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Crystallographic textures in thin polycrystalline films typically exhibit a

rotational symmetry, i.e. they occur as a fibre texture with the texture pole

being orientated in the direction of the substrate normal. As a further

characteristic of thin-film textures, it was often observed that the degree of

preferred orientation increases with increasing thickness. It is shown in this work

how a fibre texture gradient may be modelled in kinematical X-ray diffraction

and which effects it has on the intensity mapping of the IHKL reflection, when the

HKL pole is the fibre axis. A general expression for IHKL is derived for a depth-

dependent fibre texture that is based on the finite Laplace transform of the

texture distribution. The concept is outlined for the cosn function to model the

tilt-angle dependence of intensity, with the parameter n denoting the degree of

texture. It is found that the measured intensity distribution sensitively depends

on the ratio of texture gradient over X-ray attenuation coefficient. For particular

cases, it is found that the maximum intensity may occur for non-zero tilt angles

and thus arise at a different tilt angle from the pole of the fibre texture.

1. Introduction

Modern technological devices to a large extent rely on thin

polycrystalline films having a thickness between a few and

some thousands of nanometres. This holds for instance for

integrated circuits from the semiconductor industry, sensoric

layers, optical systems, protective and resistive coatings on

food wrappings, turbine engines and cutting tools, to mention

only a few examples (Ohring, 2002). Often, thin polycrystal-

line films exhibit a pronounced preferred crystallographic

orientation or texture, with one particular lattice plane (HKL)

preferentially oriented parallel to the substrate. The effect is

most strongly revealed in X-ray powder diffraction patterns,

where the intensity of the Bragg reflection HKL of the

preferred plane exceeds all other reflections. In addition,

inorganic layers are often found to exhibit a fibre texture or

layer texture (Birkholz, 2006), i.e. the orientation distribution

function (ODF) of crystallites is rotationally symmetric with

respect to the substrate normal s3. In the case of metals, for

instance, face-centred cubic (f.c.c.) structures are often found

to yield a h111i fibre texture, whereas diamond-structured

semiconductors exhibit a h110i or h100i fibre depending on the

deposition temperature (Wenk et al., 1990). A proper under-

standing of thin-film textures, and advantageously their

tailoring on demand, is a highly relevant question, since the

anisotropy of physical properties is mapped via the ODF into

the functioning of the device (Bunge, 1969, 1982; Wenk & van

Houtte, 2004). The relevance of this statement is emphasized

by pyro-, ferro- and piezoelectric layers, for which the polar

axis has to be adjusted to a given direction with respect to the

substrate reference frame (Chateigner, 2000). In particular,

the nearly perfect alignment of crystallographic c axes along

the substrate normal in polycrystalline wurtzite-structured

thin films is the decisive structural presupposition for their

application as transparent electrodes (Birkholz et al., 2003) or

in surface acoustic wave (SAW) devices (Caliendo & Imper-

atori, 2004). The latter application is currently under investi-

gation for fully CMOS-integrated biomolecular sensors that

would operate without an optical label of the analyte.

It turned out during a large number of thin-film studies that

a fibre texture often evolves with increasing layer thickness,

tempting one early researcher of the phenomenon to denote it

as an evolutionary process (van der Drift, 1967). The physical

causes behind these processes are still under discussion

(Kajikawa et al., 2003; Kajikawa, 2006). It has been argued

that they are due to differences in crystal growth velocities

(van der Drift, 1967; Fenske et al., 2005), induced by ion

implantation and channelling (Rauschenbach & Helming,

1989), minimization of elastic deformation energy (Pelleg et

al., 1991) or surface energy (Fujimura et al., 1993; Knuyt et al.,

1996), ion-induced damage and subsequent recrystallization

(Dong & Srolovitz, 1999), preferential etching by reactive gas

phase species (Kamiya et al., 1999; Birkholz et al., 2000),

surface coverage of reactive gas atoms (Shin et al., 2002), the

combined effects of alloying and annealing (Platt et al., 2002),

plastic deformation by ion bombardment (Birkholz et al.,

2004), and other sources. It has to be stated, however, that

only few experimental studies revealed a full quantitative

description of the texture’s thickness dependence. From a

thin-film grower’s point of view, it would be reliable to assume



that the details of a texture gradient depend on the precise

nature of the deposition process, being either electroplating,

spin coating, physical or chemical vapour deposition etc., and

their operational characteristics, such as deposition tempera-

ture, pressure, growth rate, particle and charged particle

fluxes, etc. Indeed, it cannot be excluded that the various

mechanisms are active concomitantly, and it can be expected

that different texture gradients may be elicited by choosing a

particular deposition process. This all emphasizes the necessity

for experimental studies that thoroughly and quantitatively

account for the phenomenon.

