according to various criteria and highly
related to cloud.

Other meanings of disperse computing rather point at the edge computing
elements, such as DARPA’s definition [18] where NCPs (the network control
points) are placed at the core of the computations.

Dispersed computing systems run software partly inside the programmable
platforms within the network, the NCPs. As mentioned earlier, NCPs are
capable of running code for both, users/applications and for the network
protocol stack. For implementing the dispersed computing paradigm, the
application-level logic will need resources available at the end points (the
computation devices) and at the NCPs.

3 Social Dispersed Computing

In this paper, we coin the term social dispersed computing that is at the
intersection of social computing and dispersed computing. On the one hand,
dispersed computing [18] has the goal of providing scalable, secure, and robust
decision systems that are collectively driven by a global mission. Dispersed
computing is a computing paradigm for designing systems that can operate
under highly variable and unpredictable (possibly also degraded) network
connectivity conditions. For this, such a computing paradigm envisions op-
portunistic and convenient design of mobile code and data relations as needed
by the users, the applications, or the mission. On the other hand, the so-
cial dispersed computing paradigm takes an agent or actor based approach,
connecting the users with each other with messages, enabling them to ob-
tain globally useful analysis, while performing local computations. Further,
decisions on what users do are influenced not only by the users’ personal
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preference and desire but also by what other users are doing.
These models demand complex, flexible, and adaptive systems, in which

components cannot simply be passive nor can reactive entities be managed
by only one organization [49]. Nevertheless, instead of being a solitary activ-
ity, computation becomes rather an inherently social activity, leading to new
ways of conceiving, designing, developing, and handling computational sys-
tems [141]. Considering the emergence of distributed paradigms such as web
services, service-oriented computing, grid computing, peer-to-peer technolo-
gies, autonomic computing, etc., large systems can be viewed as the services
that are offered and consumed by different entities, enabling a transactive
paradigm.

Formally, social dispersed computing applications can be approximated
as multi agent systems. For example, they can be thought of as collections
of service-provider and service-consumer components interlinked by dynami-
cally defined workflows [106]. Agents are autonomous entities with given be-
haviours that interact with other agents that also have their own behaviours.
As a result of these interactions, individual behaviours (or even objectives,
preferences, etc.) may be affected, emerging a global (or aggregated) be-
haviour of the whole system. Intelligent software agents are a new class of
software that act on behalf of the user to find and filter information, nego-
tiate for services, easily automate complex tasks, or collaborate with other
software agents to solve complex problems. This concept of intelligent agent
provides support to build complex social dispersed computing systems as
components with higher levels of intelligence, which demand complex ways
of interaction and cooperation in order to solve specific problems and achieve
the given objectives. However, while procedures , functions, methods and
objects are familiar software abstractions that software developers use every
day, Software agents, are a fundamentally new paradigm unfamiliar to many
software developers. Thus, new platforms and programming abstractions are
required. We describe some of these paradigms in the sections on market
based approaches later in the paper.

3.1 Multi-Agent Systems

It should be noted that this concept of social dispersed systems borrows
heavily from the paradigm of multi-agent systems and integrates social be-
haviors and incentives (to encourage participation) in to the mix. Multi
Agent Systems are one of the most important and exciting research areas
that have arisen in the field of Information Technologies in the last decade
[105]. According to [152], an agent is defined by its flexibility, which implies
that an agent is reactive as it must answer to its environment; proactive as
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it must try to fulfill its own plans or objectives; and social because an agent
has to be able to communicate with other agents by means of some kind of
language. A Multi Agent System consists of a number of agents that interact
with one-another [151].

The most promising application of MAS technology is its use for sup-
porting open distributed systems [105]. Open systems are characterized by
the heterogeneity of their participants, non-trustworthy members, existence
of conflicting individual goals and a high possibility of non-accordance with
specifications [25]. The main feature of agents in these systems is autonomy.
It is this autonomy that requires regulation, and norms are a solution for
this requirement. In these types of systems, problems are solved by means
of cooperation among several software agents [106]. Norms prescribe what
is permitted, forbidden, and mandatory in societies. Thus, they define the
benefits and responsibilities of the society members and, as a consequence,
agents are able to plan their actions according to their expected behaviour.

When developing applications based on the new generation of distributed
systems, developers and users require infrastructures and tools that support
essential features in Multi Agent Systems (such as agent organizations, mobil-
ity, etc.) and that facilitate the system design, management, execution, and
evaluation [50, 59]. Agent infrastructures are usually built using other tech-
nologies such as grid systems, service-oriented architectures, P2P networks,
etc. In this sense, the integration and interoperability of such technologies in
Multi Agent Systems is also a challenging issue in the area of both tools and
infrastructures for Multi Agent Systems. What is more, agent technologies
can provide concepts and tools that give possible answers to the challenges
of practical development of such systems by taking into consideration issues
such as decentralization and distribution of control, flexibility, adaptation,
trust, security, and openness [36]. Finally, in order for Multi Agent Sys-
tems to be included in real domains such as media and Internet, logistics,
e-commerce and health care, infrastructures and tools for Multi Agent Sys-
tems should provide efficiency, scalability, security, management, monitoring
and other features related to building real applications.

3.2 Social dispersed computing illustration

Let us consider three examples: two from the transportation domain and
one from the energy domain. to illustrate the concept of social dispersed
computing.
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3.2.1 Next Generation Electrical Energy Systems

Transactive energy systems (TES) [94, 83, 46, 112] have emerged in anticipa-
tion of a shift in the electricity industry, away from centralized, monolithic
business models characterized by bulk generation and one-way delivery, to-
ward a decentralized model in which end users play a more active role in
both production and consumption [112]. The main actors of this system
are the consumers, which are comprised primarily of residential loads and
prosumers who operate distributed energy resources (DERs). Examples of
such DERs include photovoltaics, batteries, and schedulable loads (electric
vehicle charging, laundry, etc.). Additionally, a distribution system opera-
tor (DSO) manages the connection between the microgrid and the primary
grid. Such installations are equipped with an advanced metering infrastruc-
ture, which consists of TE-enabled smart meters. In addition to the stan-
dard functionality of smart meters (i.e., the ability to measure line voltages,
power consumption and production, and communicate these to the DSO),
TE-enabled smart meters are capable of communicating with other smart
meters, have substantial on-board computational resources, and are capable
of accessing the Internet and cloud computing services as needed. Examples
of such installations include the well-known Brooklyn Microgrid Project [17].

At its core, transactive energy systems are market based social applica-
tions that have to dynamically balance the demand and supply across the
electrical infrastructure [112]. In this approach, customers on the same feeder
(i.e., those sharing a power line link) can operate in an open market, trad-
ing and exchanging generated energy locally. Distribution System Operators
can be the custodians of this market, while still meeting the net demand
[48]. Implementing such systems requires either a centralized or decentral-
ized market framework that is robust, resilient, and secure. Fog computing
resources provide ideal opportunity to schedule the operation of the market
activities in the community as most of the activity remains within the com-
munity and each home has access to a set of smart inverters and computers
attached to the smart inverters that can be part of the fog computing layer.

3.2.2 Social Mobility

Social routing platforms address the problem of urban transportation and
congestion by directly engaging individual commuters. Due to widespread
use of smart devices, users are becoming active agents in the shared mobility
economy. This enables the use of algorithms for designing active incentives
that encourage users to take mobility decisions considering the overall system
effect, rather than myopic individual utilities, focusing on what is best for
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each individual from his or her local perspective, as implemented by com-
mercially available mobility solutions [133].

Such services require a platform to information sharing, and transactive
platform that: (a) provides multimodal routing algorithms, which extend
existing optimization techniques for solving the multimodal transit problem
by incorporating probabilistic representations of events in cities, creating a
near-optimal distributed algorithm by employing sub-modularity and folding
incentive mechanisms into the optimization problem; (b) provide high-fidelity
analytics and simulation capabilities for service providers, informing them
about how users are consuming transportation resources, which enables them
to develop mechanisms for improving services; and (c) provide an immutable
and auditable record of all transactions in the system.

