Octagon kite systems

M.Gionfriddo¹ S.Milici

Dipartimento di Matematica e Informatica,
Università di Catania,
Catania, Italy

Abstract

The spectrum of octagon kite system (OKS) which is nesting strongly balanced 4-kite-designs is determined.

1 Introduction

Let \(\lambda \cdot K_v \) be the complete multigraph defined on a vertex set \(X \). Let \(G \) be a subgraph of \(\lambda \cdot K_v \). A \(G \)-decomposition of \(\lambda \cdot K_v \) is a pair \(\Sigma = (X, \mathcal{B}) \), where \(\mathcal{B} \) is a partition of the edge set of \(\lambda \cdot K_v \) into subsets all of which yield subgraphs that are isomorphic to \(G \). A \(G \)-decomposition is also called a a \(G \)-design of order \(v \) and index \(\lambda \); the classes of the partition \(\mathcal{B} \) are said to be the blocks of \(\Sigma \). Thus, \(\mathcal{B} \) is a collection of graphs all isomorphic to \(G \) such that every pair of distinct elements of \(X \) is contained in \(\lambda \) blocks of \(\Sigma \). A 4-kite is a graph \(G=C_4+e \), formed by a cycle \(C_4=(x, y_1, y_2, y_3) \), where the vertices are written in cyclic order, with an additional edge \(\{x, z\} \). In what follows, we will denote such a graph by \([(y_1, y_2, y_3), (x), z] \). We will say that \(x \) is the centre of the kite, \(z \) the terminal point, \(y_1, y_3 \) the lateral points and \(y_2 \) the median point. A \((C_4+e) \)-design will also called a 4-kite-design. It is

¹ Email: gionfriddo@dmi.unict.it
known that a 4-kite-design of order \(v \) exists if and only if: \(v \equiv 0 \) or \(1 \mod 5 \), \(v \geq 10 \). An \textit{octagon quadrangle} is the graph consisting of a cycle \(C_8 = (x_1, x_2, ..., x_8) \), where the vertices are written in cyclic order, with two additional chords \(\{x_1, x_4\} \) and \(\{x_5, x_8\} \). In what follows, we will denote such a graph by \([(x_1), x_2, x_3, (x_4), (x_5), x_6, x_7, (x_8)] \). An octagon quadrangle system \(\text{OQS} \) is a \(G \)-design, where \(G \) is an octagon quadrangle. \(\text{OQS}(v) \)’s have been studied in [2][3][5]. Problems about \(G \)-designs can be found in [8][9][10][13][16].

Let \(\Sigma = (X, \mathcal{B}) \) be an \(\text{OQS} \) of order \(v \) and index \(\lambda \). We say that \(\Sigma \) is \textit{4-kite nesting}, if for every octagon quadrangle \(Q \in \mathcal{B} \) there exists at least a 4-kite \(K(Q) \in \{K_1(Q), K_2(Q)\} \) such that the collection \(\mathcal{K} \) of all these 4-kites \(K(Q) \) form a 4-kite-design of order \(\mu \). This kite system is said to be \textit{nested} in \(\Sigma \). We will call it an \textit{octagon 4-kite system} of order \(v \) and indices \((\lambda, \mu)\), briefly also \textit{OKS} or \textit{OKS}_{\lambda,\mu}, \textit{OKS}_{\lambda,\mu}(v).

If \(\Omega \) is the family of all the 4-kites \(\{K_1(Q), K_2(Q)\} \) contained in the octagon quadrangles \(Q \in \mathcal{B} \), we observe that also the family \(\mathcal{K}^c=\Omega-\mathcal{K} \) forms a 4-kite-design of index \(\mu' = \lambda - \mu \). If, for every octagon quadrangle \(Q \in \mathcal{B} \), both families of 4-kites \(\Omega_1=\{K_1(Q) : Q \in \mathcal{B}\} \), \(\Omega_2=\{K_2(Q) : Q \in \mathcal{B}\} \) form a 4-kite design of index \(\mu \), we will say that the \(\text{OQS} \) is an \textit{octagon bi-kite system}. For these systems, interesting open problems are: 1) to verify ”Berge’s conjecture” [12][15]; 2) to study the ”intersection problem” [6][7][12]; 3) to study the ”balance” [4][11].