It is intriguing to compare the state of knowledge to that in

the field of residual stress, which represents another important

microstructural property of thin solid films. There, a compre-

hensive approach for measuring and analysing residual stress

gradients has been developed in the framework of the scat-

tering vector technique (Genzel, 1999, 2004; Genzel et al.,

1999). The analysis of residual stress gradients in thin films has

proven its significance to elucidate the mechanisms of micro-

structure formation, as has recently been shown, for instance,

in the case of nitride hard coatings (Genzel & Reimers, 2003;

Göbel et al., 2001) and thin metallic layers, the latter of which

were subjected to an intense ion bombardment during growth

(Birkholz et al., 2004). In addition, the question of residual

stress in the presence of sharp textures has already been

tackled (Baron & Hauk, 1988; Genzel, 1998; Genzel &

Reimers, 1998; Saerens et al., 2000; Popa & Balzar, 2001; Scardi

& Dong, 2001; Almer et al., 2003; Welzel & Mittemeijer, 2003).

What is missing in the actual discussion of possible stress–

texture interactions, however, is a technique that allows the

determination of texture gradients to verify or disprove the

physical concepts that consider the one as the cause for the

other. It might be expected that the simultaneous evaluation

of stress and texture gradients will yield interesting insights

into the mechanisms of thin-film growth.

This work will outline how texture gradients may be

determined from a set of experimental diffraction data.

Texture gradients have already been dealt with in a previous

study, with emphasis on fully general three-dimensional ODFs

as they are relevant for mechanical work pieces and plastic

deformations by rolling processes, etc. (Bonarski et al., 1998).

The work presented here will focus on the evolution of fibre

textures in thin solid films in the direction of the substrate

normal. Compared with the classical texture analysis of

polycrystalline samples, two further steps of sophistication will

be employed that account for the inclusion of finite sample

thickness and the gradation of texture. A central point of this

work is the generalization of the formula of Bragg reflection

intensity in the kinematic approximation for these improved

levels of sophistication. It is hoped that via the application of

the method, the sparse database of fibre texture gradients may

be extended in order to place the theoretical modelling of this

interesting evolutional process on a firm experimental basis.

2. Modelling of tilt-angle dependence

A layer texture can be described by an orientation distribution

function TH( ) accounting for the concentration of prefer-

entially oriented lattice planes (HKL) or H as a function of

inclination  . The latter measures the angle between the

substrate normal s3 and the lattice plane normal H or the

scattering vector Q; see Fig. 1. The distribution function of the

fibre reflection TH( ) or any other reflection Th( ) can be

determined by X-ray diffraction procedures, where the

intensity of a Bragg reflection is measured in the symmetric

�/2� mode for successive tilt angles  . In the kinematic

approximation, the integral intensity of a homogeneous,

polycrystalline specimen as a function of tilt angle  is of the

form

Ihð Þ ¼ SCF0 �3 Lp mh Fh

�� ��2 Thð ÞVsc ð1Þ

with Fh, mh, Lp, and Vsc standing for the structure factor,

multiplicity, Lorentz polarization factor of the reflection, and

the scattering volume (Birkholz, 2006), respectively. SCF0 is an

instrumental scaling factor depending on incoming intensity,

goniometer radius, scanning speed and other non-sample-

related quantities. It will be distinguished in the following in

utilizing the subscript h for hkl or H for HKL. The latter

should denote all quantities of fibre-textured lattice planes,

while the first indicates a general validity for all lattice planes.