Again a market-based distributed system running across these agents will
be able to create a dynamic offer with incentive-based route assignment logic
that can ensure that transportation resources are shared efficiently without
causing congestion. Clearly, such a platform is also an extension of the
transaction management platform by: (1) making individual consumers the
participants; and (2) making the apps running on their smart phones the
transaction agents and the transaction management platform provided by
the transportation agency.

A solution to this problem requires a social computing and information
sharing platform that overcomes the incentive gap between individuals and
municipalities. This platform must offer mixed-mode routing suggestions
and general system information to travelers and—in turn—supply service
providers with high-fidelity information about how users are consuming dif-
ferent transportation resources. At the same time, this system must also
consider the investment required by the cities in the computing infrastruc-
ture required to solve the problem at scale. Alternatively, a social dispersed
computing approach that utilizes the various edge computing resources avail-
able in the city, including the mobile devices of the commuters, can be em-
ployed by municipalities to improve efficiency within their cities with little
investment.

However, this precisely leads to the problem of secure and trustworthy
computing. Privacy of individuals is an important aspect of this solution; the
usage of individuals’ smart devices as both data sources and computational
resources could expose the end-users to a risk of privacy breach. Seemingly
innocuous data, such as transit mode or route choice, can lead to inferences
of private information, such as real-time tracking of an individual’s posi-
tion [85], likelihood of affairs [118], and forecasting trip destinations [52].
Therefore again localized computing resources which are managed under the
legal jurisdiction are more attractive to use for implementing the transaction
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management.

3.2.3 Distributed Traffic Congestion Analysis

Another example is traffic congestion analysis in cities. Traffic congestion
in urban areas has become a significant issue in recent years. Because of
traffic congestion, people in the United States traveled an extra 6.9 billion
hours and purchased an extra 3.1 billion gallons of fuel in 2014. The extra
time and fuel cost were valued up to 160 billion dollars [136]. Congestion
that is caused by accidents, roadwork, special events, or adverse weather is
called non-recurring congestion (NRC) [68]. Compared with the recurring
congestion that happens repeatedly at particular times in the day, weekday
and peak hours, NRC makes people unprepared and has a significant impact
on urban mobility. For example, in the US, NRC accounts for two-thirds of
the overall traffic delay in urban areas with a population of over one million
[103].

Driven by the concepts of the Internet of Things (IoT) and smart cities,
various traffic sensors have been deployed in urban environments on a large
scale, and many techniques for knowledge discovery and data mining that in-
tegrate and utilize the sensor data have been also developed. Traffic data is
widely available by using static sensors (e.g., loop detectors, radars, cameras,
etc.) as well as mobile sensors (e.g., in-vehicle GPS and other crowdsensing
techniques that use mobile phones). The fast development of sensor tech-
niques enables the possibility of in-depth analysis of congestion and causes.

The problem of finding anomalous traffic patterns is called traffic anomaly
detection. Understanding and analyzing traffic anomalies, especially con-
gestion patterns, is critical to helping city planners make better decisions
to optimize urban transportation systems and reduce congestion conditions.
To identify faulty sensors, many data-driven and model-driven methods have
been proposed to incorporate historical and real-time data [132, 104, 158, 64].
Some researchers [78, 148, 154, 84] have worked on detecting traffic events
such as car accidents and congestion using videos, traffic, and vehicular ad
hoc data. There are also researchers who have explored the root causes of
anomalous traffic [102, 153, 45, 89, 90, 19].

Most existing work still mainly focuses on a road section or a small
network region to identify traffic congestion, but few studies explore non-
recurring congestion and its causes for a large urban area. Recently, deep
learning techniques have gained great success in many research fields (includ-
ing image processing, speech recognition, bioinformatics, etc.), and provide
a great opportunity to potentially solve the NRC identification and classifi-
cation problem. However, the state of the art still is to collate the data into
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a server and then perform the NRC classification periodically. The concept
of Mobile Edge Computing and Fog Computing provide a new opportunity.

Consider, a network of micro-devices running on the transit buses, kiosks
at the bus stops and the metro data center can be used to not only provide
the transit schedule analysis services to the end customer but can also be
used to provide analysis of non-recurring congestion (NRC). Compared with
the recurring congestion that happens repeatedly at a particular time in the
day, weekday and peak hours, NRC usually shows specific patterns associated
with the causing events. It is important to identify and correlate the traffic
data gathered by individual road sensors, including cameras and solve a
coordinated analysis of traffic conditions across the region. Clearly, sending
all the data in real-time to the cloud or the metro data center is inefficient and
the data should be only sent when the likelihood of NRC is high. Detection
of NRC events is important in communities as the local traffic operation
centers and emergency responders can take proactive actions. Once an NRC
event is detected, it is possible to do further analysis to identify if it can be
explained due to an existing event or if it can be explained as a failure of one
or more traffic sensors [65], which can then be repaired.

4 Enabling Social Dispersed Computing

While fog computing, edge computing, and mobile edge computing provide
the required computation resources, the resilience, timeliness, and security
requirements impose need of additional middleware technology. While tra-
ditionally middleware was thought of as the “networking” glue, these days
middleware is often used as the term to also describe “ useful platform” ser-
vices. These platform services provide reusable capabilities like distributed
transaction, time synchronization, fault-tolerance, etc. This section describes
some of these core computation services. The reader must think of them as
core-enablers, which when combined appropriately with the underlying com-
putation substrates enable useful social dispersed computing applications.

4.1 Distributed Transaction Management

At its core, agents in the social dispersed computing domain are executing
a set of related operations. These operations and their sequence can be
grouped into a transaction to enable fault tolerance, specially providing the
capability of roll back.

A distributed transaction is a set of operations that involve two or more
networked nodes that, in turn, provide resources that are used and probably
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updated by the operations. In a traditional transaction, there is the notion
of the transaction manager that manages the execution of the constituent
operations and their access to the distributed resources. Typical transaction
systems such as [51, 114] use techniques for faster execution such as com-
pensating transactions, optimism, and isolation without locking. However,
the concept of centralized management will have to be revisited for social
dispersed applications; these are highly distributed applications, potentially
involving large numbers of participants with high mobility, that produce large
data volumes, and that manage data selectively.

Social computing applications are transactive by nature because they of-
ten involve exchange of digital assets between participants. The state transi-
tion of the system also depends upon the confirmed past state of the system.
Examples include transactive ride-share systems [157], transactive health-
care systems [26], and transactive energy systems [83, 46, 112]. Typically,
there are three different kinds of subsystems required to settle the transac-
tions in a social dispersed computing application.

The first subsystem is a distributed ledger (e.g. Blockchains), which is
responsible for keeping track of (and log) all events of interest. For instance,
in the energy domain these events are trades, energy transfers, and financial
transactions. In the health care domain, the events record the time of access
of the health care data. The data is not stored in the blockchain due to the
size and privacy issues. Rather, the data is stored in the second layer, which
can be implemented by either a cloud or a decentralized storage service like
Storj [3] or IPFS [122]. The second subsystem is the IoT layer, which is re-
sponsible for sensing and control. The third subsystem is the communication
layer and is typically implemented using messaging middlewares like MQTT
[123] or DDS [124].