\textbf{G-designs with two equi-indices}

Let \(G \) be a graph and let \(v = 4h + 1 \) an integer. A \(G \)-design of equi-indices \(\lambda, \mu \) is a pair \(\Sigma = (X, \mathcal{B}) \) be a pair where \(X = Z_v \) and \(\mathcal{B} \) is a collection of graphs, all isomorphic to \(G \), called blocks and defined in a subset of \(Z_v \), such that for every pair of distinct element \(x, y \in Z_v \):

1) if the distance (difference) between \(x, y \) is equal to \(1, 2, ..., h \), then the pair \(x, y \) is contained in exactly \(\lambda \) blocks of \(\Sigma \);

2) if the distance (difference) between \(x, y \) is equal to \(h+1, h+2, ..., 2h \), then the pair \(x, y \) is contained in exactly \(\mu \) blocks of \(\Sigma \).

Example: Let \(v = 13 \). In \(Z_{13} \) the set of all the possible differences is \(\Delta = \{1, 2, 3, 4, 5, 6\} \). Partition \(\Delta \) into the following two classes: \(A = \{1, 2, 3\} \), \(B = \{4, 5, 6\} \). It is possible to define a \(K_3 \)-design (\textit{Steiner Triple System}) of order \(v = 13 \) and \textit{equi-indices} \((\lambda, \mu) = (1, 2)\), as follows:

\[\forall \{x, y\} \subseteq Z_{13}, \ x \neq y, \ |x - y| = 1, 2, 3 \implies \lambda = 1, \]

\[\forall \{x, y\} \subseteq Z_{13}, \ x \neq y, \ |x - y| = 4, 5, 6 \implies \mu = 2, \]
where $\lambda = 1$ and $\mu = 2$ mean respectively that the pair x, y is contained in exactly one or two blocks of the system.

The blocks $\{i, i + 1, i + 5\}, \{i, i + 2, i + 7\}, \{i, i + 3, i + 7\}$, for every $i \in \mathbb{Z}_{13}$, define such a system.

Strongly Balanced 4-kite-Designs

It is known that a G-design Σ is said to be *balanced* if the degree of each vertex $x \in X$ is a constant: in other words, the number of blocks of Σ containing x is a constant. The following concept has been introduced in [4].

Let G be a graph and let $A_1, A_2, ..., A_h$ be the orbits of the automorphism group of G on its vertex-set. Let $\Sigma = (X, \mathcal{B})$ be a G-design. We define the degree $d_{A_i}(x)$ of a vertex $x \in X$ as the number of blocks of Σ containing x as an element of A_i. We say that: $\Sigma = (X, \mathcal{B})$ is a strongly balanced G-design if, for every $i = 1, 2, ..., h$, there exists a constant C_i such that $d_{A_i}(x) = C_i$, for every $x \in X$.

It is clear that: A strongly balanced G-design is a balanced G-design. Further, it is possible to prove that:

If $\Sigma = (X, \mathcal{B})$ in a balanced OQS of order v and index λ, then Σ is strongly balanced.

If Ω is a balanced 4-kite-design, it is possible that Ω is not strongly balanced. We say that a G-design is *simply balanced* if it is balanced, but not strongly balanced.

Starting from the remark that it is possible to partition an octagon quadrangle $Q = [(x_1), x_2, x_3, (x_4), (x_5), x_6, x_7, (x_8)]$, into two 4-kites $K_1(Q) = [(x_1, x_2, x_3), (x_4), x_5]$, $K_2(Q) = [(x_5, x_6, x_7), (x_8), x_1]$, we will give some results about OQSs which can be partitioned into two strongly balanced $(C_4 + e)$-designs.

2 Main Existence Theorems

It is possible to prove that:

Theorem 2.1 Let $\Omega = (X, \mathcal{B})$ be an OKS$_{\lambda, \mu}(v)$. Then

i) $\lambda = 2 \cdot \mu$;

ii) $(\lambda, \mu) = (2, 1)$ or $(4, 2)$ or $(6, 3)$ or $(8, 4)$ implies $v \equiv 0, 1 \pmod{5}$, $v \geq 8$;
iii) \((\lambda, \mu) = (10, 5)\) implies \(v \equiv 0, 1 \text{ mod } 2, v \geq 8.\)

Theorem 2.2 Let \(\Sigma = (Z_v, \mathcal{B})\) be a 4-kite-design of equi-indices \((\lambda, \mu)\), with \(v\) odd. Then

i) \(|\mathcal{B}| = (\lambda + \mu) \cdot v \cdot (v - 1)/20 \in N;\)

ii) \((\lambda, \mu) = (2, 3)\) implies \(v \equiv 1 \text{ mod } 4, v \geq 5.\)

Now we prove the conclusive Theorems. In what follows, if \(B = [(a), b, c, (d), (\alpha), \beta, \gamma, (\delta)]\) in a block of a system \(\Sigma\) defined in \(Z_v\), then the translates of \(B\) are all the blocks of type \(B_j = [(a + j), b + j, c + j, (d + j), (\alpha + j), \beta + j, \gamma + j, (\delta + j)]\), for every \(j \in Z_v\). \(B\) is called a base block of \(\Sigma\).