Most reliable data for fibre textures are obtained by

collecting a set of symmetric �/2� scans for different tilt angles

 by use of an Euler cradle; see Fig. 1. In this measurement

setup, the X-ray footprint on the sample, Sk/2, depends on the
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Figure 1
Illuminated sample areas for an X-ray beam of area S in a symmetrical
�/2� scan (a) with zero tilt angle  , S! S/sin �, and (b) for  6¼ 0, S!
S/(sin � cos ).



beam area S and a configuration parameter k. In a �/2� scan

without inclining the sample, k = 2/sin � holds (Fig. 1a), while

an inclination of the sample by angle  (Fig. 1b) causes the

configuration factor to become

k ¼ 2=ðsin � cos Þ: ð2Þ

The configuration parameter may be understood as a multi-

plication factor by which the depth z has to be multiplied to

obtain the X-ray path length 2‘ within the sample for a beam

scattered at depth z. The intensity distribution Ih( ) is

measured by setting the goniometer to a set of fixed  values,

performing �/2� scans and determining the reflection intensity

for each  .

The scattering volume Vsc in equation (1) may be expected

to scale with the product of S and the beam’s penetration

depth or with S/�, where � is the linear X-ray attenuation

coefficient. In the case of a thin film, the scattering volume will

moreover depend on the thickness t. The precise value for Vsc

is obtained by integrating over all incoming and exciting

beams; see Fig. 1.15 of Birkholz (2006). For the integration in

the beam direction, the substitution ‘ = zk/2 and ‘max! t has

to be performed to adapt to the measurement geometry,

resulting in the expression

Vsc ¼ S

Z‘max

0

exp �2�‘ð Þ d‘ ¼ S
k

2

Zt

0

exp ��zkð Þ dz

¼
S

2�
1� expð��tkÞ½ �: ð3Þ

The resulting scattering volume may then be represented by

multiplying S/(2�) with an absorption factor A(t) that depends

on Bragg angle � and inclination  according to

AðtÞ ¼ 1� exp ��tkð Þ: ð4Þ

Since the beam area S is constant throughout the scan, it may

be included in SCF0 by changing to a modified scaling factor

SCF = SSCF0 and one may write for the Bragg reflection

intensity of a polycrystalline specimen of thickness t,

Ihð ; tÞ ¼ SCF �3 Lp mh Fh

�� ��2 Thð Þ
1

2�
AðtÞ: ð5Þ

Depending on the type of experiment, the wavelength �
may also be included into the scaling factor. However, this has

not been done here in order to allow for comparison of inte-

gral intensities measured with different X-ray wavelengths.

Equation (5) gives the basis for the combined analysis

approach, being an extended Rietveld analysis that not only

allows the determination of lattice and positional parameters,

but also of microstructural data such as crystallite size, texture,

microstress and residual stress from a set of measured �/2�
scans at various tilt angles (Lutterotti et al., 2004; Chateigner,

2005).

The decisive distinction in the integral intensity for a

powder sample of assumingly infinite thickness and a poly-

crystalline thin film is represented by the absorption factor

A(t) or, equivalently, by the magnitude of the �t product. It

can be realised from equation (4) that the transition between

both cases is obtained for t!1, making A(t) approach unity.

The majority of thin films of technological relevance will

exhibit �t values between 10�5 and 1, causing A(t) to become

significantly less than unity and thus to diminish the scattering

intensity. For illustration, Fig. 2 displays the variation of some

�t values for representative thin-film materials of 1 mm

thickness in the X-ray energy range between 5 and 15 keV.

According to the layer’s chemical composition, pronounced

discontinuities arise at the energy of elemental absorption

edges. It may well be expected that absorption will also affect

the measurement of thin-film fibre texture and evidently the

�t product will have to be included in the analysis.

A typical map of a set of �/2� intensity scans under different

inclinations from a wurtzite-structured thin ZnO:Al film

measured with Cu K� is shown in Fig. 3. It is realised from the

different Ihkl distributions in the (2�,  ) plane that this layer

exhibits a pronounced h00li texture; further details on this

sample and its texture can be found in work by Birkholz et al.

(2003) and Fenske et al. (2005). The intensity distribution

IH( , t) can be imagined to be derived from different sections
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Figure 2
�t product functions of representative thin-film materials b.c.c. tungsten,
hexagonal ZnO and graphite with high, average and low electron
densities in the X-ray energy range between 5 and 15 keV. The film
thickness t has been assumed to amount to 1 mm.