A new enabling technology for transaction management can be IPFS
(InterPlanetary File System) that is a peer to peer distributed file system
with the goal of connecting all computing devices through a single global file
system. In IPFS, nodes do not need to trust each other: it uses a distributed
hashtable and a self-certifying namespace, and has no single point of failure.
IPFS is similar to the web but it tries to mimic the exchange of files through
a Git type of repository for all devices by providing a content-addressed
block storage model with content-addressed hyper links. This connection
type will form a data structure (Merkle DAG) that can be used for providing
blockchains, versioned file systems, or a permanent web.
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4.2 Blockchain

Blockchains combine the storage of transaction information with advanced
protocols in a way that ensures that there is a consensus on the operations
that were executed. It is a public database where new data are stored in a
container called a block. Each block is added to an immutable chain that
has data added in the past. Data stored in blockchains can be of any type.
The perfect illustration of this technology is inevitably related to Bitcoins, a
cryptocurrency whose transactions are recorded chronologically and publicly
on the database, where each block is a transaction.

The evolution of blockchain technology ancestors until today is depicted
in figure 2.
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Figure 2: Evolution of Blockchain

Current transactions require that people trust on a third party to com-
plete the transaction. This can be a bank or a national authority for the case
of transactions involving money.

Blockchain technology is radically challenging the current way of oper-
ating transactions. Blockchain relies on the use of mathematical tools and
cryptography to provide an open decentralized database as a global and de-
centralized source of trust recording every transaction that involves value,
money, goods, property, work, or even votes. Every transaction is recorded
on a public and distributed ledger accessible by anyone who has an Internet
connection. It consists of creating and managing a record whose authentic-
ity can be verified by the entire user community. Distributed property and
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Figure 3: An example of a distributed market platform managing the inter-
action of the agents in a social computing setting described in [56].

trust can, then, be enabled in a way in which every user with access to the
Internet can get involved in blockchain-based transactions, and third party
trust organizations may no longer be necessary. Blockchain technology can
be used in an endless number of applications: tax collection, money trans-
fers without bank intervention, or health care management. How it work is
explained in what follows.

When someone requests a transaction, such transaction is broadcast to
a peer-to-peer network consisting of computation nodes, simply known as
nodes, that form a completely decentralized network. The network of nodes
validates the transaction and the user’s status applying algorithms. When
this transaction is verified, it is combined with other transactions to create a
new block of data that is placed in the ledger. After, the new block is added
to the existing blockchain permanently and inmutably.

Social dispersed applications are candidates for using blockchain technol-
ogy given their highly distributed nature. Overall, the blockchain database
is stored in a distributed way, and the records it keeps are public and easily
verifiable. As no centralized version of such information exists, it is secured
from hacker attacks.

4.3 Distributed Market Platform

As discussed in the earlier examples, there is a need for incentives to partici-
pate as a resource in the social dispersed computing as well as to be eager to
provide information. A market based distributed framework can provide this
foundation: one in which all interactions generated in the social computing
application are safely stored. As mentioned previously, such interactions are
found in other sharing economy driven applications [138], e.g., ride-sharing
[82, 97], car-sharing [69] and transactive energy systems [95, 31, 88]. How-

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ever, these exchange of data and resource raises the concerns of integrity,
trust, and above all the need for fair and optimal solutions to the problem of
resource allocation, motivating the requirement for a management platform.

Specifically, such a market based platform involves a number of self-
interested agents that interact with each other by submitting offers to buy
or sell the goods, while satisfying one or more of the following requirements:
i.) anonymity of participant identities, i.e., individual agents shall not have
the means to infer the identities of other agents, or who trades with whom;
ii.) confidentiality of market information, which includes individual bids and
transaction information, output of trade verification processes, and finalized
trading data that are yet executed; iii.) market integrity and non-repudiation
transactions; iv.) availability and auditability of all events and data which
can take the form of encrypted or non-encrypted data.

Blockchains form a key component of such market based platforms be-
cause they enable participants to reach a consensus on the value of any state
variable in the system, without relying on a trusted third party or trust-
ing each other. Distributed consensus not only solves the trust issue, but
also provides fault-tolerance since consensus is always reached on the correct
state as long as the number of faulty nodes is below a threshold. Further,
blockchains can also enable performing computation in a distributed and
trustworthy manner in the form of smart contracts. However, while the dis-
tributed integrity of a blockchain ledger presents unique opportunities, it also
introduces new assurance challenges that must be addressed before protocols
and implementations can live up to their potential. For instance, smart con-
tracts deployed in practice are riddled with bugs and security vulnerabilities.
Another problem with blockchain based implementation is that the compu-
tation is relatively expensive on blockchain-based distributed platforms and
solving the trading problem using a blockchain-based smart contract is not
scalable in practice.

Figure 3 describes an example of such a market platform called Solid-
Worx [56]. It allows agents to post offers using predefined programming
interfaces. A directory actor provides a mechanism to look up connection
endpoints, including the address of a deployed smart contract. The smart
contract functions check the correctness of each offer and then store it within
the smart contract. Mixer services can be used to obfuscate the identity of
the prosumers [32]. By generating new anonymous addresses at random pe-
riodically, prosumers can prevent other entities from linking the anonymous
addresses to their actual identities [94, 32], thereby keeping their activities
private. Solver actors, which are pre-configured with constraints and an ob-
jective function, can listen to smart-contract events, which provide the solvers
with information about offers. Solvers run at a pre-configured intervals, com-
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pute a resource allocation, and submit the solution allocation to the smart
contract. The directory, acting as a service director, can then finalize a solu-
tion by invoking a smart-contract function, which chooses the best solution
from all the allocations that have been submitted. Once a solution has been
finalized, the prosumers are notified using smart-contract events. To ensure
correctness, the smart contract of SolidWorx is generated and verified using
a finite-state machine (FSM) based language called FSolidM [109].

4.4 Time Synchronization

Satisfying time deterministic requirements during code execution on a node
is crucial but not enough for a distributed system like social dispersed com-
puting. In these applications, we sometimes need to establish a common
synchronized time base and need to align each node’s local clock(s) to this
global reference. Even slight differences in each node’s local clock—typically
a few tens of parts per million (ppm)—accumulate fast and become apparent
over time. Based on environmental factors (temperature, humidity, and volt-
age stability), the frequency differences are not constant. Thus, to provide
an accurate globally synchronized time base, the supporting services need
to periodically measure and compensate for these differences. The periodic
adjustment of the local time on the node requires careful considerations to
avoid disruption of the local event scheduler [54]. Fortunately, there are two
well established technologies for solving this problem, both are supported by
any modern Linux kernel.

The Network Time Protocol (NTP) [74] is a ubiquitous time synchroniza-
tion service using heuristic software algorithms with no special requirements
on the networking hardware and communication infrastructure. The Preci-
sion Time Protocol (PTP, IEEE-1588) on the other hand is built on accurate
end-to-end hardware-level timestamping capabilities. It is no surprise that
the attainable accuracy of the two methods differ by orders of magnitudes:
tens of milliseconds with NTP vs. microseconds with PTP [120]. PTP has
also been implemented over wireless [43].

The PTP protocol achieves excellent accuracy if used within a local area
network and/or all network equipment in the packet forwarding path partic-
ipate in the protocol. The basic building blocks of the protocol are: (1) a
hierarchical master/slave clock tree strategy supported by a leader-election
(’best master’) protocol, (2) accurate time-of-flight measurement of network
packets with the built-in assumption that these delays are symmetrical (3)
support for measuring and compensating for intermediate delays across the
communication medium (4) using level-2 LAN frames or IPv4/IPv6 UDP
messages as the transport mechanism (5) support for co-existing indepen-
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dent PTP clock domains on the same LAN.
At its core, the master-slave clock synchronization mechanism is imple-

mented by periodic beacon frames broadcast by the master and containing
the master clock value at the beginning of the beacon message generation.
If the networking hardware is not capable of inserting this time value during
frame transmission, a second non time critical frame is sent by the master
containing this value. With properly maintained estimates on frame trans-
mission delays, each slave can adjust its local clock to the master. The
delay estimation is based on periodic round-trip requests from the slaves to
the master. The request message is transmit-timestamped by the slave and
received-timestamped by the master. The server then replies with a non real
time message which contains the received-timestamp for the slave to have a
good estimate on the current network delay.