Theorem 2.3 There exists an OKS of order \(v\) and equi-indices \((2, 3)\), with \(v\) odd, if and only if: \(v \equiv 1 \text{ mod } 4, v \geq 9.\)

Proof \(\Rightarrow\) Let \(\Sigma = (Z_v, \mathcal{B})\) be an OQS of order \(v\) and equi-indices \((2, 3)\), with \(v\) odd. Since every block contains eight vertices, from Theorem 5.2.ii), it follows \(v \equiv 1 \text{ mod } 4, v \geq 9.\)

\(\Leftarrow\) Let \(v = 4h + 1, h \in N, h \geq 2.\)

Consider the following octagon quadrangles:

\[
\begin{align*}
B_1 &= [(0), h, 3h + 1, (1), (2h + 1), 3h, h + 1, (2)], \\
B_2 &= [(0), 1, 3h + 1, (2), (2h + 1), 3h - 1, h + 1, (3)], \\
B_3 &= [(0), 2, 3h + 1, (3), (2h + 1), 3h - 2, h + 1, (4)], \\
& \quad \ldots \ldots \\
B_{i-1} &= [(0), h - 2, 3h + 1, (h - 1), (2h + 1), 3h - (h - 2), h + 1, (h)], \\
B_i &= [(0), h - 1, 3h + 1, (h), (2h + 1), h + 1, 3h + 2, (1)].
\end{align*}
\]

Consider the system \(\Sigma = (X, \mathcal{B})\), defined in \(X = Z_v\), having \(B_1, \ldots, B_i, \ldots, B_h\) as base blocks. This means that \(B_1, B_2, \ldots, B_i, \ldots, B_h\) belong to \(\mathcal{B}\) and also all the translates.

It is possible to verify that \(\Sigma\) is an OKS of order \(v = 4h + 1\) and index \(\lambda = 5\). Further, if we divide every block \(Q = [(x_1), x_2, x_3, (x_4), (x_5), x_6, x_7, (x_8)]\), into the two 4-kites

\[
K_1(Q) = [(x_1, x_2, x_3), (x_4), (x_5)], \quad K_2(Q) = [(x_5, x_6, x_7), (x_8), x_1],
\]

we can verify that the collection of all the upper 4-kites form a 4-kite-design \(\Sigma_1 = (Z_v, \mathcal{B}_1)\) of equi-indices \((\lambda = 2, \mu = 3)\), while the collection of all the lower 4-kites form a 4-kite-design \(\Sigma_2 = (Z_v, \mathcal{B}_2)\) of equi-indices \((\lambda = 3, \mu = 2)\).

Observe that: \(i)\) in \(\Sigma_1\) the pair \(x, y \in Z_v\) associated with the index \(\lambda = 2\) have difference \(|x - y|\) belongs to \(A = \{1, 2, \ldots, h\}\), while those associated with \(\mu = 3\) have difference belongs to \(B = \{h + 1, h + 2, \ldots, 2h\}; \ ii)\) in \(\Sigma_2\) the pair
x, y ∈ Z_v associated with the index λ = 3 have difference |x − y| belongs to A, while those associated with µ = 2 have difference belongs to B.

This prove that Σ is an OKS of order v = 4h + 1, h ≥ 2, where the two 4-kite-designs nested in it have equi-indices (2, 3) and (3, 2) respectively. □

This Theorem permits to prove that:

Theorem 2.4 There exists a 4-kite-design of order v and equi-indices (2, 3), with v odd, if and only if:

\[v \equiv 1 \mod 4, \ v \geq 5. \]

Proof The statement follows directly from Theorem 2.3, considering also that the design Σ_5, defined in Z_5 and having for blocks all the translates of the base 4-kite: [(2, 1, 3), (0), 4], is a 4-kite-design of order 5 and equi-indices (2,3). □

Theorem 2.5 For every \(v \equiv 1 \mod 4, \ v \geq 5 \), there exists a strongly balanced 4-kite-design of order v.

Proof See Theorems 2.3 and 2.4. □

References