Figure 3
Intensity map IH(2�,  ) of a nominally 500 nm ZnO:Al sample exhibiting
a pronounced h002i fibre texture. The colour scale is in counts per second
(cps). The light grey bars should indicate the set of �/2� scans to be
performed for a determination of the IH( , t) distribution.



of one Bragg peak as visualized in the figure for the 002

reflection. It is evident that the integration over the full

orientation distribution Th( ) should cover all crystallites in

the illuminated sample volume. Because fibre textures are

considered here, the integration over Th( ) does not depend

on the azimuth and simply yields the constant 2�. The

normalization of Th( ) is then performed according to

Z2�

0

d’

Z�=2

0

Thð Þ sin d ¼ 2�

Z�=2

0

Thð Þ sin d ¼ 1: ð6Þ

It has to be emphasized that the upper limit of the tilt angle

integration is �/2 instead of � as might have been expected at

first thought. This has to be done, because two reflecting lattice

planes h at  and �h at � �  account for the same Bragg

reflection and should not contribute twice to the intensity

(which is already included in the multiplicity factor mh). The

approach is justified by Friedel’s law and deserves modifica-

tion if anomalous scattering from polar polycrystals has to be

considered.

Various approaches have been tested to model the tilt-angle

dependence of measured TH( ) distributions, such as: the so-

called March function or March–Dollase function (March,

1932; Dollase, 19861) that was initially developed for plasti-

cally deformed rocks and was found to generally apply to

cylindrically shaped crystallites being either flat disks or

elongated grains; or other monotonically decreasing functions

with different numbers of free parameters and shapes

(Dollase, 1986) being proportional to either exp(� 2),

exp(�n/cos ), exp(�n2/cos2 ), or exp(�G/cosn ), etc.

Orthonormal sets from basis functions have also been

applied, for example in Bunge’s formulation of the harmonic

texture analysis (Bunge, 1969, 1982), where a fibre texture is

decomposed into a finite sum of normalized Legendre func-

tions Pl,

Thð Þ ¼
Xlmax

l¼0

clPlðcos Þ: ð7Þ

The expansion has to be truncated beyond a limiting order,

yielding lmax + 1 coefficients cl that stand for the weight of each

component. The approximation of layer texture distributions

by this expansion has the disadvantage that unreasonable

oscillations from the Pl are introduced into the typically

monotone course of TH.

A simple and mathematically sound modelling of fibre

texture intensity is given by the normalized cosn function

THð Þ ¼ Nn cosn  : ð8Þ

In this approach, the measured intensity distribution is

accounted for by a single parameter, being the fibre texture

degree n. For the modelling of measured IH( , t) data, the

order parameter n may assume any positive real number,

while a value of n = 0 would account for a random distribution

of crystallites. The normalization factor according to equation

(6) becomes

Nn ¼
nþ 1

2�
: ð9Þ

A set of these texture distribution functions for various orders

of n is given in Fig. 4 on a linear (a) and on a logarithmic scale

(b). The strength of a fibre texture in the fibre pole is

preferably specified in intensity units of m.r.d., i.e. multiples of

the random distribution (Bunge, 1982; Chateigner, 2005).

Applying a distribution function of the type given in equation

(8) has the advantage that the parameter n directly corre-

sponds to the m.r.d. value.

The effect of the thin-film absorption factor A(t) on the

cosn distribution is shown in Fig. 5 for n = 12 and some

typical �t products. It can be seen from this plot that the

decrease of �t causes a steady damping of intensity, compar-

able with the effect of temperature on a Bragg peak via the

Debye–Waller factor.

The fact that the normalization constant N may be specified

analytically for the cosn distribution is particularly helpful in

the further development of an apparatus to describe fibre

texture gradients. Of course, the other distribution functions
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Figure 4
Plot of fibre texture model distribution functions 2�Nncosn for linear
(left) and logarithmic ordinate (right).