4.5 Distributed Coordination Services

Social dispersed computing applications will aggregate large numbers of users
that will participate as sensing actors and will also receive and use data pro-
duced by the application. Interactions across these users will be possibly
made on the basis of user groups that can change dynamically. Services for
grouping/membership management and distributed coordination and con-
sensus will have to be put in place to enable consistent inter-operation with
coherent state management.

An application may be deployed on a variable number of nodes. Nodes
can be added or removed from the network at any time, either by a control-
ling authority or unintentionally due to a fault condition. It is possible for
an application to operate on a subset of nodes (or groups), while another
application operates on another subset of nodes. It is possible for a node to
migrate from one subset to another subset.

A distributed coordination service provides common services for coordi-
nation among actors that run on a network of nodes. The distributed coor-
dination service includes (1) group membership, (2) leader election, (3) dis-
tributed consensus, and (4) time-synchronized coordinated action; these are
explained below:

• Group membership maintenance: It is a basic building block that
maintains the logical lists of components (i.e., users) that register with
the service. All the distributed coordination features are available in-
side a logical group.

• Leader election: Choosing a leader is a process where a single node
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becomes designated as an organizer of tasks among several distributed
nodes.

• Distributed consensus: A process where group members form agree-
ment on some data value.

• Time-synchronized coordinated action: Time synchronized activ-
ities take the clock value as the trigger for their execution. In a dis-
tributed scenario, several nodes will have to agree on when to schedule
a task of this kind, and for this, their clocks must be synchronized.

More in detail, coordination services are needed to maintain shared state
in a consistent and fault-tolerant manner. Achieving fault tolerance is done
by using replication that is typically based on running a quorum (majority)
based protocol such as Paxos [92, 91]. Paxos manages the state updates
history with acceptors, and each update is voted by a quorum of acceptors.
The leader that manages the voting process is one acceptor. Paxos also has
learners that are light weight services that get the notifications of updates
after the quorum accepts them; learners do not participate in the voting.
Different technologies have implemented this protocol; a few selected ones
will be presented in the next section. A major criticism to Paxos is that is
not an easy to understand protocol. Raft [125] is similar to Paxos, however,
according to the authors it is more understandable, the implementation phase
is shorter, and it is designed to have fewer states.

Often, distributed hash tables are also used to store the information that
can be used for distributed coordination. For example [57] uses OpenDHT [131]
to store, query, and disseminate details of publishers and subscribers across
the network. OpenDHT is a fast, lightweight Distributed Hash Table (DHT)
implementation. The dissemination does not mean full data replication on
all nodes. OpenDHT stores the registered value locally and forwards it to
a maximum of eight neighbours. The distributed hash table for service dis-
covery does not distinguish the nodes, (i.e. there are no “server” or “client”
nodes) – nodes are peers and each operates with the same rules. If a node
disconnects from the network, the DHT service on the other nodes is still
able to register new services or run queries.

4.6 Software technologies

4.6.1 Virtualization

Figure 1 provides a general view over computing and its evolution (q.v. figure
1) to the current virtualization technology.
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Figure 4: Looking back at 60 years of virtualization history.

Virtualization technology has been one of the key enablers of cloud com-
puting [61], and will also play a major role in social dispersed computing.
The partial computations from user groups will have to happen in servers
in their vicinity that will aggregate the data received from users, possibly
maintaining a state of the group, and communicate back to the users and
to other neighboring servers and the cloud. These servers will have to run
other applications besides the social computing application; in this way, vir-
tualization can be used to isolate the execution of the different applications
in the same physical node, avoiding interference and preserving performance.
In a computer system, virtualization refers to the creation of a virtual (not
actual) version of some other system; that includes processor, storage, or
network virtualization. There are different types of virtualization. A few of
them are provided in what follows.

Machine virtualization. It provides an abstraction of the real hardware
resources or subsystems, mapping the virtual resource to the actual one,
offering applications an abstract view through interfaces of the hardware
platform and resources that are provided underneath. In this context, the
host machine is used for referring to the physical machine on which virtual-
ization occurs; and guest machine is the virtual machine that is created on
the physical machine. The hypervisor or virtual machine monitor (VMM)
is a program (whether software, firmware, or hardware) that creates virtual
machines on an actual host machine.
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Virtualization allows applications to be run in software environments that
are separated from their underlying hardware infrastructure by a layer of
abstraction. This enables different applications to be split into virtualized
machines that can run over different operating systems running over the same
hardware.

A virtual machine (VM) is an execution environment in its own: it is a
software implementation of a physical execution platform, machine, or com-
puter, capable of running the same programs that the physical machine can
run. Virtual environments can be designed from either a hardware parti-
tioning or hypervisor design side. Hardware partitioning does not support
the benefits that resource sharing and emulation offered by hypervisors can
provide.

There are two main types of hypervisors. On the one hand, bare metal
(namely type 1) hypervisors execute directly on the physical hardware plat-
form that virtualizes the critical hardware devices offering several indepen-
dent isolated partitions. Examples of these are VMWare ESX, Xen, or Mi-
crosoft Hyper-V; and others such as WindRiver Hypervisor or XtratuM for
real-time systems. These can also include network virtualization models like
VMware NSX. On the other hand, type 2 hypervisors are hosted ones as they
run over a host operating system.

Containers. Containers are a different virtualization model in which differ-
ent applications and services can run on a single operating system as a host,
instead of virtual machines which allow to run different operating systems.
The idea behind containers was providing software code in a way that can
quickly be moved around to run on servers using Linux OS; such software
form can even be connected together to run a distributed application in the
cloud. The benefit is, then, maximized by the possibility of speeding up the
building of large cloud applications that are scalable.

Containerization was originally developed as a way to separate names-
paces in Linux for security reasons for protecting the kernel from the exe-
cution of applications that could have questionable security or authenticity.
After this came the idea of making these “partitions” efficient and portable.
LXC [10] was probably the first true container system, and it was developed
as part of Linux. Additionally, Docker [4] was then developed as a system
capable of deploying LXC containers on a PaaS platform.

The applications running with containers are virtualized. In the specific
case of Docker’s native environment, there is no hypervisor. There is a dae-
mon in the kernel that provides the isolation across containers and connects
the existing workloads to the kernel. Modern containers usually include a
minimal operating system (e.g. VMWare’s Photon OS) with the sole objec-
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tive of providing basic local services for the hosted applications.

Microservices. The concept of microservices has a natural fit to containers,
and it provides an alternative to the monolithic architecture pattern that is
the traditional architectural style of enterprise applications. The microservice
architecture structures applications as collections of loosely coupled, small,
modular services that provide business capabilities and in which every service
runs a unique process and communicates through well-defined, lightweight
mechanism.

Microservices are functions that can operate for different applications
like libraries, that contact them via an API to produce a discrete output. In
monolithic applications, these functions would be instantiated redundantly:
one per application. Netflix [121] streaming video service provider uses mi-
croservices. Modern containers include only the basic services needed for
a given system. Orchestration services such as Kubernetes and Mesosphere
Marathon manage the replication and removal of container images depending
on the traffic patters to/from the workloads of microservices.

Different protocols are possible for communication across microservices
like HTTP; however, DevOps professionals mostly choose REST (Represen-
tational State Transfer) given its lower complexity as compared to other pro-
tocols. Microservices support the continuous delivery/deployment of large,
complex applications, that yields agile software provisioning. Given its scal-
ability, it is considered a particularly interesting pattern when it is needed
to support a broad range of platforms and devices.

4.6.2 Cloud deployment and management

There are various alternatives to designing and developing a cloud comput-
ing infrastructure and manage it such as Amazon Elastic Compute Cloud
(Amazon EC2) [21], Microsoft Azure [113], CloudStack [22], OpenStack [12],
OpenNebula [11], Eucalytus [6], or IBM Cloud [9], among others. They of-
fer compute and storage services on the basis of an IaaS model, except for
Google App Engine [8] and Azure; the latter offer a PaaS model on which it
is possible to deploy web applications and scalable mobile backends.

The technologies that provide IaaS model are typically based on lower
level virtual machine monitors (VMMs) that allow the construction of virtual
execution environments or virtual machines. Most of the previous technolo-
gies are based on either Xen [15], VMware [14], or KVM [99] VMMs and
have a native Linux host. This is true except for IBM Cloud that also uses
the above virtualization.

On the other hand, the technologies that provide PaaS are based on
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lighter weight virtualization models such as application containers in the
case of Google App Engine or OS virtualization for Microsoft Azure. Among
the main benefits of this model is the maintenance cost as users do not have
to configure nor fine tune any backend server. User applications deployed
in this type of environments can use APIs to access a number of available
services just as data base interfacing (through SQL queries, etc.) or user
authentication. In addition, applications availability is also managed by the
platform, and they are automatically scaled depending of the amount of
incoming traffic so users only pay for the amount of resources used.

A number of problems have been addressed over the last decade for data
center management. Precisely, virtual machine placement has been one of
the most popular problems addressed by the scientific community that has
produced many contributions such as [108]. Energy consumption has also
received great attention; some researchers have contributed algorithms to
optimize virtual machine placement and optimize energy consumption such
as [44] through live migration based on values of usage thresholds considering
multiple resources, therefore targeting two of the greatest problems of data
centers.

Another research problem in cloud is quality of service aware data delivery
to users. One of the bottlenecks in a data center that hinders performance
is the networking across servers with kilometers of cables and terabytes of
exchanged data across inhouse servers. Quality of service provisioning is con-
cerned also with a number of very common activities such as effective resource
management strategies [28] including virtual machine migration, service scal-
ing, service migration, or on-the-fly hardware configuration changes. These
may all affect the quality experience by data delivery to users.

One of todays’ open problems in cloud computing management is man-
aging the complexity introduced by geographically distributed data centers.
Some authors have proposed the design of an integrated control plane [41]
that integrates both computation resources and network protocols for man-
aging the distribution of data centers. Timely traffic delivery is essential to
guaranteeing quality of service to applications, services, and users. Traffic
engineering relies on the appropriate networking mechanism over LSP (La-
bel Switched Paths) that are set at core networks and are controlled by the
control plane. Path computation is essential to achieving the goals of traffic
engineering. Actually, the IETF (Internet Engineering Task Force) promoted
the Path Computation Element (PCE) architecture as a means to overcome
the inefficiencies encountered by the lack of visibility of some distributed net-
work resources. The core idea of PCE is a dedicated network entity destined
to path computation process. A number of initiatives for using the Path
Computation Element (PCE) also for cloud provisioning has been further
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researched [127].

Predictable cloud computing technologies. The penetration of virtual-
ization technology has paved the way for the integration of different functions
over the same physical platform. This effect of virtualization technology has
also arrived to the real-time systems area supporting the integration of a
number of functions of heterogeneous criticality levels over the same physical
platform. The design of mixed criticality systems (MCS) [40] is an impor-
tant trend that supports the execution of various applications and functions
of different criticality levels.

Real-time domains have improved the capacities of hypervisors to ensure
full isolation across virtual machines that are called partitions. Partitions
are fully independent and are scheduled by the hypervisor according to some
scheduling policy. To comply with the real-time requirements, usually hierar-
chical scheduling is used due to its simplicity that favors timeliness; however,
still the most complex point in this domain is the integration of the commu-
nication and distribution technology into partitioned systems. In [62], it is
shown how a distributed partitioned system can be naturally integrated with
a hierarchical scheduling mechanism to ensure timeliness of the communica-
tions when using distribution software under a number of restrictions.

4.6.3 Messaging Middleware

A large number of interacting entities in IoT are likely to be resource-
constrained devices for whom some of the existing middleware solutions are
not suitable. To overcome these restrictions, a variety of solutions have re-
cently been developed and new ones are emerging. We survey a few of these
solutions.

Message Queuing Telemetry Transport (MQTT) MQTT [73] is
a connectivity protocol to support machine-to-machine (M2M) communica-
tions in IoT. Since the goal was to support the IoT resource-constrained
devices, it is designed to be very lightweight. MQTT supports a pub-
lish/subscribe messaging transport. Example use cases include sensors com-
municating to a broker via satellite link, over occasional dial-up connections
with health care providers, and in a range of home automation and small
device scenarios. Even mobile applications can make use of MQTT because
of its support for small size, low power usage, smaller data packet payloads,
and efficient distribution of information to one or many receivers.

MQTT supports a publish/subscribe communication model and uses the
term “client” to refer to entities that either publish topics or subscribe to top-
ics, while the term “server” refers to mediators/brokers that relay messages
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between the clients. MQTT operates over TCP or any other transport proto-
col that supports ordered, lossless message communication. MQTT supports
three levels of QoS for message deliver: (a) at-most-once, (b) at-least-once,
and (c) exactly-once.

MQTT was originally developed in 1999 and has recently become an
OASIS standard starting from version 3.1.1.

Message Brokers MQTT is in fact an example of a publish subscribe
message broker. In addition to MQTT, a number of message brokers like
Apache Kafka, AMQP (Advanced Message Queue Protocol), and Active MQ
are finding applications in areas of IoT. Apache Kafka [23] is an open source
distributed streaming platform used to build real time data pipelines between
different systems or applications. They provide high throughput, low latency
and fault tolerant pipeline for streaming data with a tradeoff between perfor-
mance and reliability. They are deployed as a cluster of servers which handles
the messaging system with the help of four core API’s, namely, producers,
consumers, streams, and connectors. The other important part of the Kafka
architecture is the topic, broker and records. Here, data is divided into top-
ics, which is further divided into partitions for the brokers to handle them.
Apache Zookeeper is used to provide synchronization between multiple bro-
kers. Among the most popular data buses is the data centric DDS (Data
Distribution Service) [75] which has been extended in a number of ways such
as [63] for supporting real-time reconfiguration.

Constrained Application Protocol (CoAP) The CoAP protocol [38],
which is defined as an Internet Standard in RFC 7252, is a web transfer proto-
col for use by resource-constrained devices of IoT, e.g., 8-bit microcontrollers
with small ROM and RAM. Like MQTT, CoAP is also meant to support
M2M communications. CoAP provides a request/response interaction model
in contrast to the publish/subscribe model between application endpoints.
It supports built-in discovery of services and resources.

CoAP supports key concepts of the web such as URIs and Internet media
types. It leverages the REST architectural pattern that has been highly
successful in the traditional HTTP realm. Thus, in CoAP, servers make
their resources available as URLs and clients can use commands such as
GET, PUT, etc to avail of these resources. Due to the use of the REST
architectural pattern, it is seamless to combine HTTP with CoAP thereby
allowing traditional web clients to access an IoT sensor device.

CoAP uses UDP as its transport layer. Other protocols like DTLS are also
applicable. Like HTTP, CoAP allows payloads of multiple different types,
e.g., XML, JavaScript Object Notation (JSON), Concise Binary Object Rep-
resentation (CBOR).

Node-RED. Node-RED [35] is technically not a middleware but rather
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a browser-based model-driven tool to wire the flows between IoT devices.
The tool then allows a one-click approach to deploy the capabilities in the
runtime environment. Node-RED uses Node.js behind the scenes. The flows
are stored as JSON objects. Thus, we can consider Node-RED as a model-
driven middleware capability.