Figure 5
Effect of the absorption factor A(t), equation (4), on the course of
2�Nncosn for n = 12 and a set of typical �t products; linear (left) and
logarithmic scale (right). The red line in both plots stands for A(t) = 1, i.e.
it is valid in the limit of �t!1.

1 According to the acknowledgement given in this paper, the naming of
T(y, r, G) as the March–Oertel–Dollase function would also appear appro-
priate.



are equally allowed. To use them, the normalization constant

has to be evaluated numerically. In the following, however, use

will only be made of the Nncosn function to account for

TH( ). This might be justified by the fact that with the present

state of knowledge, no physical theory is at hand that prefers

one texture distribution function over the other to model the

evolution of texture during thin-film growth. The expression

for the tilt-angle-dependent intensity of a fibre-texture Bragg

reflection then becomes

IHð ; tÞ ¼ SCF �3 Lp mH FH

�� ��2 nþ 1

2�
cos n  

1

2�
AðtÞ: ð10Þ

To summarize this section, it may be stated that the

dependency of tilt angle  on a fibre texture intensity distri-

bution IH( , t) is buried within the fibre orientation distribu-

tion TH( ) and, via the configuration parameter k, within the

absorption factor A(t).

3. Average information depth

The penetration depth � of an X-ray beam into the sample is

governed by the linear attenuation coefficient � and the

experimental geometry accounted for by the configuration

factor k. For the case of an infinitely thick powder sample, the

penetration depth from which the structural information

stems in a Bragg reflection scales with (�k)�1. For a thin film,

however, the thickness t may become smaller than 1/�, which

would allow a part of the beam to traverse the sample fully

without being scattered. Then, the introduction of an average

information depth is more appropriate, accounting for the

average depth from which the scattered X-ray beam stems

(Birkholz, 2006). In the tilted Euler cradle configuration

considered here (Figs. 1a and 1b) the average information

depth ��� of a thin-film Bragg peak is given by

��� ¼

Rt
0

z exp ��zkð Þ dz

Rt
0

exp ��zkð Þ dz

: ð11Þ

The expression is easily solved to yield

��� ¼ t
1

�tk
þ

1

1� expð�tkÞ

� �
: ð12Þ

In powder diffraction, the illuminated scattering volume is

only restricted by the damping of the X-ray beam for any

beam incidence. In this case, the first summand in equation

(12) alone would correctly account for the information depth

and would give the t-independent expression (�k)�1. In thin-

film diffraction, the second term on the right-hand side of

equation (12) accounts for the geometrical truncation of the

scattering volume. The physics of the equation can be under-

stood by observing the limiting value for �t! 0, yielding ��� as

t/2. This mathematical limit stands for the case of an extremely

thin film, where the scattered X-ray beam would almost

equally stem from all parts of the sample. In this case, the

average information depth ��� will tend to lie in the middle of

the full layer t/2. In cases other than the limiting ones,

however, the finite thickness of the sample and the diffract-

ometer setting would principally yield scattering information

from different depths. In any case, the average information

depth is always limited by half the sample thickness, ��� � t/2.

The important conclusion to be drawn from these consid-

erations is that the fibre texture intensity IH( ) generally

stems from different depths of the sample. A texture gradient

may thus severely complicate the determination of the

orientation distribution TH from IH. Bonarski et al. (1998)

emphasized this point by stating that a pole figure, represented

by IH( ) in the case considered here, becomes inconsistent in

itself. It will be shown in the following section how consistency

can be re-established and how the effect may be dealt with.

4. Fibre texture gradients

The gradation of texture will cause the texture distribution

Th( ) to become a depth-dependent function Th( , z). The

situation is visualized in Fig. 6, where for each depth z a

distinct orientation distribution Th has been assigned to indi-

vidual layers. An important constraint to any model of texture

gradient is that a normalization condition comparable to

equation (6) should hold. This means that for any arbitrary

depth z the integral over Th( , z) should yield the constant

result

Z�=2

0

Thð ; zÞ
� �

z¼const
sin d ¼

1

2�
: ð13Þ

This condition has to be included in the model functions

introduced in the first section. The most simple texture

gradient would be a linear one, where the texture-determining

parameter only depends linearly on film depth z. Of the

various distribution functions, the Nncosn distribution

appears well suited, because it allows for an analytical solution

of a forthcoming integration. Performing a linear expansion of

the order parameter n ! n0 + n1z, the following depth-

dependent fibre texture distribution function is obtained:

THð ; zÞ ¼
n0 þ n1zþ 1

2�
cosn0þn1z  : ð14Þ
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Figure 6
Model architecture of a thin film with a non-homogeneous degree n = n0 +
n1z of fibre texture. The complete film is composed of individual layers at
different height z that exhibit a linearly increasing degree of texture.