Akka. [1] Akka is an open-source event-driven middleware framework
that uses Actor Model [70] to provide a better platform to build scalable,
resilient, and responsive distributed and concurrent applications. Akka runs
on a Java virtual machine (JVM) and supports actors written in Java and
Scala. Actors in Akka are very lightweight event-driven processes that pro-
vide abstractions for concurrency and parallelism. Akka follows ”let it crash”
model for fault-tolerance in order to support applications that self-heal and
never stop.

Distributed applications in Akka will constitute of multiple actors dis-
tributed amongst a cluster of member nodes. Cluster membership is main-
tained using Gossip Protocol, where the current state of a cluster is randomly
propagated through the cluster with preference to members who have not
seen the latest state. Actors within a cluster can communicate with each
other using mediators that facilitate point-to-point as well as pub/sub inter-
action patterns. Each node can host single mediator in which case discovery
becomes decentralized, or we can designate particular nodes of a cluster to
host mediator in which case discovery becomes centralized. Akka’s message
delivery semantics facilitates three different QoS policies - (a) at-most-once,
(b) at-least-once, and (c) exactly-once.

Robot Operating System (ROS). ROS [13] is a framework that pro-
vides a collection of tools, libraries, and conventions to write robust, general-
purpose robot software. It is designed to work with various robotic platforms.
ROS nodes are processes that perform computation and these nodes com-
bined together form a network (graph) of nodes that communicate with each
other using pub/sub interaction pattern or request/response interaction pat-
tern.

Pub/sub interaction is facilitated via topics. Multiple publishers and
subscribers can be associated with a topic. Request/response interaction, on
the other hand, is done via a service. A node that provides a service, offers its
service under a string name, and a client calls a provided service by sending
the request message and awaiting the reply. Both, topics and services, are
monitored by the ROS Master. Therefore, the Master is a single point of
failure that performs the task of matching nodes that needs to communicate
with each other, regardless of the interaction pattern.
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4.6.4 Complex Event Processing (CEP)

CEP is used in multiple points for IoT analytics (e.g. Edge, Cloud etc). In
general, event processing is a method for tracking and analyzing streams of
data and deriving a conclusion from them, while the data is in motion. A
number of CEP engines like Siddhi, Apache flink and Esper are available for
stream processing. These CEP tools allow the users to write queries over
the arriving stream of data which can be utilized to determine anomalies,
sequences, and patterns of interest. For example, Siddhi [146] is an open
source CEP server with a very powerful SQL query like language for event
stream processing. It allows the users to integrate the data from any input
system like Kafka, MQTT, file, and websocket with data in different formats
like XML, JSON or Plain text. After the data has been received at the input
adapters, queries like patterns, filters, sequences, windows and pass through
can be applied on the data at the even stream to perform some real time
event processing. The data obtained after processing can be published over
web based analytics dashboard to monitor the meaningful processed data.

4.6.5 Transaction management

Hyperledger 4 is a Linux implementation for blockchain. Hyperledger (or
the Hyperledger project) is an umbrella project of open source blockchains
and related tools [55] that started in December 2015 by the Linux Foundation
[16]. Hyperledger’s goal is to develop blockchain-based distributed ledgers
following the Linux philosophy of collaborative development.

During 2016, several open-source platforms for the financial services in-
dustry have appeared, e.g. Hyperledger, Chain Core, or Corda, besides other
open-source platforms such as Ethereum and Monax that were released in
precedent years.

The Hyperledger project is partitipated by a large number of partners
contributing different tools individually or in collaboration. Burrow5 is a
blockchain client that includes a virtual machine (Ethereum). Fabric6, is an
architecture that defines the execution of smart contracts (namely chaincode
in Fabric); the processes for consensus and membership, and the roles of the
participating nodes. Iroha7 is another Hyperledger tool similar to Fabric but
targeted at mobile aplications. Lastly, Sawtooth8 is a tool that provides the

4http://www.hyperledger.org
5Burrow was contributed by Monax
6Fabric was originally contributed by IBM and Digital Asset
7Contributed by Soramitsu
8Contributed by Intel
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Proof of Elapsed Time consensus protocol based on a lottery-design consensus
protocol; this tool is based on trusted execution environments such as SGX9.

4.6.6 Service configuration and deployment technologies

Kubernetes is an open source platform that facilitates the task of running
applications in clouds, whether private or public. It supports the automatic
deployment and operation of application containers. Applications can be
scaled on the fly, and the usage of hardware can be limited to required re-
sources only. Whenever an application need be released, Kubernetes allows
generating container images; it can schedule and run application contain-
ers on clusters of physical or virtual machines. One of the most interesting
characteristics is that it supports continuous development, integration, and
deployment with quick rollbacks. Also, it raises the level of abstraction as
compared to running an operating system on a virtualized hardware; now,
it is an application that is run on an operating system that uses logical re-
sources. In Kubernetes, applications are composed of smaller microservices
that are independent pieces of code that can be deployed and managed dy-
namically.

Paradrop [101] is a platform that offers computing and storage resources
over the end nodes supporting the development of services. A key element
is the WiFi access point as it has all information about its end devices and
manages all the traffic across them. Paradrop provides an API for third party
developers to create and manage their services across different access points,
that are isolated in containers (called chutes). Also, it provides a cloud back-
end to install dynamically the access points and the third party containers,
and to instantiate and revoke them. Paradrop uses lightweight Linux con-
tainers [100] instead of virtual machines as the virtualization mechanism to
deploy services on the network routers.

4.6.7 Distributed service coordination

Zookeeper[24] is an open source technology that provides key services for
large scale systems containing large numbers of distributed processes; these
services are configuration, synchronization, group services, and naming reg-
istry. Typically, these services can be highly complex to design and imple-
ment and they are used by the vast majority of distributed applications.

Zookeeper has a simple architecture in the form of a shared hierarchical
namespace to facilitate process coordination. Also, it is a reliable system that

9Software Guard Extensions by Intel
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can continue to run in the presence of a node failure; it provides redundant
services for ensuring high availability.

Data storage is performed in a hierarchical name space such as a file
system or a tree data structure. It supports data updates in a totally ordered
manner as in an atomic broadcast system.

Fault tolerance and security is an important characteristic in coordination
services that must be well supported by not considering only simple faults
(crashes) or attacks (invalid access) that they should cover fault tolerance and
security. DeepSpace [34] is a distributed coordination service that provides
Byzantine fault tolerance [93] in a tuple space abstraction. It provides secure,
reliable, and available operation in the presence of less than a third of faulty
service replicas. Also, it has a content-addressable confidentiality scheme
that allows to store critical data. The maturity level, community, services,
and penetration of Zookeeper is, however, not comparable.

Girafe [140] is a scalable coordination service for cloud services. It or-
ganizes the coordination of servers by means of interior-node-disjoint trees;
it uses a Paxos protocol for strong consistency and fault-tolerance; and it
supports hierarchical data organization for high throughput and low latency.

ZooNet [96] is a coordination service idea that addresses the problems
of coordination of applications running in multiple geographic regions; these
applications need to trade-off between performance and consistency, and
ZooNet provides a modular composition design for this purpose.

Consul [2] is a system to enable service discovery and configuration in a
distributed infrastructure. Consul clients provide services (e.g. MySQL) and
other clients can discover the providers of such given service. Health checks
for given services are also enabled with respect to specific characteristics such
as if a service is up and running or if it is using a certain memory size. Health
checks can be used to route traffic avoiding unhealthy hosts. It also provides
multi-region datacenters.

Consul is based on agents. Each node that is part of Consul (i.e., that
provides services to it) runs a Consul agent that is responsible for health
checking the services on the node as well as the node itself. Agents interact
with Consul servers that store data and replicate it. Servers elect a leader.
Components that need to locate a service query any of the servers or any of
the agents; agents automatically forward requests to the servers. Location
of services residing in remote data centers is performed by the local servers
that forward the queries to the remote data center.

etcd [115] is a key value store, which internally uses raft [126] consensus
algorithm. Etcd can be used to build a discovery service. However, it is
primarily used to store information across a set of nodes. Kubernetes uses
etcd for managing the configuration data across the cluster.
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4.6.8 Fine grain resource management

Mesos [71] is a thin software acting as a resource manager that enables
fine-grained sharing across different and highly diverse cluster computing
frameworks by providing them with a common interface to access the cluster
resources. Control of task scheduling and execution is taken by the frame-
works; this allows each framework to decide on execution of activities ac-
cording to its specific needs and better supports the independent evolution
of frameworks.

Mesos consists of a master and slave daemons, frameworks, and tasks.
The master process manages the slave daemons running on each cluster node.
Moreover, frameworks run tasks on these slave daemons. Each framework
running on Mesos has two components: a scheduler and a executor. The
scheduler registers with the master in order to be offered resources; the ex-
ecutor process is launched on the slave daemons to run the tasks.

Fine-grained resource sharing across the frameworks is implemented us-
ing resource offers, that are lists of free resources on multiple slaves. The
organizational policies (priority or fair sharing) determine how the master
decides on how many resources to offer to each framework. Mesos defines a
plugable allocation module to let organizations define their own allocation
policies.

An important characteristic is that Mesos provides performance isola-
tion between framework executors running on the same slave by leveraging
existing isolation mechanisms of operating systems.

4.6.9 Edge computing and networking technologies

Software defined networks (SDN). Social dispersed computing applica-
tions require flexible network connections to support the dynamic geographic
distribution of end users. Although the advances in network technology and
bandwidth increase have been impressive, still IP networks have until recently
been structured in an manner that did not achieve sufficient flexibility.

Actually, the boost of Internet has occurred over IP networks that are
vertically integrated [137] in which control and data planes are bundled to-
gether [60] inside the network devices. However, this design makes it hard to
reconfigure in the event of adverse load conditions, faults, etc. The control
plane is the logic that decides how to handle the network packets; whereas the
data plane is the logic in charge of forwarding the packets as indicated by the
control plane. Network operators configure each network device individually
using low-level (and sometimes vendor specific) logic; all data packets are
treated the same by the switch that starts sending every packet going to the
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same destination along the same path. Originally, SDN focused exclusively
on the separation of the control and data planes.

Software defined networking brings in the promise for solving the above
limitations in a flexible way by providing the needed mechanisms for a net-
work that will be programmable.

[86] provides a comprehensive survey of the technologies towards SDN and
its adoption. It presents the main differences of the conventional networking
as compared to SDN, describing the role of the SDN controller over which
a number of network applications (like MAC learning, routing algorithms,
intrusion detection system, and load balancer) run.

The above is the classic SDN scenario in which a controller (that is an
application running somewhere on some server) sends the switch the rules for
handling the packets; then, switches that are the data plane devices request
guidance to the controller whenever needed and provide the controller with
information about the traffic that they handle. The communication between
the controllers and the switches happens through well defined interfaces. The
interface that enables communication between the SDN controller and the
network nodes (that are physical and virtual switches and routers) is called
the controller’s southbound interface, and it is typically the OpenFlow [110]
specification. OpenFlow has become the most important architecture for
managing large scale complex networks and has, therefore, become the major
bet for SDN. This is a specification that need be applied in matured systems
through implementations. [72] provides a survey of the target applications,
the language abstraction, the controller functions and inner workings, the
virtualization that is achieved, quality of service properties, security issues
and its integration in different networks. OpenFlow security issues are very
relevant especially in large scale deployments. [79] describes the two types of
denial of service (DoS) attacks that are specific to OpenFlow SDN networks
discovering some key configurations (like the timeout value of a flow rule and
the control plane bandwidth) that directly affect the capability of a switch
and it identifies mitigation actions for them.

The research in SDN proceeds in parallel with the improvement of the
control plane algorithms searching for better and more efficient ways to route
traffic. Especially cloud services with soft real-time requirements experience
the delays of wide area IP network interconnects across geographically dis-
tributed locations. To address this problem, [33] proposes a routing mech-
anism for providing latency and reliability assurances for control traffic in
wide-area IP networks with a just in time routing that routes deadline con-
strained messages that are control messages at the application layer with the
goal of achieving a non-intrusive solution for achieving timely and reliable
communication.
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5 Challenges in Social Dispersed Computing

Having explained the different computation technologies that cover the range
from utility cloud computing to edge computing, we can now revisit the
concept of social dispersed computing and identify the key challenges that
still exist. For researchers these points also serve as a summary of current
research interests and opportunities for the community.

The primary challenge of social dispersed computing is mobility. Consider
that nodes in the social routing application described earlier are mobile, the
system must be cognizant of intermittent connectivity caused due to high
mobility. Thus, new mechanisms have to be built for implementing handover
mechanisms that account for multi-tenancy on a local cloud in which multiple
service providers can be present to ensure backup. Additionally, given the
high mobility of users, managing volatile group formation may play a key
role in the efficient collection of data and in the transmission of only the
needed data that is relevant for particular groups. For this, it will be needed
to incorporate dynamic transaction management functionality.

The second challenge emanates from the resource constraints of the sys-
tem, which suggests that only required applications should be running on
the computation platforms. However, this leads to an interesting question
of what are the required applications. In the past “goal-driven” computing
has been used in high criticality, but mostly static systems [130]. However, a
social dispersed application implies that the end nodes or user nodes act in
a social way; they will exchange information, sharing part of their computa-
tions among the participant users, the local fog nodes, and partly with the
cloud nodes. A number of different services may run at these three layers:
user/end, fog, and cloud. Also, some services may be split across the different
layers. As all participant nodes are driven by a shared goal, they will have
to share part of their data and computations in a synchronized way and the
exchanged data will have to be appropriately tagged in the temporal domain
to meet the global goal. Thus goal-driven service orchestration is a challenge
in these systems.

Another challenge includes service synchronization and orchestration. In
cloud model, services are provided to clients in a client-server interaction
type. In social dispersed computing, end nodes come into play, requiring
interaction not only with the cloud servers. End nodes will interact with
other end nodes for fast information exchange; with the fog nodes for data
bulk exchange and for low latency gathering of information derived from
heavy processing; and with the cloud servers for obtaining results derived
from more complex data intensive computations like machine learning tech-
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nology for longer term prediction. Social dispersed computing applications
will need that supporting architectures add an abstraction layer that meets
the coordination and orchestration requirements by providing smooth coop-
eration through the end nodes. This layer will contain the required logic to
orchestrate the interaction between fog servers and the central cloud, as well
as the interaction across fogs.

Timely operation and stringent quality of service demands is yet another
challenge. Some social dispersed applications need to provide real-time ser-
vices to users. This requires to put in place a number of physical resource
management policies that ensure time bounded operation. Fog servers will
have high consolidation, so virtualization techniques will have to be properly
applied in conjunction with scheduling policies that ensure timely operation
for those real-time services and avoidance of execution interference among
applications in the presence of possibly computationally greedy functions.

Understanding that failures are going to be more common in social dis-
persed computing applications is important. Thus, we must manage the soft
state of applications. End nodes may interact heavily in social dispersed
applications. Interactions across end nodes may not assume that data nor
the infrastructure are available at all times. There is a noticeable difference
with respect to the cloud model that handles hard state and persistent data.
Considering soft state brings in much more complex scenarios in which fall
back operations will need to be considered for the user execution of recovery
actions.

The focus of social dispersed computing shifts towards the service and
the data, and other characteristics such as the location become less impor-
tant. A service may reside on a number of fog servers as well as partly in the
cloud. Then, the traditional client-server structure falls short as IP based
operations become inappropriate for handling service and data centric in-
teractions across nodes (mainly the fog and end nodes). A service centric
design that relies on data centric interaction and information exchange better
adjusts to this level of complexity.