This expression is consistent with the generalized normal-

ization condition [equation (13)]. The physical meaning of n1

is simply that of texture gradient, to be specified per unit

thickness, and thus compares with the dimension of the linear

attenuation coefficient �. The parameter n0 stands for the

initial texture strength. That means that n0 does not necessa-

rily indicate the texture strength at the interface to the

substrate, but at a height level that appears, due to experi-

mental constraints like attenuation coefficient and sample

thickness, as horizon to the X-ray probe. Now we have to turn

to the generalization of the integral intensity formulae

[equation (5)] for the case of a graded texture.

The kinematic intensity of a Bragg peak was shown in

equation (5) to scale with the product of texture factor Th( )

and scattering volume Vsc. The physical meaning behind the

mathematical operation is that only those parts of the scat-

tering volume have to be considered for which the orientation

distribution is such that they scatter into the detector. For a

polycrystalline thin film exhibiting a texture variation on the

length scale of its inverse X-ray attenuation coefficient �, the

formula for the integral intensity of Bragg reflection, equation

(5), is not valid, but deserves a generalization. It is the product

of texture coefficient Th( ) and absorption factor A(t) that

has to be subjected to change. In the derivation of equation

(5), the absorption coefficient is obtained from the integration

over scattering events in the irradiated volume. If the infini-

tesimal elements of the scattering volume are not randomly,

but to a certain extent preferentially oriented, the integration

has to be weighted by a measure specifying the degree of

preferred orientation, i.e. by the texture distribution. Since

this work is concerned with depth variations of texture, only z

variations of texture distributions have to be considered, and

the weighting terms are of the form Th( , z). Instead of the

product of TH and A(t), the integration over all beam paths

has to include the texture distribution and it has to be

generalized by substituting

Thð Þ
1

2�
AðtÞ !

Z‘max

0

Thð ; zÞ exp �2�‘ð Þ d‘

¼
k

2

Zt

0

Thð ; zÞ exp ��zkð Þ dz: ð15Þ

The integration has to be carried out over the full depth of the

illuminated sample, restricted either by the film thickness or

by the damping of the incoming X-ray beam. The decisive

integration step may be considered as a finite Laplace trans-

formation and we may abbreviate

Lt Thð ; zÞ
� �

¼

Zt

0

Thð ; zÞ exp ��zkð Þ dz: ð16Þ

The integral intensity from a Bragg reflection may finally be

expressed by

Ihð ; tÞ ¼ SCF �3 Lp Fh

�� ��2 mh

k

2
L t Thð Þ: ð17Þ

This is the fundamental equation to describe the intensity

distribution of a depth-dependent fibre texture in a thin film. It

directly represents the experimental result that is obtained by

the thin-film diffractionist, when measuring the intensity as a

function of tilt. Obviously, this is a rather complex expression

and it seems that texture gradients in thin films, in spite of

their almost universal occurrence, have so far not been

derived by analysing the intensity distribution within the

framework of this equation.

For an application of the approach, the texture distribution

functions given in the first section have to be inserted into

equation (16) and the measured intensities have to be

subjected to a numerical regression. Additional fitting para-

meters that account for the variation of texture within the

sample have to be included in the distribution function.

Performing the finite Laplace transformation to the gradient

Nncosn distribution given in equation (14) is intriguing, since

it allows the illustration of some interesting effects associated

with fibre texture gradients in thin films that are of general

validity. The task then becomes to solve for

k

4�

Zt

0

n0 þ n1zþ 1ð Þ cosn0þn1z  
� �

exp ��zkð Þ dz: ð18Þ

The integration is preferably performed by decomposing the

integral kernel into two summands and by introducing the

parameter

M ¼ �k� n1 lnðcos Þ; ð19Þ

yielding the intermediate result

k

4�
cosn0  ðn0 þ 1Þ

Zt

0

exp �Mzð Þ dzþ n1

Zt

0

z exp �Mzð Þ dz

2
4

3
5
ð20Þ

and the solution

k

2
L t Thð Þ ¼

1

2�
n0 þ n1t

1

Mt
þ

1

1� expðMtÞ

� �
þ 1

� 	

� cosn0  
1� exp �Mtð Þ

2M=k
: ð21Þ

Introducing the abbreviations for the modified absorption

factor

~AAðtÞ ¼ 1� expð�MtÞ ¼ 1� ðcosn1t  Þ expð��tkÞ; ð22Þ

and the modified normalization factor

~NN ¼
1

2�
n0 þ n1t

1

Mt
þ

1

1� expðMtÞ

� �
þ 1

� 	
; ð23Þ

the formulae for the depth-graded texture intensity with an

essentially cosn fibre distribution function finally becomes

IHð ; tÞ ¼ SCF �3 Lp mH FH

�� ��2 ~NN cosn0  
k

2M
~AAðtÞ: ð24Þ
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In this form, the close relationship with equation (10) can be

realised, although significant differences have to be stated

when equation (24) is compared with the gradient-free

expression. Most relevant, both ~AA(t) and ~NN depend on the

texture gradient n1. For other texture distribution functions,

the expression will of course become different. It is a clear

advantage of the cosn distribution, however, that it allows for

an analytical solution of equation (17), since some basic

conclusions may be drawn that are of more general validity.

First of all, the limiting value for zero tilt angles is of

interest. For this case of  = 0 or cos = 1, the M factor limit

yields the product of the attenuation and the configuration

factor

lim
 !0

M ¼ �k ¼
2�

sin �
: ð25Þ

Furthermore, the proportional constant of the n1 term in the

modified normalization factor, equation (23), can be realised

to give the average information depth ��� from equation (12) for

vanishing tilt. We end up with the an intensity for zero tilt of

lim
 !0

IHð ; tÞ ¼ SCF �3 Lp mH FH

�� ��2 n0 þ n1 ��� þ 1

2�


 �
AðtÞ

2�
:

ð26Þ

It states that the intensity in the pole ( = 0) is not propor-

tional to n0 + 1, but proportional to this term plus the product

of the gradient multiplied by the average information depth,

n1 ���. This is the reflection intensity measured in a coplanar �/2�
scan and appears a very reliable result from a physical point of

view.

A second interesting point of equation (24) is related to the

position of maximum intensity. It has to be emphasized again

that only fibre textures are considered here with the fibre axis

in direction of the substrate normal. This means that the

highest concentration of lattice planes with an orientation

parallel to the substrate plane occurs for zero tilt. Conse-

quently, the highest intensity can be expected to arise at  = 0,

which appears self-evident when modelling the texture by a

cosn or any other distribution given in the first section.

It may be realised from equation (24), however, that the

course of IH depends on the product of two monotonic func-

tions, cosn0  and ~AA(t), of opposing tendencies. Whereas

cosn0  is monotonically decreasing for increasing tilt, ~AA(t)

follows the opposite trend. Since both factors enter the

intensity formulae [equation (24)], the course of IH( , t) will

depend on the balance between n0 and n1t on the one hand

and �t on the other hand. Some plots of the product functions

for the ungraded and for the graded texture case, A(t)cosn 
and ~AA(t)cosn0  , are given in Fig. 7(a) for reliable parameters

to demonstrate the effect (n1t = 8 and n0 = 10 or n = 10,

respectively). It can be seen that for certain parameter values,

the product function ~AA(t)cosn0  takes its maximum at posi-

tions distinct from  = 0, and so will the measured intensity.

For the last two functions with �t/sin � = 0.2, the two-dimen-

sional intensity pole figures as usually measured over the

(�,  ) plane are also schematically given in Fig. 7(b). A

characteristic ring of maximum intensity is seen to surround

the origin. Such a pattern is comparable with that of an

asymmetric reflection and may falsely imply that the fibre pole

differs from the  = 0 position.