Therefore, service offloading strategies and target infrastructure process-
ing point selection is going to be a difficult problem. In a social dispersed
application, it will be beneficial to draw a clever server processing hierarchy.
Where to process, whether at the edge or at the fog, and why are decisions
that will have to be taken based on a per application basis. We believe that
the target point for running a specific service should be selected according to
the computational complexity of the service itself (e.g. online video stream-
ing probably at the edge servers, face recognition probably at the fog). There
is strong need for designing efficient service partitioning schemes that make
use of the end, fog, edge, and cloud infrastructures as a complementary over-
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all execution platform that will speed up the dispersed computations for the
social interactions.

Lastly, autonomy, interaction, mobility and openness are the character-
istics that the Multi Agent System (MAS) paradigm covers from a theo-
retical and practical perspective. MAS technology provides models, frame-
works, methods and algorithms for constructing large-scale open distributed
computer systems and allows to cope with the (high) dynamicity of the sys-
tems topology and with semantic mismatches in the interaction, both natural
consequences of the distributed and autonomous nature of the components.
Open distributed systems are going to be the norm in the software develop-
ment industry of the future, and the interoperation of the software entities
will need to rely on a declarative concept of agreement that is autonomously
signed and executed by the entities themselves. The generation of agreements
between entities will need to integrate semantic, normative, organization, ne-
gotiation and trust techniques (namely agreement technologies).

As evidenced by the partial list of technical problems given above, there
is a complex technical challenge in the design and development of social
dispersed computing applications that is multi-faceted. Addressing some
of these problems simultaneously may result in the appearance of emerging
problems that have still not been envisioned.

6 Discussion and Conclusions

A number of computing paradigms have appeared through the years that are,
currently, applied simultaneously to develop a number of systems across dif-
ferent application domains. Newer computing paradigms coexist with other
more classical ones and each has brought into scene their accompanying set
of tools and technologies in their support. This large number of computa-
tion design options allows us to implement systems of a complexity that was
not previously imagined and that increases day by day. Some of the more
recent paradigms have still not been sufficiently applied in practice and even
create confusion as to what they mean to different scientific communities.
This paper situates the computing paradigms from the times where they
were used as a utility to provide practical solutions to given problems that
could be solved in a faster and more efficient manner; up to today where
users are progressively accustomed to having commodity solutions at reach
which go some steps beyond the mere practicality of automating tasks to a
point in which they even consent to share information and knowledge online
to ease their lives in some way or to obtain some other non primary benefit
in exchange.
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In this paper, we presented a review of core computing paradigms that
have appeared in the distributed system community in the last two decades,
focusing specifically on cloud computing, edge computing, and fog comput-
ing. Then, we described a set of computing technologies or services, which
when augmented with the computing paradigms can enable interesting social
dispersed computing applications. We described three example applications,
two from the transportation domain and one from the energy domain. These
applications can run successfully on both edge and fog computing devices.
However, as we imagine more complex and integrated applications, we must
start considering the challenges we mentioned in §5. Current computing tech-
nologies only partially meet these challenges, giving the community a great
opportunity to explore this broad research space.
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[63] Marisol Garćıa-Valls, Iago Rodŕıguez Lopez, and Laura Fernández-
Villar. iland: An enhanced middleware for real-time reconfiguration
of service oriented distributed real-time systems. IEEE Trans. Indus-
trial Informatics, 9(1):228–236, 2013.

[64] Amin Ghafouri, Aron Laszka, Abhishek Dubey, and Xenofon Kout-
soukos. Optimal detection of faulty traffic sensors used in route plan-
ning. In Proceedings of the 2nd International Workshop on Science of
Smart City Operations and Platforms Engineering, pages 1–6. ACM,
2017.

[65] Amin Ghafouri, Aron Laszka, Abhishek Dubey, and Xenofon D. Kout-
soukos. Optimal detection of faulty traffic sensors used in route plan-
ning. CoRR, abs/1702.02628, 2017.

[66] Rajrup Ghosh and Yogesh Simmhan. Distributed scheduling of event
analytics across edge and cloud. In CoRR, (1608.01537), 2016.

52



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[67] OpenFog Consortium Architecture Working Group et al. Openfog ar-
chitecture overview. White Paper, February, 2016.

[68] Randolph W Hall. Non-recurrent congestion: How big is the problem?
are traveler information systems the solution? Transportation Research
Part C: Emerging Technologies, 1(1):89–103, 1993.

[69] Yusuke Hara and Eiji Hato. A car sharing auction with temporal-
spatial od connection conditions. Transportation Research Part B:
Methodological, 2017.

[70] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular
actor formalism for artificial intelligence. In Proceedings of the 3rd
international joint conference on Artificial intelligence, pages 235–245.
Morgan Kaufmann Publishers Inc., 1973.

[71] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos:
A platform for fine-grained resource sharing in the data center. In
Proceedings of the 8th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’11, pages 295–308, Berkeley, CA, USA,
2011. USENIX Association.

[72] F. Hu, Q. Hao, and K. Bao. A survey on software-defined network and
openflow: From concept to implementation. IEEE Communications
Surveys Tutorials, 16(4):2181–2206, 2014.

[73] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. Mqtt-s—a
publish/subscribe protocol for wireless sensor networks. In Communi-
cation systems software and middleware and workshops, 2008. com-
sware 2008. 3rd international conference on, pages 791–798. IEEE,
2008.

[74] IETF. Rfc 5905. network Time Protocol (NTP) version 4.
https://www.ietf.org/rfc/rfc5905.txt, February 2018.

[75] Real-Time Innovations. RTI Data Distribution Service.
http://www.rti.com/products/dds/index.html.

[76] Intellinium. Fog, edge, cloud and mist computing, 2017. Last accessed
Nov 2017.

[77] Y. Jararweh, L. Tawalbeh, F. Ababneh, and F. Dosari. Resource ef-
ficient mobile computing using cloudlet infrastructure. In in IEEE

53



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Ninth International Conference on Mobile Ad-hoc and Sensor Networks
(MSN), pages 373–377, December 2013.

[78] Shunsuke Kamijo, Yasuyuki Matsushita, Katsushi Ikeuchi, and Masao
Sakauchi. Traffic monitoring and accident detection at intersections.
IEEE transactions on Intelligent transportation systems, 1(2):108–118,
2000.

[79] R. Kandoi and M. Antikainen. Denial-of-service attacks in openflow sdn
networks. In 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), pages 1322–1326, May 2015.

[80] A. R. Khan, M. Othman, S. A. Madani, and S. U. Khan. A survey
of mobile cloud computing application models. IEEE Communications
Surveys Tutorials, 16(1):393–413, First 2014.

[81] Irwin King, Jiexing Li, and Kam Tong Chan. A brief survey of com-
putational approaches in social computing. In Proceedings of the 2009
International Joint Conference on Neural Networks, pages 2699–2706,
2009.

[82] Alexander Kleiner, Bernhard Nebel, and Vittorio A Ziparo. A mech-
anism for dynamic ride sharing based on parallel auctions. In IJCAI,
volume 11, pages 266–272, 2011.

[83] Koen Kok and Steve Widergren. A society of devices: Integrating
intelligent distributed resources with transactive energy. IEEE Power
and Energy Magazine, 14(3):34–45, 2016.

[84] Xiangjie Kong, Ximeng Song, Feng Xia, Haochen Guo, Jinzhong Wang,
and Amr Tolba. Lotad: long-term traffic anomaly detection based on
crowdsourced bus trajectory data. World Wide Web, pages 1–23, 2017.

[85] Fragkiskos Koufogiannis and George Pappas. Diffusing private data
over networks. 2015.

[86] Diego Kreutz, Fernando M. V. Ramos, Paulo Jorge Esteves Veŕıssimo,
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