Obtaining such a result may lead to the misinterpretation

that the fibre axis is inclined with respect to s3. The physical

meaning behind the effect is due to the balance between

texture gradient and average information depth. Since ��� varies

with varying tilt angle  , different depths are probed during

the course of the measurement, with regions closer to the film

surface being probed for higher  values. For a positive

texture gradient, as is usually observed in thin polycrystalline

films, sample regions with a higher degree of texture may

mimic a higher concentration of lattice planes for non-zero tilt.

From a mathematical point of view, this is caused by the

modulation of the exp(��tk) term by the cosn1t  factor in

equation (22). The latter term is missing in the conventional

absorption factor A(t) [see equation (4)] and the effect of the

shifted intensity maximum will not be observed for an

ungraded fibre texture. The observation of a maximum

intensity apart from  = 0 in IH( , t) can thus be taken as a

strong hint that the sample exhibits a texture gradient. It is

evident from equations (19) to (24) that the effect will depend

on the relative strength of the �t and n1t products.

Regarding the experimental determination of texture

gradients, it might become difficult to measure the magnitude

of n1 or n1t, in particular, if monotonically decreasing intensity

distributions IH( , t) are observed and if the experiment relies

on an irrevocable �t product. In the majority of studies, where

a gradient was endeavoured of being quantified, a series of

samples of varying thickness ti was prepared and the fibre

texture was measured in each sample separately (see for

instance: Kamiya et al., 1999; Birkholz et al., 2000; Saerens et

al., 2000; Shin et al., 2002; Birkholz et al., 2003; Fenske et al.,

2005). The texture strength or the degree n could then be

specified as a function of average information depth ���i of the

different samples and the gradient could be determined from

the plot of n( ���i) or its inverse Laplace transform.
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Figure 7
(a) Plots of A(t)cos10 according to equation (4), as black lines, and
~AA(t)cos10 with n1t = 8 according to equation (22), as red lines. Both
curves in each box obey the same �t/sin � as indicated in the inset. (b)
From the last two curves, schematic pole-figure plots IH(�,  ) are
displayed on the right with increasing intensity symbolized by the
strength of the ring colours.



An alternative approach to the quantitative determination

of n1 can be drawn from Fig. 2, where the �t products of

different thin-film materials are presented. It is realised from

this plot that �t and therefore also the ratio of �t over n1t is

subjected to strong variations for beam energies below and

above elemental absorption edges. For ZnO, for instance, �t

varies by about an order of magnitude between E = 8 and

10 keV. The recording of IH( , t) distributions with different

energies would thus probe the sample at different depths.

Accordingly, the use of various wavelengths offers an

approach to determine the magnitude of a fibre texture

gradient within one single specimen, i.e. without using a

thickness series of samples. First results of this approach will

be presented in a forthcoming work (Birkholz et al., 2007).

5. Conclusions

In conclusion, it has been shown how a texture gradient in a

polycrystalline thin film would affect the intensity distribution

Ih( , t) of the fibre texture reflection measured as a function

of tilt angle. Although the focus was on the measurements

in the � mode, the formalism may equally be applied for

measurements in the � configuration. Vaudin has shown how

the TH( , t) function can be extracted from the measured

intensity function IH(!, t) (Vaudin et al., 1998).

The presented concept is rather general and may be applied

whenever the finite Laplace transform of the texture distri-

bution may be deconvoluted from the experimental intensity

[equation (17)]. The derived equations allow for the modelling

of not only graded texture distributions, but inhomogeneous

fibre texture distributions TH( , z) in general. Furthermore,

polycrystalline samples other than thin films may be analysed

in the presented framework by calculating the limits of

appropriate formulae for �t!1.

The quantitative determination of texture gradients will

probably find its main application in the study of thin-film

growth. For instance, the evolution of texture and other

microstructural properties has frequently been assigned to the

variation of residual stress with increasing film thickness. The

combined analysis that now becomes possible for both resi-

dual stress and texture gradients will allow a comparison of

both phenomena and may thus facilitate our understanding of

the mechanisms of thin-film growth.

I wish to thank Daniel Chateigner, Nora Darowski, Chris-

toph Genzel, Peter Zaumseil and Ivo Zizak for helpful

discussions.
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